# Measurement of $B^0_s \to \mu^+\mu^-$ with CMS

#### Urs Langenegger (PSI)

for the CMS collaboration

#### EPS HEP Stockholm 2013/07/19

- Introduction
  - motivation and methodology
  - detector
- Analysis
  - selection
  - validation
- Results
  - $\triangleright \ B^0_s \to \mu^+ \mu^- \text{ and } B^0 \to \mu^+ \mu^-$

arxiv:1307.5025, subm. to PRL



### Introduction

- Decays highly suppressed in Standard Model
  - ▷ effective FCNC, helicity suppression
  - ▷ SM (decay-time integrated) expectation:

 $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.57 \pm 0.30) \times 10^{-9}$  $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.07 \pm 0.10) \times 10^{-10}$ 

(Buras, et al., 2012)

▷ Cabibbo-enhancement  $(|V_{ts}| > |V_{td}|)$ of  $B_s^0 \rightarrow \mu^+ \mu^-$  over  $B^0 \rightarrow \mu^+ \mu^$ only in MFV models



- high sensitivity to models with extended Higgs-boson sectors
- Complete re-analysis of entire 2011+2012 dataset
  - improved muon identification (BDT)
  - new and improved variables
  - MVA selection (BDT) plus unbinned maximum-likelihood fit
- $\Rightarrow$  (Re-)Blind ( $\approx$  half of) data for  $5.2 < m_{\mu\mu} < 5.45 \,\text{GeV}$ 
  - selection development and choice of interpretation methodology

#### JINST 3, S08004 (2008)

### The CMS detector



# Muon reconstruction and identification

- Large muon acceptance  $|\eta| < 2.4$ 
  - drift tubes
  - cathode strip chambers
  - resistive plate chambers
- Muon reconstruction/identification
  - global muon: outside-in reconstruction
  - tight muon: quality criteria against fakes
  - ▶ BDT: reduce fakes by another 50%
    - track 'kinks'
    - inner-outer matching
    - muon detector information









### Analysis overview

- Signal  $B^0_s \to \mu^+ \mu^$ 
  - two muons from one decay vertex well reconstructed secondary vertex momentum aligned with flight direction mass around m<sub>B<sup>0</sup><sub>s</sub></sub>

isolated

Background

combinatorial (from sidebands)
two somiloptonic (D) docays (gluor)

two semileptonic (B) decays (gluon splitting) one semileptonic (B) decay and one misidentified hadron

▷ rare single *B* decays (from MC simulation) non-peaking, e.g.  $B_s^0 \to K^- \mu^+ \nu$ ,  $\Lambda_b \to p \mu^+ \nu$ peaking, e.g.  $B_s^0 \to K^+ K^-$ 

### $\Rightarrow$ Critical issues

- optimized selection
- muon misidentification probability enters quadratically for peaking bg
- pileup (isolation)









### Methodology

- Measurement of  $B_s^0 \to \mu^+ \mu^-$  relative to normalization channel:
  - $\triangleright B^{\pm} \rightarrow J/\psi K^{\pm}$ , with well-known branching fraction
  - (nearly) identical selection to reduce systematic uncertainties

$$\begin{split} \mathcal{B}(B_s^0 \to \mu^+ \mu^-) &= \quad \frac{n_{B_s^0}^{\text{obs}}}{\varepsilon_{B_s^0} N_{B_s^0}} = \frac{n_{B_s^0}^{\text{obs}}}{\varepsilon_{B_s^0} \mathcal{L} \, \sigma(pp \to B_s^0)} \\ &= \quad \frac{n_{B_s^0}^{\text{obs}}}{N(B^\pm \to J/\psi \, K^\pm)} \frac{A_{B^+}}{A_{B_s^0}} \frac{\varepsilon_{B^+}^{ana}}{\varepsilon_{B_s^0}^{ana}} \frac{\varepsilon_{B^+}^{\mu}}{\varepsilon_{B_s^0}^{\mu}} \frac{\varepsilon_{B^+}^{trig}}{\varepsilon_{B_s^0}^{trig}} \frac{f_u}{f_s} \, \mathcal{B}(B^+ \to J/\psi \, [\mu^+ \mu^-] K) \end{split}$$

- Calibration of MC with reconstructed exclusive decays
  - $\triangleright B^{\pm} \rightarrow J/\psi K^{\pm}$ : normalization with high statistics
  - $\triangleright B^0_s \to J/\psi \phi$ :  $B^0_s$  signal MC ( $p_{\perp}$  and isolation)
- Two 'channels' per dataset
  - $\triangleright$  barrel: both muons with  $|\eta| < 1.4$

