4PN

INSTITUT DE PHYSIQUE NUCLEARE
ORSAY

Use of ROOT In Geant4

A.Dotti, SLAC
|. Hrivhacova, IPN Orsay
W. Pokorski, CERN

ROOT Users Workshop,
11 - 14 March 2013, Saas-Fee

CERN
N1 A N NATIONAL \/wl

== @ ACCELERATOR NS

) b "N\ | 7BORATORY

Outline

* Analysis tools in Geant4
» Use of Root in Geant4 testing
» EXperience with Root in multi-threading programs

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee

Analysis Tools in Geant4

* AIDA based tools
 New Geant4 analysis tools
« ROOT

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee

AIDA Based Tools

» Historically first analysis tools in Geant4 examples
 Based on AIDA = Abstract Interfaces for Data Analysis

Since Geant4 3.0 release (December 2000)

First provided within the Geant4 example extended/analysis/AnaEx01
(jas, Lab), then available as external tools

The AIDA compliant tools (linked in the Geant4 Guide for Application
Developers):

- JAS, IAIDA, Open Scientist Lab, rAIDA
Not all kept maintained, not all implement the AIDA interfaces completely
Not always easy to be installed & used

- See Geant4 user forum, Analysis category
Still supported with Geant4 9.6 (November 2012)

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 4

New Analysis Tools

* New analysis category in Geant4 since Geant4 9.5 (December
2011)

» Based on g4tools from inlib/exlib developed by G. Barrand
(LAL):
o http://inexlib.lal.in2p3.fr/
 “Pure header code” - all code is inlined
e Can be installed on I0S, Android, UNIXes, Windows

* Provides code to write histograms and “flat ntuples” in several formats:
ROOT, XML AIDA format, CSV for ntuples. HBOOK

« Complete migration to g4tools in all Geant4 examples in the
development plan for 2013

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee

http://inexlib.lal.in2p3.fr/

e Provides “light” analysis tools

Analysis Category

« Available directly with Geant4 installation
 No need to link a Geant4 application with an external analysis package

/geant4/source/analysis

include

Manager
classes
headers

tools

tools classes -
headers only

Src

Manager
classes
Implementation

test

tools tests
without use of
managers

/geant4/examples/extended/common/analysis

include

class header

ExG4HBookAnalysisManager

Src

ExG4HBookAnalysisManager
class implementation

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee

Analysis Managers

Uniform interface to g4tools

« Hide the differences
according to a selected
technology (Root, XML,
HBOOK) from the user

Higher level management
of g4tools objects (file,
histograms, ntuples)

« Memory management

e Access to histograms,

ntuple columns via
indexes

Integration in the Geant4
framework

* Interactive commands,
units, (in)activation of
selected histograms

G4VAnalysis

?

Manager =

G4CsvAnalysis
Manager

Common base class:
Interfaces functions
non dependent

on technology

(void return type)

G4RootAnalysis
Manager

G4XmlAnalysis
Manager

Manager classes:

Implement:

- base class
interfaces

- specific access
functions (with specific
return type)

- Instance() - singleton
access

EG4HbookAnalysis
Manager

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee

Provided in examples,
Requires linking
with CERNLIB

B4RunAction.cc

#include "B4Analysis.hh"
void B4RunAction::BeginOfRunAction(const G4Run* run)

// Get analysis manager
G4AnalysisManager* man = G4AnalysisManager::Instance();

// Open an output file
man->0OpenFile("exampleB4");

// Create histogram(s)
man->CreateH1("0","Edep in absorber”, 100, 0., 800*MeV);
man->CreateH1("1","Edep in gap", 100, 0., 100*MeV);

}

void B4RunAction::EndOfRunAction(const G4Run* aRun)

G4AnalysisManager* man = G4AnalysisManager::Instance();
man->Write();
man->CloseFile();

}

Example

B4Analysis.hh

#ifndef B4Analysis_h
#define B4Analysis h 1

#include "g4root.hh"
//#include "g4xml.hh"
//#include "g4hbook.hh"

