

VIRTUALISATION

ALICE, ATLAS, CMS & LHCB JOINT WORKSHOP ON DAQ@LHC

- Why virtualise?
- Advantages of the abstraction layer
- Understand the limit
- □ Infrastructures overview
- □ Virtualisation in the present
- **Virtualisation in the future**
- **Conclusions**

Enrico Bonaccorsi on behalf of ALICE, ATLAS, CMS, LHCb Virtualisation

Introduction

Virtualisation:

 in computing, is a term that refers to the various techniques, methods or approaches of creating a virtual version of something, such as a virtual hardware platform, operating system, storage device, or network resources
 http://en.wikipedia.org/wiki/Virtualization

□ Hardware virtualisation:

★ Hides the physical characteristics of a computing platform from users, instead showing another abstract computing platform

☐ Host:

★ Physical server that runs the VMs

Guest:

★ Virtual machine running on a physical server

Why virtualise?

- Cut down costs
 - ★ EX. Between 300 and 600 CHF per VM at LHCb
- □ CPUs: from single core to multi cores to many cores
- □ Mitigate server sprawl abandoning the model "one server -> one application"
 - \star Optmise resource usage, less servers, save energy
 - \star Manage the complexity of the data center
- □ Server consolidation and improved resource utilization
 - ★ Bring many workloads on a single machine- reduce the idle time of servers
- □ Faster deploy of new server
 - ★ Clone a gold image, deploy from templates or from existing virtual machine
- □ Isolate application
 - ★ Providing an abstraction layer between HW and SW
 - ★ Reduce vendor dependencies
- □ Increase availability
 - \star If a component fail the VMs are moved or restarted somewhere else
- Virtual labs & Testing

Advantages of the abstraction layer

Snapshot

- ★ Is the state of a virtual machine, and generally, its storage devices, at an exact point in time
- ★ You can revert the state of a VM to a previous state stored in a snapshot

Migration

- \star A snapshot can be moved to another host machine
- ★ VM is temporarily stopped, snapshotted, moved, and then resumed on the host

Failover

★ Allows the VM to continue operations if the host fails – live migrating on another host or restarting if live migration is not possible

Storage live migration

★ Allows the VM to continue operations while its virtual drive is moving to another storage

Understand the limit: Virtualisation is not magic

Abstracting hardware does not increase hardware resources

- ★ Each server has finite resources, in terms of:
 - > CPU
 - Memory is limited (even if it could be virtually increased by KSM and/or swapping on SSDs)
 - Network -> do not underestimate latency and throughput
 - Storage -> do not underestimate maximum IOPS, throughput

Capacity planning is difficult but it is fundamental to achieve good results:

- ★ Don't pretend what the HW can't do
- ★ What are the available HW resources?
- ★ How many machines will use the same infrastructure?
- ★ Storage? How many random IOPS per VM?
- ★ What about network usage?
- ★ Make your system able to manage peak loads
 - > A VM with high IO can severely impact the others

Infrastructures overview

	ATLAS	CMS	LHCB
Hypervisor	XEN & KVM	KVM	KVM
Management SW	 LibVirt OpenStack for Sim@p1 	LibVirtOpenStack	 RHEV LibVirt Evaluating OpenStack
Current number of VM	~35 ~11 testbed	10 LibVirt 1300 OpenStack	~40 ~200 testbed
Number of foreseen VMs at end of LS1	~1800-openstack	~1300 (maybe more)	~300
Number of VMs per Hypervisor	6-8 VMs	1 VM	~15 VMs
Storage backend (Problems with high I/O?)	 Local drives NFS, ISCSI for TDAQ Testbed Evaluating NetApp 	 Local SATA Evaluating GlusterFS 	 Shared storage: FC & iSCSI based on NetApp
Average Network Bandwidth per VM under peak load		1Gb/s	500Mb/s

CMS

ALICE ATLAS

Virtualization in the present

ALICE

none

ATLAS

- gateways
- domain controllers
- few windows services
- development web servers
- core Nagios servers
- Puppet and Quattor servers
- one detector machine
- public nodes

CMS

- domain controllers
- Icinga workers and replacement server
- few detector machines

LHCb

- web services
- infrastructure services
 - ★ DNS, Domain Controller, DHCP, firewalls
 - ★ always a tandem for critical systems: one VM, one real
- few control PCs

Virtualization in the future

- Virtualization is a very fertile playground
 - \star Everyone thinking how to exploit
- Offline software (analysis and simulation) will run on virtual machines on the ATLAS and CMS HLT farms
 - ★ OpenStack is used for management

ALICE

ATLAS

- Control Room PCs
- Event Builders

LHCb

- general login services
 - ★ gateways and windows remote desktop
- all control PCs
 - ★ PVSS, Linux, Windows, specific HW issues (CANBUS)