▶ endcap: 1-2 muon(s) with  $|\eta| > 1.4$   $5 \text{ fb}^{-1}$  at  $\sqrt{s} = 7 \text{ TeV}$  taken in 2011  $20 \text{ fb}^{-1}$  at  $\sqrt{s} = 8 \text{ TeV}$  taken in 2012

### **Discriminating variables**

- Vertexing
  - primary vertex w/o the two muons
  - secondary vertex of the two muons

CMS







Urs Langenegger

CMS

Measurement of  $B_s^0 \rightarrow \mu^+ \mu^-$  with the CMS experiment (2013/07/19)

### **Isolation Variables**

• Relative isolation of dimuon

$$I = \frac{p_{\perp}(\mu^+\mu^-)}{p_{\perp}(\mu^+\mu^-) + \sum_{\Delta R < 1} p_{\perp}}$$

- in cone around dimuon momentum
- $\triangleright\,$  for tracks in cone with  $\Delta R < 0.7$ 
  - with  $p_{\perp} > 0.9 \,\mathrm{GeV}$
  - either associated to same PV as candidate
  - or with  $d_{ca} < 500 \,\mu \mathrm{m}$

( $d_{Ca}$  = distance of closest approach)

#### Muon isolation

- $\triangleright~\Delta R < 0.5,~p_{\perp} > 0.5\,{\rm GeV}$  and  $d_{ca} < 1\,{\rm mm}$
- Number of tracks close to SV >  $p_{\perp} > 0.5 \, {\rm GeV}$  and  $d_{ca} < 300 \, \mu {\rm m}$
- Closest track to SV





### MC simulation vs. data

- Comparison of sideband-subtracted distributions
  - ▷ in general good agreement



Urs Langenegger

Measurement of  $B_s^0 \rightarrow \mu^+ \mu^-$  with the CMS experiment (2013/07/19)

### **MVA** selection

#### • BDT training

- TMVA framework
- $\blacktriangleright$  signal:  $B^0_s \rightarrow \mu^+ \mu^-$  MC simulation
- background: dimuon data mass sidebands
- avoid selection bias
  - split data randomly into three subsets (0,1,2)
  - train on 1, test on 2, apply on 3. etc.
- $\rightarrow$  in each channel, have 3 BDTs

#### Studies

- selection efficiency in high and low mass sidebands
- signal MC with shifted mass
- pileup for dimuons (and normalization/control samples)
- Selection of normalization and control samples with identical BDTs
  - slightly modified variables (e.g. dimuon vertex fit quality)
  - $\triangleright$  isolation variables: ignore hadronic particles from B decay

### MC simulation vs. data (II)

#### • Differences between data and MC used as systematic uncertainties

 $\triangleright B^{\pm} \rightarrow J/\psi K^{\pm}$ : <3.0% ▷  $B_s^0 \to J/\psi \phi$ : <9.5% (2011)  $L = 5 \text{ fb}^{-1} (\sqrt{s} = 7 \text{ TeV})$  $L = 20 \text{ fb}^{-1} (\sqrt{s} = 8 \text{ TeV})$ CMS CMS <3.5% (2012) 22000 5000  $B^+ \rightarrow J/\psi K^+$ 20000 - B<sup>+</sup> → J/ψ K<sup>+</sup> data data 18000 used for signal  $\varepsilon$  uncertainty 4000 MC simulation MC simulation 16000 14000 3000 Mass scale uncertainty 12000 10000 2000  $\triangleright \psi$  and  $\Upsilon$  to dimuon decays 8000 6000 barrel: < 6 MeV1000 4000 2000 endcap:  $< 7 \,\text{MeV}$ 0.5 0 -0.5 0.5 -0.5 0 BDT BDT correction applied  $L = 20 \text{ fb}^{-1} (\sqrt{s} = 8 \text{ TeV})$ 400 CMS  $L = 20 \text{ fb}^{-1} (\sqrt{s} = 8 \text{ TeV})$  $L = 5 \text{ fb}^{-1} (\sqrt{s} = 7 \text{ TeV})$  $L = 20 \text{ fb}^{-1} (\sqrt{s} = 8 \text{ TeV})$ CMS CMS CMS 450F  $1600 \[-2mm]{-}_{B_s \rightarrow J/\psi \[0.5mm]{\phi}}$ 4000 B<sup>+</sup> → J/ψ K<sup>+</sup>  $B_s \rightarrow J/\psi \phi$  $B_s \rightarrow J/\psi \phi$ 350<sup>†</sup> 400 data data data data 1400 3500 300 └ MC simulation MC simulation MC simulation MC simulation 350⊢ 1200 3000 300 250 1000 2500 250 200 800F 2000 200 150 600 1500 150 100<sup>E</sup> 1000 400F 100 50 200 500E 50 0.5 0.5 0.5 0.5 -0.5 -1 -0.5 -1 -1 -0.5 -1 BDT BDT BDT BDT

