

Jet quenching in a strongly interacting plasma

M Danor

Jet quenching in a strongly interacting plasma A lattice approach

Marco Panero^a, Kari Rummukainen^a and Andreas Schäfer^b

^a Department of Physics and Helsinki Institute of Physics, University of Helsinki
^b Institute for Theoretical Physics, University of Regensburg

EPS HEP 2013 Stockholm, 20 July 2013

- 1 Motivation
- 2 Theoretical approach
- 3 Soft physics contribution from a Euclidean setup
- 4 Lattice implementation
- 5 Results
- 6 Discussion and conclusions

Based on:

★ M. P., K. Rummukainen and A. Schäfer, A lattice study of the jet quenching parameter, arXiv:1307.xxxx

Related works:

- S. Caron-Huot, O(g) plasma effects in jet quenching, <u>arXiv:0811.1603</u>
- M. Benzke, N. Brambilla, M. A. Escobedo and A. Vairo Gauge invariant definition of the jet quenching parameter, arXiv:1208.4253
- M. Laine, A non-perturbative contribution to jet quenching, arXiv:1208.5707
- J. Ghiglieri, J. Hong, A. Kurkela, E. Lu, G. D. Moore and D. Teaney, Next-to-leading order thermal photon production in a weakly coupled quark-gluon plasma, arXiv:1302.5970
- M. Laine and A. Rothkopf, Light-cone Wilson loop in classical lattice gauge theory, arXiv:1304.4443

Soft con

T ----

Luun

Discuss

1 Motivation

2 Theoretical approach

3 Soft physics contribution from a Euclidean setup

4 Lattice implementation

5 Result

6 Discussion and conclusion

Motivation

Theor

Soft co

D LLLLO

Latti

Resul

Discuss

Jet quenching is the suppression of high- p_T particles and back-to-back correlations in nuclear collisions

Jet quenching

Jet quenching in a strongly interacting plasma

Motivation

Theory
Soft con

Lattice

Dogula

Discuss

Jet quenching is the suppression of high- p_T particles and back-to-back correlations in nuclear collisions

Provides important experimental evidence for the quark-gluon plasma (QGP) existence Bjorken, 1982

Outline

Jet quenching in a strongly interacting plasma

M. Panei

3.5.

IVIOLEV

Theory

Soft of bution

Tarri

Lucci

_ .

n.

1 Motivation

2 Theoretical approach

- 3 Soft physics contribution from a Euclidean setup
- 4 Lattice implementation
- 5 Result
- 6 Discussion and conclusions

Overview of the theoretical approach

Jet quenching in a strongly interacting plasma

M. Pane

Motiva

Theory

bution

Lattice

Rocult

Discussi

Jet quenching belongs to the class of *hard probes* to heavy-ion collisions, involving a large energy scale Q (see Casalderrey-Solana and Salgado, 2007 and Apolinário's talk at EPS HEP 2013)

QCD factorization theorems:

$$\sigma_{(M+N\to \mathsf{hadron})} = f_M(x_1,Q^2) \otimes f_N(x_2,Q^2) \otimes \sigma(x_1,x_2,Q^2) \otimes D_{\mathsf{parton}\to \mathsf{hadron}}(z,Q^2)$$

 $f_A(x, Q^2)$: parton distribution functions

 $\sigma(x, y, Q^2)$: short-distance cross-section

 $D_{\text{parton} \rightarrow \text{hadron}}(z, Q^2)$: fragmentation function

Here: Focus on propagation of a high-energy parton in QGP medium

Hard parton propagation in QGP

Jet quenching in a strongly interacting plasma

M. Pane

ινιοτινα

Theory

Soft conti bution

Lattic

Discussi

Multiple soft-scattering description, in the eikonal approximation

Leading effect: *transverse momentum broadening*, described by the jet quenching parameter:

$$\hat{q} = rac{\langle p_{\perp}^2
angle}{L}$$

Can be evaluated in terms of a *collision kernel* $C(p_{\perp})$ (differential parton-plasma constituents collision rate)

$$\hat{q}=\int rac{\mathrm{d}^2 p_\perp}{(2\pi)^2} p_\perp^2 \, C(p_\perp)$$

 $C(p_{\perp})$ can be related to a two-point correlator of light-cone Wilson lines

Computing the jet quenching parameter

strongly interacting plasma

Theory

What tools are available?