\

#endif

B4EventAction.cc

#include "B4Analysis.hh"

void N4EventAction::EndOfEventAction(const G4Run* aRun)
{
G4AnalysisManager* man = G4AnalysisManager::Instance();
man->FillH1(0, fEnergyAbs);
man->Fill[H1(1, fEnergyGap);

}

>

Fee

Selection of the output format
at a single place

Histogram IDs are attributed
automatically

Example (2)

e A set of Geant4 commands which can be used to create
histograms or set their properties dynamically

 Most of commands were defined according to manager classes defined
specifically in each example

 The examples specific manager classes could be then removed or
reduced significantly

gammaSpectrum.mac in TestEm5

/analysis/setFileName gammaSpectrum

/analysis/hl/set 3 200 0.01 10 MeV #gamma: energy at vertex
/analysis/hl/set 5 200 0.01 10 MeV logl0 #gamma: energy at vertex (logl10)
/analysis/hl/set 20 200 0 6 MeV #gamma: energy at exit
/analysis/hl/set 40 200 0 6 MeV #gamma: energy at back

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 9

Examples With ROOT

* The Geant4 applications with use of ROOT classes are
demonstrated in extended examples:

e analysis/AnaEx02 — demonstration of use of Root histograms and
ntuples

- AnaEx01 — same with g4tools; AnaEx03 — same with AIDA

- http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_do
c/html/Examples_analysis.nhtml (link)

» persistency/P01, P02

- Root I/0 examples for storing and retrieving calorimeter hits (PO1) and
geometry objects (P02)

- Storing objects in a file using the 'reflection' technique for persistency
provided by the Reflex tool

- The generation of the Reflex dictionary fails for Geant4 geometry classes
using c-array with dynamic size declared via a variable of size t type (as
Reflex requires int) and therefore saving the Geant4 geometry with ROOT
I/O is currently not possible

- Reviewing these examples with changes for Geant4 MT
ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 10

http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examples_analysis.html

Use of Root In Geant4 testing

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee

11

Simplified Calorimeter
Application

« SimplifiedCalorimeter application:
« Simplified versions of HEP calorimeters implemented with Geant4

« All LHC calorimeter materials and technologies

 The most important variables for calorimetric measurements (response,
resolution and shower shapes) are reconstructed and recorded for
analysis.

« This application is used to test and verify physics improvements and new
developments.

* Geant4 testing:

« A limited sample of about 10 millions events every month with each
Internal Geant4 development tag; and a sample at least 10 times larger
for the June (beta) and the November (production) releases

e Scattered in about 2k - 10k jobs each producing 2 ROOT files

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 12

Use of ROOT
In Testing Suite

SimplifiedCalorimeter testing suite architecture

Web-application (DRUPAL/pyROOT): display distributions of key

observables
t Data points

Results DataBase (MySQL): Analysis results (summary statistics),
log warnings and errors from physics models

TTrees, Histograms,
log files

Application Driver: GANGA/DIANE integration

Job splitting, submission, Results merging
output retrieval Output processing

—

Simulation (Geant4)
Geometry Description, Physics Models,
Read-out, Primary definition

Observable reconstruction, Histograms

Analysis (ROOT)
definition, Unbinned distributions (TTrees).

v

1) Application level: the application
produces histograms and trees that
are saved in ROOT files

2) Python (pyROQOT) program:
performs merging and analysis of
the produced ROOT files and
saves the result in a MySQL DB

3) Web application (DRUPAL module
+ 2nd pyROOT program) to
produce plots comparing, for a

given quantity, different versions of
Geant4

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 13

Use of ROOT
INn Testing Suite (2)

e Strength points:

We are pretty satisfied with it and we never had big issues.

Since our GRID system is python based, we appreciate the possibility to
integrate ROOT via pyROQOT (any strengthen of python and ROOT
integration is welcome).

* Weak points:

For the web-application part since we want to integrate with a
DRUPALweb-site prototype we need to use php, the integration with the
PYROOT script that reads the DB and produces TGraphs is a bit
cumbersome and complex.

We may need to review this part and evaluate other histogramming
facilities that are more web-friendly. Any idea?