ATLAS

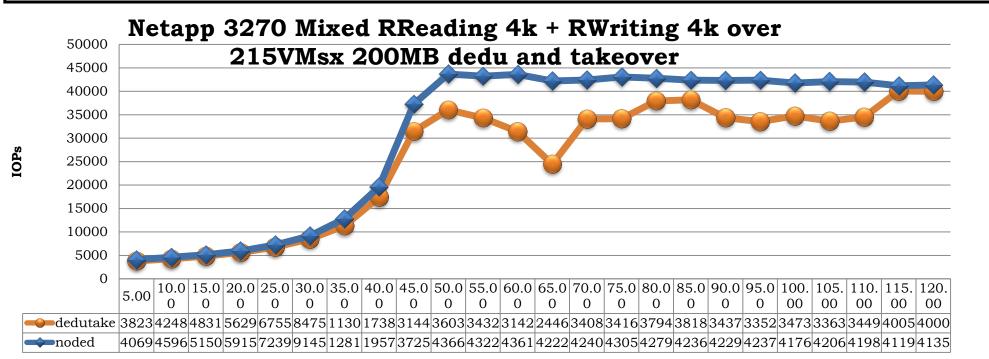
DCS windows systems

CMS

- servers
 - ★ DNS, DHCP, Kerberos, LDAP slaves
- DAQ services

Benchmark – LHCb VM storage backend & Network

Blade Poweredge M610


ATLAS

- ★ 2 x E5530 @ 2.4GHz (8 real cores + Hyper Threading)
- ★ 3 x 8 GB = 24GB RAM
- ★ $2 \ge 10$ Gb network interfaces
- ★ 2 X 1Gb network interfaces

- ★ 2 X 8Gb fiber channel interfaces
- Storage

- ★ 4 X 8Gb Fiber channel switches
- ★ SSD pool + SATA
- Deduplication ON

- Network
 - ★ 4 X 10Gb Ethernet switches
 - ★ 4 X 1Gb Ethernet switches
- Limits:
 - ★ Average of 15 VM per Server

Storage (random) IOPS=45K Throughput=153MB/s Latency= ~10ms

Network

Throughput = 5.37 Gb/s Latency = 0.15 ms for 1400B

Virtualisation

- At the end of each "run" period, logs are collected and analysed for problems
 - PVSS_II.log, WCCOActrINN.log are "grepped" for possible issues ("disconnect", "connect", "queue", "pending", "lost", ...)
- Plots are also produced by calculating the rate from the dpSets timestamp (only local dpSets)

Date	Local Rate*	Remote Rate*	Total*	CPU (%)	Comment
18.12.2012	1200	100	1700	85	All OK
20.12.2012	1200	0	1200	35	All OK
09.01.2013	1200	1000	5210	85	All OK
14.01.2013	1600	1400	7250	93+	Problems with 1 project (multiple disconnections/connections)**
17.01.2013	1600	50	1850	50-60	Decreased for live migration tests
*dpSets per Second					

** WINCC006, after some period, started disconnecting/connecting to WINCC005 and WINCC007 indefinitely. Problem was fixed by restarting the projects WINCC004 and WINCC008 which also connect to WINCC006.

- Globally, WinCC seemed to perform stably. Only one instance gave some issues which were able to be resolved.
- Check twiki for more info: <u>https://lbtwiki.cern.ch/bin/view/Online/VirtualizationWinCCTest</u>

□ VMs Storage slow

- ★ Check paravirtualisation
- ★ Lack of IOPS is normally the cause
 - Solution: Provide enough resources, some tuning can be done but workload should be redistributed or storage backend should be upgraded (IOPS)
- ★ Maximum number of IOPS could drastically decrease if filesystem is not aligned
- ★ Filesystem sector size vs disk/array block size
- ★ Tuning (see backup slide)

■ VMs Network slow:

- ★ Check paravirtualisation
- ★ Large Receive Offload (LRO) should be disabled in the hypervisor
- ★ Flow control
- ★ Provide enough resources

Time

ATLAS

- ★ VMs does not see every tick
- ★ Solved with guest agents worst case with ntpdate
- □ PCI, USB & live migration
 - ★ USB could be used over IP but stability must be tested
 - ★ PCI cards make less easy live migration

Conclusions

- Experiments are looking more and more at virtualisation
- ❑ Virtualisation can provide a solution to the server sprawl phenomenon with the consolidation of several operating systems on a single server
 - ★ Reduce the number of physical server to be managed
 - ★ Reduce the hardware maintenance costs
- □ Virtualisation increase manageability and efficiency
- Use cases may be different depending on the experiment
 - ★ Different implementations may be required
 - > Ex. Shared storage vs Local storage
 - "1 VM per Server" vs "Many VMs per Host"
 - * Almost all experiments are looking forward to a more cloudy infrastructure
 - ★ OpenStack & virtualisation are common points for which experiments could share knowledge and experience
- Capacity planning is fundamental
- □ virtualise the DAQ?
 - ★ 1 VM per host?

- Sergio Ballestrero
- Franco Brasolin
- Olivier Chaze

ALICE ATLAS

- □ Marc Dobson
- Ulrich Fuchs
- Niko Neufeld
- Diana Scannicchio
- Francesco Sborzacchi

VMs Tuning

Use paravirtualization

ATLAS LHC.

