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1 Introduction to Electromagnetic Radiation

1.1 Units and Dimensions

In the following only MKSA units will be used. In this system the dimensions of the important
physical quantities are

physical quantity symbol dimension
length I meter [m]
mass m kilogram [kg]
time t second [s]
current I Ampere [A]
velocity of light c 2.997925-10° m/s
charge q 1C=1As
charge of an electron e 1.60203-10%° C
dielectric constant & 8.85419-10 As/Vm
permeability Ho 47107 Vs/IAm
voltage Vv 1 volt [V]
electric field E V/m
magnetic field B 1 tesla [T]
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1.2 Rotating electric dipole

Before we start with the quantitative discussion of electromagnetic radiation, some simple examples
may make something clear of the general physics behind. At first we will look at a static electrical
dipole as shown in fig. 1.1. An observer notices a longer distance apart a field with downward
direction. When the dipole is turned upside down within a very short time and turned back
immediately after, only in the vicinity of the dipole the field follows the motion nearly without
delay. At that time the observer don’t notice any change of the electric field. Because of the limited
velocity of the information (i.e. the velocity of light) it takes a certain time until this happens.

E-field
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e
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Fig. 1.1 Generation of electromagnetic waves by rotating a static dipole

CD——>.

One can see in fig. 1.1 that the delay (or "retardation™) of the field spreading immediately leads to a
wave of the electric field. According to "Maxwell’s equations™ this time dependent electric field
generates also a corresponding magnetic field and we end up with an electromagetic wave.
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1.3 Rotating magnetic dipole

In the first picture of fig. 1.2 the simplified field pattern of a magnetic dipole is sketched. When the
magnet starts rotating around the axis perpendicular to the dipole axis the field distribution at a
given time changes because of the limited velocity of the field spread. Fig. 1.2 shows three pattern
with different rotation frequencies between 200 Hz and 10 kHz.

rotation frequency 0. Hz rotation frequency 200. Hz
400 400
300 300 \ \ (/—““*\\\
200 200 A s A
100 =3 100 a—

—
e
\._.—

)

\

N

N\
N
~)

N\

N—r—~"
=

-100 100 (( (
\.._._‘___ __/
— — N\
-300 -300 §.. - \
-400 -400
-300 -200 -100 0 100 200 300 400 -300 -200 -100 0 100 200 300 400
rotation frequency 2000. Hz rotation frequency 10000. Hz
400 400
N
300 = \\\ 300 AN

Z
200 A ,/ \ 200 A;//V \

. . )
il

l -100
AN\ JZARAN 7
\\Q\ o NN

Z
=

-300

7
A\
N

\Mﬁfﬂf ) \

-400 -400
-300 -200 -100 0 100 200 300 400 -300 -200 -100 0 100 200 300 400

o

Fig. 1.2 Generation of spherical waves with a rotating magnetic dipole. The field is observed in an area of +400 km.
The rotating frequency varies between 0 Hz and 10 kHz.

At higher frequencies, one can directly see the generation of spherical waves traveling from the
center to the outside. The information of the field strength produced by the dipole takes some time
to reach the observation point far away from the origin. During this time the dipole position and the
spatial field distribution in its vicinity has changed. Again the retardation of the time dependent
field leads to electromagnetic radiation.
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1.4 Relativistic charged particle traveling through a bending magnet

The last example is the radiation emitted by a charged particle moving with a velocity close to the
velocity of light. Because of the relativistic contraction of length the field around such particles has
not a spherical distribution as in the rest case but is contracted in the direction of motion. The
electrical field is like a disk and its axis is identical with the particle trajectory as shown in fig. 1.3.
In a bending magnet the particle trajectory follows a cycle. Consequently, the field pattern is rotated
around the axis perpendicular to the plane of motion. Outside the cycle this rotation would require a
field velocity larger than the velocity of light, which is according to elementary laws of relativity
impossible. Therefore, the field is delayed (or "retarded™) and finally it tears off the particle. Each
particle produces a very short field pulse emitted into the forward direction. The corresponding
frequency spectrum is very broad and covers the range between the visible light and X-rays.