- Perturbation theory (PT) expansions
 - √ Based on first principles
 - ✓ Well established technology
 - ✓ Problems with infrared divergences are well understood
 - May not be reliable at RHIC or LHC temperatures
- Holographic computations
 - ✓ Mathematically beautiful
 - √ Ideally suited for strong coupling
 - X Not directly applicable to real-world QCD
- Lattice simulations
 - ✓ Based on first principles
 - √ Well established (computer) technology
 - ✓ Do not rely on weak- or strong-coupling assumptions
 - X Euclidean setup, so generally unsuitable for real-time phenomena

- 1 Motivation
- 2 Theoretical approach
- 3 Soft physics contribution from a Euclidean setup
- 4 Lattice implementation
- 5 Results
- 6 Discussion and conclusions

Energy scale hierarchy in high-temperature, perturbative QCD:

$$g^2T/\pi$$
 (ultrasoft) $\ll gT$ (soft) $\ll \pi T$ (hard)

IR divergences accounted for by 3D effective theories <u>Braaten and Nieto, 1995</u>:

- electrostatic QCD (3D Yang-Mills + adjoint scalar field) for soft scale
- magnetostatic QCD (3D pure Yang-Mills) for ultrasoft scale

Large NLO corrections hindering PT due to soft, essentially classical fields

Observation: Soft contributions to physics of light-cone partons insensitive to parton velocity \longrightarrow Can turn the problem Euclidean!

Spatially separated (|t|<|z|) light-like Wilson lines:

$$\begin{split} &G^{<}(t,x_{\perp},z) = \int \mathrm{d}\omega \mathrm{d}^{2} p_{\perp} \mathrm{d}\rho^{z} \, \tilde{G}^{<}(\omega,p_{\perp},p^{z}) e^{-i(\omega t - x_{\perp} \cdot p_{\perp} - z p^{z})} \\ &= \int \mathrm{d}\omega \mathrm{d}^{2} p_{\perp} \mathrm{d}\rho^{z} \left[\frac{1}{2} + n_{B}(\omega) \right] \left[\tilde{G}_{R}(\omega,p_{\perp},p^{z}) - \tilde{G}_{A}(\omega,p_{\perp},p^{z}) \right] e^{-i(\omega t - x_{\perp} \cdot p_{\perp} - z p^{z})} \end{split}$$

Shift $p'^z=p^z-\omega t/z$, integrate over frequencies by analytical continuation into upper (lower) half-plane for retarded (advanced) contribution \longrightarrow sum over Matsubara frequencies

$$G^{<}(t,x_{\perp},z) = T \sum_{n \in \mathbb{Z}} \int d^2p_{\perp} d\rho^z \, \tilde{G}_{E}(2\pi nT, p_{\perp}, p^z) e^{i(x_{\perp} \cdot p_{\perp} + zp^z)}$$

- $n \neq 0$ contributions: exponentially suppressed at large separations
- Soft contribution: from n = 0 mode. Time-independent: evaluate in EQCD

Outline

Jet quenching in a strongly interacting plasma

M. Paner

Motivat

Theory

Soft co

Latti

Dutte

Discuss

1 Motivation

2 Theoretical approach

3 Soft physics contribution from a Euclidean setup

4 Lattice implementation

5 Result

6 Discussion and conclusion.

Electrostatic QCD on the lattice

Jet quenching in a strongly interacting plasma

Theory

Soft coni bution

Lattice

Discus

Super-renormalizable EQCD Lagrangian

$$\mathcal{L} = \frac{1}{4}F_{ij}^{a}F_{ij}^{a} + \text{Tr}\left((D_{i}A_{0})^{2}\right) + m_{E}^{2}\text{Tr}\left(A_{0}^{2}\right) + \lambda_{3}\left(\text{Tr}\left(A_{0}^{2}\right)\right)^{2}$$

Parameters chosen (by matching) to reproduce soft physics of high- T QCD

■ 3D gauge coupling: $g_E^2 = g^2 T$

lacksquare Debye mass parameter: $m_{
m E}^2 = \left(1 + rac{n_{
m f}}{6}
ight)g^2T$

■ 3D quartic coupling: $\lambda_3 = \frac{9 - n_f}{24\pi^2} g^4 T$

Standard Wilson lattice regularization

Our setup: QCD with $n_f = 2$ light flavors, two temperature ensembles:

■ *T* ≃ 398 MeV

■ $T \simeq 2 \text{ GeV}$

Operator implementation

Jet quenching in a strongly interacting plasma

M. Paner

Sotivation

101171111071

Soft con

DULLION .

Lutto

D:....