Urs Langenegger

Measurement of  $B_s^0 
ightarrow \mu^+ \mu^-$  with the CMS experiment (2013/07/19)

### Pileup independence

- Average number of interactions per bunch crossing
   ▶ 2011: ≈ 9, 2012: ≈ 21
- Pileup independence checked
  - Signal MC event samples with pileup
    - every single variable used in BDT is shown to be pileup independent
  - $\triangleright$  Data studies with BDT output distribution vs.  $N_{PV}$ 
    - mean and RMS, efficiency of BDT requirement



Urs Langenegger

Measurement of  $B_s^0 
ightarrow \mu^+ \mu^-$  with the CMS experiment (2013/07/19)

## **BDT Categories**

#### Two approaches for interpretation

- ⊳ 1D-BDT
  - (optimized) cut on BDT output

| b >  | barrel | endcap |
|------|--------|--------|
| 2011 | 0.29   | 0.29   |
| 2012 | 0.38   | 0.39   |

independent data set used

- $\rightarrow$  4 mass distributions
- ▷ categorized-BDT
  - per channel 2-4 categories (BDT bins)

| min. bin edges | 1    | 2    | 3    | 4    |
|----------------|------|------|------|------|
| 2011 barrel    | 0.10 | 0.31 | -    | -    |
| 2011 endcap    | 0.10 | 0.29 | -    | -    |
| 2012 barrel    | 0.10 | 0.23 | 0.33 | 0.44 |
| 2012 endcap    | 0.10 | 0.22 | 0.29 | 0.45 |

equalized expected signal yield

- $\rightarrow$  12 mass distributions
- Strategy (decided before unblinding)
  - $\triangleright B^0 \rightarrow \mu^+ \mu^-$  1D-BDT: UL with  $CL_S$
  - ▷  $B_s^0 \to \mu^+ \mu^-$  categorized-BDT: UML fit

(best expected sensitivity with categorized-BDT )



Measurement of  $B^0_s 
ightarrow \mu^+ \mu^-$  with the CMS experiment (2013/07/19)

## Unbinned maximum likelihood fit

#### Probability distribution functions

- peaking components: Crystal Ball (w/ and w/o Gaussian)
- combinatorial background: polynomial of first degree
- $\triangleright b \rightarrow u\mu\bar{\nu}$  background: Gaussian kernels for MC-predicted mixture
- per-event mass resolution included (excellent data/MC agreement)

### • Fit for $B^0_s$ and $B^0$ simultaneously

- peaking background constrained to expectation normalized to measured B<sup>+</sup> yield yield cross checked on independent data set
- semileptonic background fixed shape
  - fixed shape
  - floating normalization within uncertainties
  - (dominated by unknown  $\Lambda_b 
    ightarrow p \mu 
    u$ )
- combinatorial background
  - no constraint on slope
    - validated with independent data set
  - varied functional form



### Expectations and observation (1D-BDT)



• Summary numbers for 1D-BDT approach in  $B_s^0$  and  $B^0$  signal regions

#### signal regions

| $B^0$ :   | 5.20 < | m | $< 5.30{\rm GeV}$    |
|-----------|--------|---|----------------------|
| $B^0_s$ : | 5.30 < | m | $< 5.45\mathrm{GeV}$ |

|                             | 2011 barrel          |                        | 2012 barrel          |                         |  |
|-----------------------------|----------------------|------------------------|----------------------|-------------------------|--|
|                             | $B^0 	o \mu^+ \mu^-$ | $B_s^0 	o \mu^+ \mu^-$ | $B^0 	o \mu^+ \mu^-$ | $B_s^0 \to \mu^+ \mu^-$ |  |
| $arepsilon_{	ext{tot}}[\%]$ | $0.33 \pm 0.03$      | $0.30\pm0.04$          | $0.24 \pm 0.02$      | $0.23 \pm 0.03$         |  |
| $N_{ m signal}^{ m exp}$    | $0.27 \pm 0.03$      | $2.97 \pm 0.44$        | $1.00 \pm 0.10$      | $11.46 \pm 1.72$        |  |
| $N_{ m total}^{ m exp}$     | $1.3 \pm 0.8$        | $3.6 \pm 0.6$          | $7.9 \pm 3.0$        | $17.9 \pm 2.8$          |  |
| $N_{ m obs}$                | 3                    | 4                      | 11                   | 16                      |  |