V> e "retarded”

; / field

> ¢ g —O-6->»
synchrotron
light
clectron
trajectory

Fig. 1.3 Relativistic particle (electron) traveling through a field of a bending magnet.

It is easy to understand that this type of radiation is not be generated by slow moving nonrelativistic
particles. In this case the field is almost spherical and the delay is negligible. This radiation occurs
only at extremely relativistic velocities which are achievable with reasonable effort only with
electrons. At the end of the forties this type of radiation has been observed the first time at the 70
MeV electron synchrotron built by General Electric. Therefore, this radiation is called today
*synchrotron radiation™.

In the following, this lecture will present the basics of electromagnetic radiation and in particular
the physics of synchrotron radiation. There is a strong influence on the dynamic of the particle
motion in circular electron machines as radiation damping, beam emittance and so on. Modern light
sources produce synchrotron radiation by use of an extremely strong focused electron beam. This
requires a very special magnet lattice.
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2 Electromagnetic Waves

2.1 The wave equation
Oscillations are periodic changes of a physical quantity with time

S(t)=S,expiot (2.1)
It is the solution of the differential equation

S(t) + ®?S(t) =0 (2.2)

A wave describes a periodic change with time and space

A Awi)

x = const. { = const.
W pffommm ° W* o :

0, S

T

Y

Fig. 2.1 Time and spatial dependence of an periodic physical quantity

The differential equations are
O°W(x)

W(t) +’W(t) =0 (23) xt TKWE=0 24

w=

2m
(frequency) k= . (wave number)

s
T
or more general for all 3 dimensions

AW(F) + K W(F) =0 (2.5)

K=(k..k,.k,]

x1 Ny Nz

At the time t; the wave has at the point x; the value W". At the time t, the wave point has moved to
the point x;

W (x,t) =W, expi(ot, —kx,) =W, expi(ot, —kx,)
= ot -kx =ot,-kx, (2.6)
= a)(tl—tz) = k(xl—xz)

The wave velocity (phase velocity) becomes
Ve—=—"——"=— (2.7)

From (2.3) we get
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. 1 .
W) +oW(x,t)=0 =  W(Xt)=-——5W(xt) (2.8)
®
Inserting this result into (2.4) we get
O°W(x, 1) PPW(x,t) k2 .
T+k2W(X,t)=O T—;W(X,t)zo (29)
With the phase velocity (2.7) we find the one dimensional wave equation
OPW(x,t) 1 .
T - ?W(X,t) =0 (2.10)
The general tree dimensional wave equation has then the form
. 1 ...
AW(r,t)—V—ZW(r,t) =0 (2.11)
with the Laplace operator A —( o + o + o j = V?. The operator V = (i 9 gj is the so
P P \ox? oy? az?) P ~\ox'oy' oz

called nabla operator.

2.2 Maxwell's equations

The electromagnetic radiation is based on the Maxwell's equations. In MKSA units these equations
have the form

v.E=2 (Coulomb's law) (212)
€9
V-B=0 (213)
_ 0B

VxE=—— 214
xE=-— ) (214)

— - oE
VxB=u,]+K1& 2t (Ampere's law) (215)

One can easily show that time dependent electric or magnetic fields generates an electromagnetic
wave. In the vacuum there is no current and therefore j = 0. From (2.14) and (2.15) we get

VxE:—é é
_ ot (2.16)
Vx|§=u080|§ |V><
and
Vxé:—é

(2.17)

Vx(Vx é)=HogoVX E

Inserting the first equation into the second one we get
V x (V% B) = —py,B (2.18)

Using the vector relation V x(V x a) = V(V-a) — V2B and equation (2.13) we finally find

V2B - ,,B=0 (2.19)

This is a wave equation of the form of (2.11). The phase velocity is

c= _ 2997925.10° % (2.20)

Ho€o
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2.3 Wave equation of the vector and scalar potential

