

HEP 2013 Stockholm 18-24 July 2013

Identified charged pion, kaon, and proton production in pp and Pb-Pb collisions at

LHC energies measured with ALICE

(Lund University)

for the ALICE Collaboration

The nuclear modification factor 2 R_{AA} for unidentified hadrons

$$R_{AA} = \frac{d^2 N^{AA}/dp_T d\eta}{\langle T_{AA} \rangle d^2 \sigma^{pp}/dp_T d\eta}$$

 $<T_{AA}>\sigma^{pp}=<N_{coll}>$ N_{coll} is the number of binary collisions

For perturbative QCD processes:

R_{AA}<1: suppression

 $R_{\Delta\Delta}$ =1: no nuclear effects

 $R_{AA}>1$: enhancement

What happens when we collide ³ Pb-Pb: 3 answers?

INTERMEDIATE

Interplay between soft and hard?

PID: baryon anomaly

ALICE as a charged Particle IDentification detector

The ALICE experiment is optimized for charged particle tracking and hadron identification for $|\eta|$ <0.8

ALICE as a charged PID detector (central barrel)

$1/N_{\rm ev}~1/(2\pi ho_{ m T})~{ m d}^2N/({ m d} ho_{ m T}{ m d}y)~({ m GeV}/c)^{-1}$ ALICE, Pb-Pb \s_{NN} = 2.76 TeV 10⁵ PHENIX, Au-Au \s, = 200 GeV 10³ K+ K (× 10) 10⁻¹ Kraków 10⁻³ 0-5% Central collisions 1.5 Data/Model 1.5 K* + K 1.5 3 $p_{\tau} (\text{GeV}/c)$

Spectra in central collisions well described by hydrodynamics.

Bulk production (low p_T)

Phys. Rev. Lett. 109, 252301 (2012)

Statistical model calculations agrees with most ratios. Proton disagreement might indicate: non-equilibrium effects [arXiv:1303.2098], annihilation in hadronic stage [arXiv:1212.2431], or a flavor hierarchy of freeze-out temperatures [PRD 85, 014004 (2012)].

Particle identification at high p_{T} using TPC dE/dx

Pushing the separation to the relativistic rise

Particle identification at high p_{T} 8 using TPC dE/dx

Baryon anomaly in central Pb-Pb. Quark recombination?

Particle identification at high p_{T} 9 using TPC dE/dx

Baryon anomaly in central Pb-Pb. Ouark recombination?

Baryon anomaly not observed at high p_{T} , opposite to what was speculated pre-LHC.

Identified π , K, and p spectra

Particle ratios in pp collisions $(\sqrt{s}=2.76 \text{ and } 7 \text{ TeV})$

Identified high $p_{\rm T}$ production is not well described by theory. The peak in the proton to pion ratio in PYTHIA is related to color reconnection which gives a flow-like effect [arXiv:1303.6326]

R_{AA} identified hadrons

For p_T < 8 GeV/c: R_{AA} for π and K compatible and smaller than R_{AA} for p.

At high p_T above 10 GeV/c the R_{AA} for π , K and p are compatible. This suggest that leading particle jet hadron chemistry (flavor or baryon number transfer, and color flow) effects are small if present

The dominant effect is the collective medium response

The dominant effect that can be observed with PID is at $p_{\rm T}$ < 8 GeV/c and due to the medium. Hydrodynamics, recombination, or ?

Particle ratios compared to models

Krakow+HKM: hydrodynamic (low p_T) models

Fries: recombination 3 quarks → baryon, 2 quarks → meson

EPOS: hydrodynamics (low p_T) \rightarrow medium modified fragmentation for quenched jets (intermediate p_T) \rightarrow vacuum fragmentation (high p_T)

Krakow: PRC85, 064915 (2012) HKM: PRC87, 024914 (2013)

Fries: PRL90, 202303 (2003) and private communication EPOS: PRL109, 102301 (2012) and private communications

Comparing pions and protons to heavy mesons: φ (1020)

and p

The R_{AA} for ϕ mesons follows p for $p_T < 2$ GeV/c (hydrodynamic medium region) For $p_T > 2$ GeV/c the R_{AA} for ϕ mesons is in between π

Conclusions

- . The low $p_{\rm T}$ spectra can be described by hydrodynamics and most yields are in agreement with statistical model predictions
- The R_{AA} for pions, kaons, and protons for $p_{T} > 8-10$ GeV/c shows no particle species dependence suggesting that there is little interplay between the fragmentation process and the medium
- The intermediate $p_{\rm T}$ region (2 < $p_{\rm T}$ < 8 GeV/c) is rich in exciting physics where PID provides much additional information as can be seen in the large baryon to meson ratio

Thank you!