Light-cone Wilson line correlator

$$\langle W(\ell,r) \rangle = \left\langle \operatorname{Tr} \left(L_3 L_1 L_3^{\dagger} L_1^{\dagger} \right) \right\rangle \sim \exp \left[-\ell V(r) \right]$$

with

$$L_3 = \prod U_3 H$$
 $\qquad \qquad L_1 = \prod U_1 \qquad \qquad H = \exp(-ag_{\mathsf{E}}^2 A_0)$

Outline

Jet quenching in a strongly interacting plasma

M. Panei

Motivat

Theory

Coft an

Lucci

Results

Discus

- 1 Motivation
- 2 Theoretical approach
- 3 Soft physics contribution from a Euclidean setup
- 4 Lattice implementation
- 5 Results
- 6 Discussion and conclusion

Light-cone Wilson line correlator: Lattice versus PT

Jet quenching in a strongly interacting

plasma M. Paner

Motivati

Theory Soft con

Latti

Results

Discussi

Non-perturbative soft contribution to \hat{q} from short-distance behavior of V(r)

Potential from the decorated loop operator in EQCD $(n_f = 2, T \approx 398 \text{ MeV})$

Light-cone Wilson line correlator: Lattice versus PT

Jet quenching in a strongly interacting

plasma M. Paner

Motivatio

Theory

bution

Latti

Results

Potential from the decorated loop operator in EQCD $(n_f = 2, T = 398 \text{ MeV})$

Non-perturbative soft contribution to \hat{q} from short-distance behavior of V(r)

Soft NLO contribution to \hat{q} is quite *large*:

$$\hat{q}_{\text{EQCD}} \simeq \left\{ egin{array}{ll} 0.55(5) g_{\text{E}}^6 & \qquad & \text{for } T \simeq 398 \text{ MeV} \\ 0.45(5) g_{\text{E}}^6 & \qquad & \text{for } T \simeq 2 \text{ GeV} \end{array}
ight.$$

for
$$T \simeq 398$$
 Me for $T \simeq 2$ GeV

M. Pane

Motiva

Theory

Soft con bution

Lattic

Results

Discus

Soft NLO contribution to \hat{q} is quite *large*:

$$\hat{q}_{\text{EQCD}} \simeq \left\{ egin{array}{ll} 0.55(5)g_{\text{E}}^6 & \qquad & ext{for } T \simeq 398 \text{ MeV} \\ 0.45(5)g_{\text{E}}^6 & \qquad & ext{for } T \simeq 2 \text{ GeV} \end{array}
ight.$$

and comparable to the perturbative one $(\sim 0.47 g_E^6)$ \dots

M. Pane

monva

Soft con

Lattic

Results

Discus.

Soft NLO contribution to \hat{q} is quite *large*:

$$\hat{q}_{\text{EQCD}} \simeq \left\{ \begin{array}{ll} 0.55(5)g_{\text{E}}^6 & \qquad \text{for } T \simeq 398 \text{ MeV} \\ 0.45(5)g_{\text{E}}^6 & \qquad \text{for } T \simeq 2 \text{ GeV} \end{array} \right.$$

and comparable to the perturbative one $(\sim 0.47 g_E^6)\,\dots$

... which, in turn, is large compared to LO term

Soft NLO contribution to \hat{q} is quite *large*:

$$\hat{q}_{\text{EQCD}} \simeq \left\{ egin{array}{ll} 0.55(5) g_{\text{E}}^6 & \qquad & \text{for } T \simeq 398 \text{ MeV} \\ 0.45(5) g_{\text{E}}^6 & \qquad & \text{for } T \simeq 2 \text{ GeV} \end{array}
ight.$$

and comparable to the perturbative one $(\sim 0.47 g_E^6)$ \dots

... which, in turn, is large compared to LO term

These results lead to an approximate estimate $\hat{q}\sim 6$ GeV $^2/{
m fm}$ at RHIC temperatures

Outline

Jet quenching in a strongly interacting plasma

M. Paner

Motivat

Theory

Soft co

Latti

Daeu

resu

ero

2 Theoretical approach

3 Soft physics contribution from a Euclidean setup

4 Lattice implementation

5 Result

6 Discussion and conclusions

Jet quenching in a strongly interacting plasma

M. Pane

Motiva

Theory

Soft co

Lattı

Resui

Discussio

- Lattice approach *possible* for certain real-time problems
- Here: focus on soft physics in thermal QCD
- Outlined approach is *systematic*
- Tentative estimate of jet quenching parameter
- Results in ballpark of
 - holographic computations Liu, Rajagopal and Wiedemann, 2006 ✓
 estimates from experiments Eskola et al., 2004 √
- Further work in progress