With the Maxwell equation VB =0 and the vector relation V(Vx&d)=0 we can derive the
magnetic field from a vector potential A as
B=VxA. (2.21)
We insert this definition into the Maxwell equation (2.14) and get
. 0B oA
VXEZ—_Z—VX(E]
(2.22)

= Vx(E+%):O
ot

The expression (E + &&/at) can be written as a gradient of a scalar potential ¢(r,t) in the form

. OA
E+—=-V 2.23
r =V (2.23)
The electric field becomes
_ oA
E=—Vo+—]. 2.24
( b+ atj (2.24)
With Coulomb's law (2.12) we find
- oA
VE = —v(vq) + —J -2 (2.25)
ot €
or
v2¢+§(v.A): _P (2.26)
ot €0 '

We take now the formula of Ampere's law (2.15) and insert the relations for the magnetic and
electric field (2.21) and (2.24) and get

. . 0 O*A
V x (V X A) =Ho) — Hogo(avq)"'y)
ﬁ—‘J
v{(v-A)-v?A (2.27)
_ ob %A - .
VZA—;J,OSO(VE+ ~ J ~V (V- A)=—p,]
The relation becomes
- oA - -
VZA—MOS()?—V'(V'A-FHOSO %j=—uoj (228)

Equations (2.26) and (2.27) create a coupled system for the potentials A and ¢. We define now the
following gauge transformation

A > A=A+VA

OA (2.29)
b > ¥ =-
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The free choice of A(F,t) provides a set of potentials satisfying the Lorentz condition

VA+C—@=0 (2.30)

With the gauge transformation we get

V(A+ VA)+ié(¢—a—Aj -

2ot ot
1 o 1 O°A (2.31)
VA+—— +V(VA)- =0

%f_/
=0 (Lorentz condition)

If the function A(F,t) is a solution of the wave equation
1 0°A
VZA - PR 0 (2.34)

the Lorentz condition is fulfilled. In (2.26) we replace VA by — d)/c2 and get

10% P
Vip— 55— =—— 2.35
c:2 atZ 80 ( )
With ¢® =1/p,g, the expression (2.28) becomes
190 1 0¢ -
VZA—C—Z (V A+—25j = —uoj (236)
=0 (Lorentz condition)
The result is then
- 1 8°A -
VZA—C—ZF = _MOJ (237)

The two expressions (2.35) and (2.37) are the decoupled equations for the potentials A(F,t) and
¢(F,t). These inhomogeneous wave equations are the basis of all kind of electromagnetic
radiation.

2.4 The solution of the inhomogeneous wave equations

We have now to find the solution of the inhomogeneous wave equations (2.35) and (2.37). We start
assuming a point charge in the origin of the coordinate system of the form

dg = p(F,t)§%(F) dV (2.38)

Outside the origin, i.e. [F|#0 the charge density p vanishes. The wave equations of the potential
becomes

V2 — %8—4’ =0 (2.39)

The potential has now a spherical symmetry as

o(F,t) = (|7, t) = §(r,1) (2.40)

10
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We have now to evaluate the expression V2¢(r) for a point charge. A straight forward calculation
yields

aq)) ( jaq) 8(]) 20 %0
Vi) =V Va(r) = V( or v or ot ror or? (241)
On the other hand we find the relation
o° ( aq)) 64) o)
or? (r<|>) or o or 2 o or (2:42)
Combining these two expressions we get the wave equation in the form
,. 1% 1(@2 1azj
_—Zr_Z = 2.4
Ve c® ot rlor? c&t((l))0 (2:43)
with the general solution
1 1
¢(r,t)=F fl(r—ct)+F f,(r+ct) (2.44)

The second term on the right hand side represents a reflected wave, which doesn't exist in this case.
Therefore, the solution is reduced to

o(r,t) :% f(r—ct) (2.45)