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 14

Experience with ROOT In
Multi-threading programs

o Simplified Calorimeter Application
e Geant4 VMC

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee

15

Geantd MT

Geant4MT aims to reduce the memory footprint by sharing the
largest data structures in Geant4
Key requirements for GeantdMT

» Bit-level compatibility of results with the sequential version - given the
same starting state of a pseudo Random Number Generator (pRNG) for
each event

« Simple porting of applications

« Efficient use of multi-core and many-core hardware though good scaling
of performance.
Geant4 MT prototype
e Public releases: 31 October 2011 based on 9.4.p01 and 13 August 2012
based on 9.5.p01

To be provided with standard Geant4 distribution since the next
Geant4 release 10.0 (December 2013)

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 16

Simplified Calorimeter MT
Application

« SimplifiedCalorimeter application uses ROOT for histograms,
N-tuples and linear algebra calculations (matrix diagonalization)

1) Start of Run:

« Book of histograms and TTrees (simple variables, C-array and
std::vector<double>)

2) Event Loop:

« TH:FIll(), TTree::Fill() ; creation, filling and manipulation of temporary
histograms

3) End of Run:

 Run summary and analysis, TFile::Write()

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 17

Simplified Calorimeter MT
Application (2)

e Multi-threaded application

Each G4 thread simulates a subset of the total number of events.

Each thread also performs analysis: event reconstruction, filling of
histograms and of two TTree

e Since the goal is to have a testing application to keep the code
as simple as possible each thread is independent (no shared

data):

Each object has its own instances of each object (TH*, TTree, TFile)
needed for the analysis

Each thread will write out a separate file (unigue name contains thread-
Id)

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee

18

Simplified Calorimeter MT
Application (3)

Problems with concurrent access to (hidden) shared resources
make several steps non thread-safe:

e new TH*, new TTree(), TTree::SetBranchAddress() ,TFile::Write
e ROOQOT's TH3 replaced with g4tools::histo object that is thread safe

 Forthe TTree methods a ROOT's forum entry discusses a possible
work-around: to be tested

TTree::Fill is thread-safe only if no std:.vectors are used
* The work-around for the previous item may also solve this problem

Added explicit lock via global mutex around critical sections of
the code (same method used as in a ROOT's tutorials of
TThread)

A stand-alone (no Geant4) application that shows these
problems is available
ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee

19

Geant4 VMC MT

An independent experience with Geant4 MT prototype and
ROOT IO also from tests with Geant4 VMC

« The ROOT IO — an integral part of the VMC application

Geant4 VMC MT - the same approach as in Geant4 MT
Singleton objects -> singletons per thread

 Both TGeant4 and UserMCApplication are instantiated per
each thread

Added a new function in VMC (available since Root v5.34/00)
e TVirtualMC:: InitMT(Int_t threadRank)

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 20

Geant4d VMC MT
+ ROOT IO

 The same approach as in SimplifiedCalorimeter test:
 Each thread opens and writes its own ROOT file

* No need for final merge: user analysis can chain files
e Geant4 MT + ROOT I10:
 Example ParNO2Root in Geant4 MT branch: adds Root 10 to ParNO2

 Added classes for ROOT 10 management and locking: RootManagerMT,
RootMutex

« Use of TThread,
e Locking Root IO needed till first TTree::Fill in each thread

e Geant4d VMC MT + ROOT IO
« TMCRootManager* classes in EO2 (but not specific to E02)

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee 21

Conclusions

* While the Geant4 framework itself is independent from any
choice of analysis tool, the Geant4 user developing his own
application can include ROOT analysis in several ways:

* Via g4tools, direct use of ROOQOT classes or via AIDA compliant tools
« All these options are demonstrated in the Geant4 examples.

 ROOT is successfully used in Geant4 testing

* As the test application analysis tools, via pyROOT programs and finally
also in a Web application

* The integration of ROOT in multi-threading applications is not
straightforward

* More effort required to solve remaining problems

ROOT Users Workshop, 11 - 14 March 2013, Saas-Fee

22

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