|                            | 2011 endcap           |                         | 2012 endcap           |                         |
|----------------------------|-----------------------|-------------------------|-----------------------|-------------------------|
|                            | $B^0 \to \mu^+ \mu^-$ | $B_s^0 \to \mu^+ \mu^-$ | $B^0 \to \mu^+ \mu^-$ | $B_s^0 \to \mu^+ \mu^-$ |
| $\varepsilon_{ m tot}[\%]$ | $0.20\pm0.02$         | $0.20 \pm 0.02$         | $0.10 \pm 0.01$       | $0.09 \pm 0.01$         |
| $N_{ m signal}^{ m exp}$   | $0.11 \pm 0.01$       | $1.28 \pm 0.19$         | $0.30 \pm 0.03$       | $3.56 \pm 0.53$         |
| $N_{ m total}^{ m exp}$    | $1.5 \pm 0.6$         | $2.6 \pm 0.5$           | $2.2 \pm 0.8$         | $5.1 \pm 0.7$           |
| $N_{\rm obs}$              | 1                     | 4                       | 3                     | 4                       |

Urs Langenegger

Measurement of  $B^0_s 
ightarrow \mu^+\mu^-$  with the CMS experiment (2013/07/19)

## Unbinned maximum likelihood fit (II)

#### Illustration of the UML fits

▶ highest (2<sup>nd</sup> highest) S/B categories for (barrel, endcap)  $\times$  (2011, 2012)





Measurement of  $B_s^0 \rightarrow \mu^+ \mu^-$  with the CMS experiment (2013/07/19)

## All BDT bins



Urs Langenegger

Measurement of  $B^0_s 
ightarrow \mu^+\mu^-$  with the CMS experiment (2013/07/19)

### Results

#### • Results of the UML fit in the categorized-BDT approach



Measurement of  $B_s^0 \rightarrow \mu^+ \mu^-$  with the CMS experiment (2013/07/19)

### Conclusions

• Measurement of  $\mathcal{B}(B^0_s \to \mu^+ \mu^-)$  and upper limit on  $\mathcal{B}(B^0 \to \mu^+ \mu^-)$ 

- substantial improvements to previous analysis
  - muon identification with BDT
  - analysis selection with BDT
  - UML fit to mass distributions
- $\triangleright$  4.3 $\sigma$  significance of observation (4.8 $\sigma$  with 1D-BDT approach)
- consistent with SM



# Backup

### **Systematics**

### • Hadronization probability ratio $f_s/f_u$ from LHCb [JHEP 04, 001 (2013)]

- $\triangleright$  additional 5% systematics for possible  $p_{\perp}$  or  $\eta$  dependence
- $\triangleright\,$  in-situ studies show no  $p_{\perp}$  dependence

ratio of  $B^\pm \to J\!/\psi\,K^\pm$  vs  $B^0_s \to J\!/\psi\,\phi$ 

#### • Rare decays

hadron to muon misidentificaton probability

 $K^0_S \to \pi^+\pi^-$  ,  $\Lambda \to p\pi$  , and  $D^{*+} \to D^0(K^-\pi^+)\pi^+$ 

50% uncertainty, treating pions/kaons/protons as uncorrelated

- branching fraction uncertainties
- $\triangleright \Lambda_b \to p \mu \bar{\nu}$ :

large range of predictions in literature

take average ( $6.5 \times 10^{-4}$ ) and assign 100% uncertainty (note that invariant mass covers  $B_s^0$  signal region)

#### Normalization

▷ 5% from yield fits





## **Trigger:** $B_s^0 \to \mu^+ \mu^-$ and $B^{\pm} \to J/\psi K^{\pm}$

- Dimuon trigger
  - L1 (hardware) trigger a few kHz at current peak luminosities
  - High-level trigger
     <u>full</u> tracking and vertexing
- HLT  $B^0_s \to \mu^+ \mu^$ 
  - two muons with opposite charge
  - ▷ inv. mass  $4.8 < m_{\mu\mu} < 6.0 \,\text{GeV}$
  - $\triangleright \ \mathcal{P}(\chi^2/dof) > 0.5\%$

- Trigger efficiency 40 80%
  - after analysis selection
  - ▷ time-dependence in MC

### Determination

- ▷ MC simulation
- ⊳ data
- $\rightarrow$  systematics from difference
- HLT  $B^{\pm} \to J/\psi \, K^{\pm}$  and  $B^0_s \to J/\psi \, \phi$ 
  - ▶ two muons with opposite charge,  $2.9 < m_{\mu\mu} < 3.3 \,\text{GeV}$
  - $\triangleright \cos \alpha > 0.9$ ,  $\mathcal{P}(\chi^2/dof) > 15\%$
  - $\rightarrow$  'displaced'  $J/\psi$