In order to evaluate the function f (r —ct) one has to calculate the potential ¢(r,t) in the origin of
the coordinate system. The problem is that

f(r—ct
r-0 = ¢(r,t)=¥—>oo (2.46)
A better way is to compare the first and second derivatives of the potential. For r — 0 we get
G tet) o a 1ofCey (247
or re ot r ot
The ratio of the second spatial derivative to the second time derivative is even much larger
o) 1 0%
W >> F? for r-0 (2.48)
and we can simplify the wave equation (2.35) to
V20(r,t) = —Sﬂ (r - 0) (2.49)

0

This is the well known Poisson equation for a static point charge. For r — 0 the potential ¢(r,t)
approaches the Coulomb potential. Therefore, we can write

1 p(0t)
Ane,,

o(r, 1) = —f(r—ct) BN —f(— ct) =7 AV (2.50)

Because of the limited velocity ¢ of the electromagnetic fields, at a point r outside the origin the
time dependent potential is delayed by

r r
At =— = to>t—— (2.51)
C C

11
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o)

At this point we have the "retarded"” potential

do(r,t) = 4738 — (2.52)
A
Z
P
7-T
7
X Y

Fig. 2.2 Position of the charge element and the observer

In general the charge is not in the origin but at any point r' in a Volume dV. For this case the
potential gets the form

1
do(r,t) = — dv . 2.53
It is retarded by the time At = I ; r . Since under real conditions one do not has a point charge the

potential must be integrated over a finite volume containing the charge distribution. The result is

then
( |r_ |j
plr, c
1 dVv

4me, F—F]

o(r,t) = (2.54)

\

The vector potential A(F,t) can according to (2.35) and (2.37) easily evaluated by replacing the

expression Sﬂ by p,] . In this way we find
0

(2.55)

<

12
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These solutions of the two wave equations are called Liénard-Wiechert potentials. An effect on the
electromagnetic field at the point ¥ and the time t is caused by p and ] at the point 7' and the

earlier time t'=t—|F —F|/c.

2.5 Liénard-Wiechert potentials of a moving charge

The calculation of the electromagnetic radiation emitted by a moving charged particle needs a
careful integration over the charge, even in the case of point charges. We now replace the distance
between the charge and the observer by

R=F-r (2.56)

p(xy'z)
radiation
at time ¢

P

observer
do

) article
g at time ¢’ Er

ajectory
N

Fig. 2.3 Radiation from a moving charge
Radiation observed at the point P comes from all charges within a spherical shell with the center P,
the radius ‘F?‘ and the thickness |dF|. If do is the surface element of the shell the volume element is

dV = dodr (2.57)

The retarded time for radiation from the outer surface of the shell is

t'=t-— E (2.58)
. .
and from the inner surface
o _@ (2.59)

The electromagnetic field at P at the time t is generated by the charge within the volume element
dV. The charge in this volume element is with dr =|dF|

dg, = pdodr (2.60)

For charges moving with the velocity V one has to add all charge that penetrate the inner shell
surface during the time dt =dr/c, i.e.

dg, = pV fidtdo (2.61)
with the vector i normal to the outer surface defined by
R
=i 2.62
R (2.62)

13
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The total effective charge element is then
d ~
dq = dg, +dg, = pdo(dr + Vi dt) = pdc(dr v ﬁ%j = p(L+7iB)drdo (2.63)

With this relation we can write

pdrdo =pdV = = (2.64)

Insertion into equation (2.54) gives

1 dg1.g 1 |
or.t) = 47180JR(1+ ﬁB)_ 4re, R (1+ ﬁB)‘t, (2.69

The current density an be written as

j=pvV (2.66)
and the vector potential (2.55) becomes with (2.64)
A7 Ho vdq Clo q E |
A(r,t)==— — = — = 2.67
0= J RL+AB) 4rn R(1+dB), (2.67)

It is important to notice that the parameter in the expression on the right hand side must be taken at
the retarded time t'. The equations (2.65) and (2.67) are the Liénard-Wiechert potentials for a
moving point charge.