- Mount filesystems with noatime, nodiratime
- Change scheduler to NOOP in VMs
 - ★ kernel /vmlinuz-2.6.18-194.el5 ro root=/dev/VolGroup00/LogVol00 elevator=noop
 - ★ for i in `ls -d /sys/block/vd*`; do echo noop > \$i/queue/scheduler; done
- □ Change scheduler to ANTICIPATORY in the HOSTS
- Cache DNS requests
 - ★ Use nscd
- Disable ipv6
 - ★ echo 'alias net-pf-10 off' >> /etc/modprobe.d/blacklist_ipv6
- □ Use SSDs, Hybrid drives or tiered storage
- Move metadata away from data
 - ★ Ex. Using LVM

Other Issues

Hardware Compatibity

- ★ Fiber Channel example -> qlogic firmware
- ★ Force 10 VLAN tag example -> move to a routing environment -> stability at the cost of latency
- ★ Intel E5000 series ACPI HyperV rare bug

□ Filesystems timeouts

★ Read only filesystem if waiting for I/O is excessive

ATLAS LHC-R

WinCC Setup

□ 150 WinCC Projects (WINCC001 .. WINCC150)

★ 1 project per VM

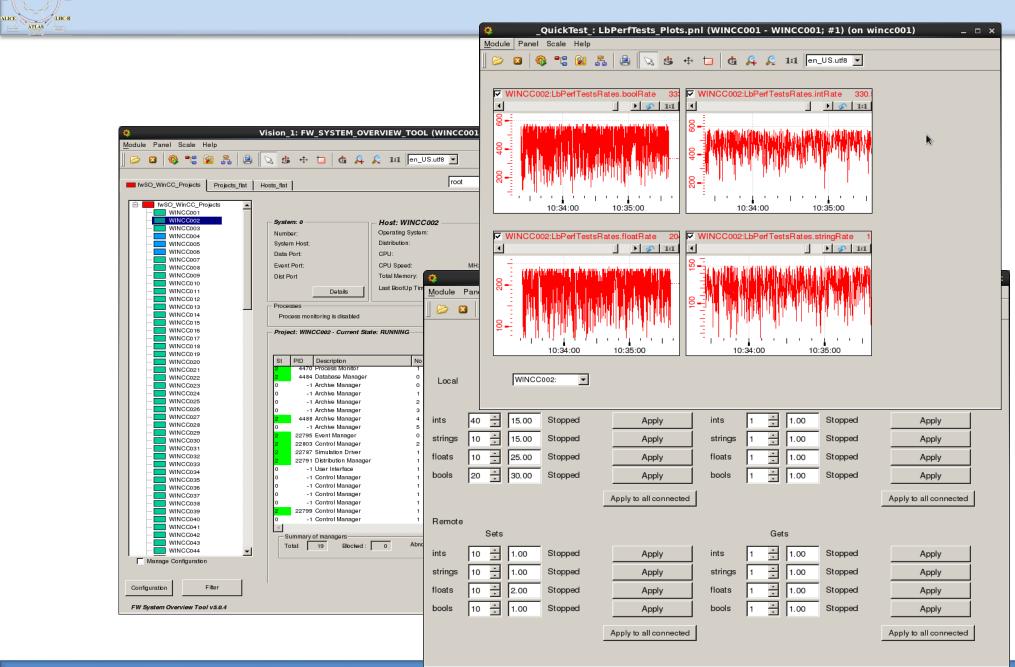
ATLAS

- ★ Each project is connected to other 5 projects
 - > The two previous and after projects (according to the numbering
 - > The master project
- ★ Each project has 1000 datapoints created for writing
- ★ Each project performs dpSets locally and on the connected projects
- ★ Number of DPs to be set and rate are settable
 - > Each period the dps are selected randomly from the 1000 dps pool and set

WinCC Setup

- 1 Master Project (WINCC001)
 - ★ This project connects to all other projects
 - ★ Has System Overview installed for easier control of the whole system
 - FW version for PVSS 3.8 produces a couple of errors but the PMON communication with the other projects works just fine
 - ★ Rates of dpSets different for this project only (as it connects to all the others)

ATLAS



- At the end of each "run" period, logs are collected and analysed for problems
 - PVSS_II.log, WCCOActrlNN.log are "grepped" for possible issues ("disconnect", "connect", "queue", "pending", "lost", ...)
- Plots are also produced by calculating the rate from the dpSets timestamp (only local dpSets)

Date	Local Rate*	Remote Rate*	Total*	CPU (%)	Comment
18.12.2012	1200	100	1700	85	All OK
20.12.2012	1200	0	1200	35	All OK
09.01.2013	1200	1000	5210	85	All OK
14.01.2013	1600	1400	7250	93+	Problems with 1 project (multiple disconnections/connections)**
17.01.2013	1600	50	1850	50-60	Decreased for live migration tests
*dpSets per Second					

** WINCC006, after some period, started disconnecting/connecting to WINCC005 and WINCC007 indefinitely. Problem was fixed by restarting the projects WINCC004 and WINCC008 which also connect to WINCC006.

- Globally, WinCC seemed to perform stably. Only one instance gave some issues which were able to be resolved.
- Check twiki for more info: <u>https://lbtwiki.cern.ch/bin/view/Online/VirtualizationWinCCTest</u>

CMS