Backup slides

p/π ratio in peak-bulk

Pb-Pb, \ s_{NN} = 2.76TeV, 0-10% central

When the p/π ratio in the peak is corrected for bulk effects using an η gap one finds that the ratio is dominated by the bulk. So the ratio does not seem to be driven by hard physics.

The ALICE experiment at LHC

TPC dE/dx performance at low p_{T}

R_{AA} for unidentified charged particles

$$R_{AA} = \frac{d^2 N^{AA}/dp_T d\eta}{\langle T_{AA} \rangle d^2 \sigma^{pp}/dp_T d\eta}$$

Physics Letters B 720 (2013)

- Several models capture the essential features (but some miss absolute scale)
- The <u>relative</u> particle species dependent effects should be easier to describe as complicated space time dynamics probably falls out in the "double ratio"

EPOS: baryon to meson enhancement (1/2)

EPOS2.17v3

K. Werner,

Phys. Rev. Lett. 109, 102301 (2012)

Calculation for Λ/K_{s}^{0} .

Hard scatterings only, but 3 possibilities for produced string segments

- no energy to escape → hydrodynamically "soft hadrons"
- energy to escape and formed outside bulk → jets
- energy to escape, but formed inside bulk → affected by the flowing matter ("fluid-jet interaction").

EPOS: baryon to meson enhancement (2/2) Hard process in vacuum Extra medium process (and probability)

Schwinger mechanism

"Considering transverse fluid velocities up to 0.7c, and thermal parton momentum distributions, one may get a "push" of a couple of GeV to be added to the transverse momentum of the string segment. This will be a crucial effect for intermediate $p_{\rm T}$ jet hadrons."

Why do we expect particle species dependent modifications even at higher p_T ?

- Large effects at intermediate $p_{\rm T}$ does this effect just disappear?
- The low value of R_{AA} suggests that most hard partons interacts strongly with the medium

- S. Sapeta and U.A. Wiedemann, Eur. Phys.J. C55 (2008) 293:
- Indirect
 - "in all models of radiative parton energy loss, the interaction of a parent parton with the QCD medium transfers color between partonic projectile and target. <u>This changes the color flow in the parton shower and is</u> thus likely to affect hadronization."
- Direct
 - "In addition, flavor or baryon number could be exchanged between medium and projectile."

A general model with particle species dependent modifications

S. Sapeta and U.A. Wiedemann, Eur. Phys. J. C55 (2008) 293

- Effect inside jet
- But for $p_T >> 8$ GeV/c we expect all hadrons to belong to jets
- Prediction incompatible with data
- Question: what do we learn about the interaction between parton and medium?

Color anomalous baryons fragmentation

Fig. 1 The $q \rightarrow gq$ (a) and $g \rightarrow gg$ (b) transitions in the medium and possible color states of the final two parton systems

- Color anomalous baryon fragmentation (P. Aurenche, B.G. Zakharov, Eur.Phys.J. **C71** (2011) 1829.). The model is aimed at explaining the baryon anomaly but these effects persists out to higher $p_{\rm T}$.
 - A hard scattered quark (triplet) can pickup a gluon from the medium → sextet state
 - a gluon (octet) can pick up another gluon → decuplet state
 - The fragmentation of these color states is very different from normal quark (triplet) and gluon (octet) states and relies on string junction (soft effect).

Elliptic and triangular flow for identified particles at high p_{T}

- . The v_2 and v_3 also peaks in the intermediate $p_{\rm T}$ region
 - Large particle species dependence
- End of hydrodynamic flow for $p_{T} \ge 9-10 \text{ GeV/}c$?
 - Triangular flow which is not sensitive to collision geometry becomes small
 - No or small particle species dependence for v₂ (little mass dependence)
 - And pion v₂ is well described by jet quenching prediction

Physics Letters B 719 (2013) 18–28