2.6 The electric field of a moving charged particle

Using the formula (2.23) we can derive the electric field at the point P by inserting the potentials as

. oA q 1 cud o B
E=—Vo+—|=- 4 ~ — ~ =
( ¢ &j 4me,  R(L+np) 4n ot R(1+iip) (2.68)

In order to simplify the calculations we define

a=R(L+7ip) (2.69)
and set

CHoq:CZHoq: 9 _
4n 4nc  4dnpye,C  4me,

=__a | 1 10(B
E T 4mg, {V a ¢ at(a” 2.71)

Notice that all expressions concerning the moving charge must be evaluated at the retarded time t'.
To indicate the calculation at the retarded time we will add a ' to the symbol (i.e. t', V', etc.). With
o 0 dt’

V'l— iV'a and —=—
a a’ ot ot dt

1 (2.70)
C

The electrical field is then

2.72)

we get

14
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a’ c dt at’

E_ 0 Fv,a_id_tg(ﬁ

(2.73)

This formula needs the knowledge of V’'a, dt’'/dt and 6([§/a)/8t’. The detailed calculation

provides the following results.

The variation of the distance ‘Iﬁ‘ -Ris

dR
dR = VA dt p - @74
The retarded time is
R
t'=t-—
c
and we find
dt’ 1 dR dt’ v dt’ _-dt’
dt c dt’ dt c dt dt

The nabla operator for the retarded time is defined as

(a o' & o ot o o
V' =

V4Vt 0
B ot’

With this relations we find with VR = -

V'R=VR+ V't’@
= o

The gradient of the retarded time becomes

1 R
e ) S R

C ot’
1 n “RVAVA _E_—'q 1t
:—E(—n+ant)_c npv't
=\ N
- V’t’(1+n[3):€

With this result we can finally write V'R in the form

AR
V'R = —fi + "N (G
i+ (Vi)

o o o, o o aj
ox ox'éot''ey oy'ot''or oz ot

d i =V 2.75
an dt’ - ( 0 )
(2.76)
' 1 R
a_ = (2.77)
dt 1+np a
(2.78)

_ oR
VR=-f+Vt'== (279)

(2.80)

VR = ﬁ[E [ ﬁ)—lj (2.81)

For further calculations we need V’(ﬁﬁ) . Since the velocity of the particle does not depend

on the position of P we have VB = 0. With VR = —1 we can calculate
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——

v'(R)=v(Rp)+ vt

= (VRB+RVE+| P+ FQ@]VT . R [ﬁ B ﬁagJ (2.82)

For the time derivative of a we get

oa 0 R 0 (==

o ot R(t+ nB)_EJ’at'(RB) . - o=, 0B
o 8R~ _ 0B op ot’ ot’
=Vih+ ot _Vn+VB+R6t’

With (2.81) and (2.82) we find the first required expression

V’a=V'R+V'(§B) n—(Bn) A— E+E(BV)+E(I§8—B]

(2.83)

'@l

i __—'__’ E = n2 E B
V'a=-n B+a(n[3+[3 +C j (2.84)
The time derivative of the ratio B/a becomes with (2.83)
o(B)_1ap_Poa_1p P
Cadt’ atat’ aat
_ 1B ca) Ca B(50B
Caot azB(Bn) = az[Rat’J
o(B)_18_P B, 5
atr(aJ aat! aZ{ (Bn)+Rat/+CB } (285)
= 9 | L) G 5 Rlapap RB)_RJ1B_B op
E_4TE80|:8.2{ " B+a[nB+B +cat’]} ca{aat’ a’ ((Bn)JrR&t +op ]H
__ 9 |_ gB|_Ra GB op
- { ari — ap + R(ip)+ Rp? += R( &,] o RB(r)+ B( j+RB} (2.86)
{[—an ap+ R(Af)+ Rp2 + RP(En)+ RE*| + { [ aﬁ] [ 8B]H
ot’ ot’
With the definition of a we can manipulate the expression in the first bracket [---], in the following

= cpn+ch” + R

ot'\ a a’ ( s

Now we insert the relations (2.77), (2.84) and (2.85) into the equation (2.73). The result is
way

41t8 at

op
ot’

[--] :—R(1+ ﬁBXﬁ+[§)+ ﬁ(ﬁﬁ)+ RB? + RB(ﬁﬁ)+ RB°
=-Rii—-RPp+RB*+Rp° (2.87)
~R(F2-1)+ RB(E? -1)=—(-F? kR +FR)
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The second bracket [---], becomes with [ = o/t
). = R(RB)-R% - R*(iB)B-+ RB( R

~(R+ RBIﬁﬁj ~(R*+R(RB)p (2.89)

- (R+RB| RS ) -BlRIR + R
Using the vector relation

b-(a-¢)-¢-(a-b)=ax(bxc) (2.89)
we get

[...]Zzﬁx[(fu RB)xE] (2.90)

Now we replace the two brackets in equation (2.86) by the expressions (2.87) and (2.90) and get the

electric field in the final form

- 1-B* (. = 1 _
R 1+ﬁ6)3(nR+BR)+—

__q ) 1-p
4me, R2(1+ﬁB)

3(ﬁ+B)+

cR(L+Ap)

%ﬁx[(ﬁJrB)xB

(2.91)

(2.92)

The first term drops down with ]/ R? and vanishes at longer distances. The second term, however,

reduces only inversely proportional to the distance R. It determines the radiation far away from the
source charge. For further discussions of the synchrotron radiation, we are only interested in the

long distance field. Therefore, we can we can neglect the first term in (2.19) and get

E- 1 {Rx|(R+PR)5 |

4re, ca’

(2.93)

Since R points into the direction opposite to the direction of the radiation, one can directly derive

from (2.93) that the electric field is polarized orthogonal to direction of radiation.

2.7 The magnetic field of a moving charged particle

With the relations (2.21) and (2.67) we can calculate the magnetic field of a moving charged

particle and we find

B=V'x A=CZ—OqV’x[EJ =M(£V’XB—%(V'a)xﬁj

T a 4 \a a
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With [3: (BX,By,BZ) we use the "retarded" curl operation

eX eX eZ
o oo o0 oo J 0o

V' xB=|— — — = = — 2.95
Pl ooy oy oy ar @ o av (2.95)
By By B,
The evaluation of this operation provides
(gﬁijﬁ (2.2
oy oy'ot')* \oz oz'ot')?
| (L )y (2, 22
Vixp= (aeraz'at' P=ox T ax )P
o ot o o ot'" o0
o )P Gy Ty an )P
(2.96)

op, OBy ot op, ot 0B,
oy oz | oy ot e et
OBy OB, | | 9" B, 3 B,
ox oz o7’ ot'  ox' ot
By B, | |0t By, ot P,
X oy ox' ot oy’ ot

:vXﬁ+(Vt'xE)

Since V is independent of the position P of the observer we have V x B = 0. The gradient of the
retarded time has been derived in equation (2.80). The result is

v'xﬁzi(ﬁxé) (2.97)
ca '
The second expression needed in (2.94) is
Via=-Ai-B+bR  with b:=§(ﬁﬁ+[§2+ﬂ[§j (2.98)
With this relation we get
v'axﬁ:(—ﬁ—6+bﬁ)xﬁ=—[ﬁXB]_|B><B|+b[F§x;§]:—[ﬁxﬁ]m[ﬁxﬁ] (2.99)

Now we insert the relations (2.97) and (2.99) into the field equation (2.94) and find

gzw[iz[ﬁx ﬁ}%[ﬁxs]—z—?[ﬁxﬁ]j

C4n C? 1 Rr 1 - (2.100)
= ( 2 caz[ﬁxﬁ}?[ﬁmz*zBJ[BXﬁU

As for the electric field we are also for the magnetic field only interested in the contributions at far
away places. Therefore, we reduce the formula (2.100) in a way that it only contains termes
proportional to 1/R. The result of this approximation for long distance fields is then

18
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g = o) _ [BX ﬁ] _+ [Bﬁ)[ﬁ Xi] (2.101)
4n | R@+apf  cR+np)

There is an important relationship between the electric and magnetic field emitted by a moving
charged particle. To find this relationship we modify the formula (2.86) in the following way

4nie, ca’” a’

- 1 . 1+ R : Rp
- {g[—ﬁ—[&+bR]— B+ Bb} (2.102)
The vector multiplication oft this equation with the unit vector n gives

[E xii]=— {%[—ﬁ—ﬁ+b§]— R E+Z—§b}xﬁ

4ne, ca?

=4§80 %(@[Bmhb ﬁxﬁ}%ﬁxﬁ]+:—?[ﬁxﬁ] (2.103)
q Bxﬁ R*qRﬁ~~2§;~q

_47'580 {[ 2 ]_Ca2 B x +¥[nB+B +€BJ[an]}

Comparison with the equation (2.100) for the magnetic field leads directly to the following simple
relation between the magnetic and electric field

B=

Ol

[E ] (2.104)

One can directly see that the magnetic field is perpendicular to the electric field and the polarisation
of both fields is perpendicular to the direction of radiation. We can now state the Poynting vector of
the radiation in the form

§ = T [ExB]= - [Ex(Ex) (2.105)

We apply again the vector relation & x (B x 6) =b(ac)- 6(51 b)and get

Ex(Exf)=E(ER)-AE?=-RE?’ (2.106)
The Poynting vector finally becomes
= 1 =,
S=——FE"®n (2.107)
Cl,

This is the power density of the radiation parallel to 1 observed at the point P per unit cross
section. For some calculations it is also helpful to evaluate the Poynting vector at the retarded time
t'. With the relation (2.77) we find

i (2.108)

or
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T,
5= CMOEZ(1+nB)q (2.109)

3 Synchrotron Radiation

3.1 Radiation power and energy loss

Now we choose a coordinate system K* which moves with the particle of the charge q=e¢. In this
reference frame the particle velocity vanishes and the charge oscillates about a fixed point. We get

V=0 > B'=0 —a=R (3.1)

It is important to notice that fi # 0! The expression (2.93) is then modified to

" 4ne, CR?

.. e 1 (a [~ -] e 1 (ﬁ R
E R x [R x = —|nx|nx
RP )= e cr 1P ] (3.2)

The radiated power per unit solid angle at the distance R from the generating charge is

dP . 1 e 1 =)
~ASR?= —C—Z(ﬁx[ﬁxBD

[Ch CHo (4,
gt e (3.3)
" (4n)ce, (n x|nP D
With the vector relation @ x (b x €)= b(a¢)—¢(ab) and fifi = i” =1 we find
(ax]axi]) =(a(nf) -6 (an) = ne(af) ~2n(af )i 5 "

Since ﬁf}* =|ﬁ|‘§*‘cos®=‘§*‘cos® where © is the angle between the direction of the particle

acceleration and the direction of observation the relation (3.4) becomes

. 2 . . . .
(ﬁ x [ﬁ x [S*D =B —p7 cos’ @ = B*Z(l— cos’ @) =B7sin?@ (3.5)
The power per unit solid angle is then
dP e’ a2 .,
—=———PB"sinN°O 3.5
dQ (475)2 ce, P (3:5)

The spatial power distribution corresponds to the power distribution of a Hertz' dipole. It is shown
in fig. 3.1. The total power radiated by the charged particle can be achieved by integrating (3.5)
over all solid angle. With

dQ =sin®’ dO®’ dd (3.6)

we can write
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ez ;*22nn .
P=——— sin"®doed 3.7
anics’ H o (3.7)

where ¢ is the azimuth angle with respect to the direction of the acceleration. The result of the
integrals is simply 4/3 and the total power becomes

LR,
AR
S

i
“I" / S H;!f,:

S o

Wi
R 1 0"‘:‘1“" i
%@u\\wu‘ N
§&~\ e

i

L i
il

e
i
%ﬂl

iy
i

P=
Bre,C

B (3.8)

This result was first found by Lamor. One can directly see that radiation only occurs while the
charged particle is accelerated. With the modification

=V mit P
L L 3.9
B C C mc ( )
we get
e’ dp\’
p=——° |P
6me,m’c’ ( dt j (3.10)

This is the radiation of a non-relativistic particle. To get an expression for extreme relativistic
particles we have to replace the time t by the Lorentz-invariant time dt = dt/y and the momentum

p by the 4-momentum P,

dt — drzidt with vy = EZ: L
Y myC 1-p? (3.11)
p — P, (4-momentum)
or
dp)’ dP\* (dp)° 1(dE)’
(&) - (5 - -HE) @12
dt dt dt c \dr
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With this modification we get the radiated power in the relativistic invariant form
e’c (dﬁjz 1 (dEjz
Pr=—F—<l 2| ~=| 3.13
6Tf‘go(mo‘:z )2 |: de c*Lde (349

The radiation power depends mainly on the angle between the direction of particle motion v and

the direction of the acceleration dv/d< . There are two different cases:

1. linear acceleration:

2. circular acceleration:

3.1.1 Linear acceleration
The particle energy is

After differentiating we get

dE dp
E—=c’p—
dt ¢ dt
Using E=ym,c? and p=y myv we have
dE dp
dt -V dt

Insertion into the radiation formula (3.13) gives

S Rt

) 67‘580?:002)2 (1~ BZ)(;I—f) |

With 1-B® =1/ we can write

o _ e’c ( dp )2_ e’c (@jz
) 6n80(mocz)2 ydt 671:80(m0C2)2 dt
For linear acceleration holds
dp/dt = (cdp)/(cdt) = dE/dx

and we get

e’c (dE)2
P= )
Briey(myc?)” \ dx
Today in most of the modern electron linacs one can achieve

— 15_
dx m

and gets the radiation power
22

LT
dt

ﬁJ_\7
dt

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)



SYNCHROTRON RADIATION JUAS  28. January — 1. February 2013 Klaus Wille

Ps=4-10" Watt (1)
which is completely negligible. In a linac synchrotron radiation has not to be taken into account
independent of the particle energy. Therefore, at extremely high energies linear collider are the
favorite machine type rather than circular accelerators.
3.1.2 Circular acceleration

Completely different is the situation when the acceleration is perpendicular to the direction of
particle motion. In this case the particle energy stays constant. Erquation (3.13) reduces to

2 2 2 2 2
p e’c 2(@) __ ey 2(@) (3.20)
Brieo(myc?) VAT Brgy(myc?)”

On a circular trajectory with the radius p a change of the orbit angle do causes a momentum
variation
dp = pda (3.21)

With v = c and E = pc follows

dp pv
R

— = po = E (3.22)
t p

We insert this result in (3.20) and get with y = E/mc?

e’c E*
I:)s = 2V 2 (3-23)
6nao(moc ) p

Comparison of the radiation from an electron and a proton with the same energy gives

m.c’ = 0511MeV
m,c® = 93819 MeV

P mc?)*
f:(m"czj =113-10" (!)

sp

This radiation is therefore observed in most of the cases from electrons. Only at extremely high
energies of E > 1 TeV also for protons the synchrotron radiation starts playing a certain role.

In a circular accelerator the energy loss per turn is

2
AE=fPdt=PRt,=P " (3.24)

The time t, is the duration a particle needs to travel through the bending magnets. In straight
sections no radiation is emitted.

We insert (3.23) into (3.24) and get

e E°
AE = ——g — (3.25)
Bso(moc ) p

For electrons one can reduce this formula to a very simple expression
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4 4
AE[keV] = 88.5m (3.26)
p[m]
100. EN
[
10. ) -
r/'
1 ’?!
3 =
= 04 ’;!
001 =
0.001 et
f/,,
01 015 02 03 05 07 1 15

E [GeV]

Fig. 3.2 Energy loss per revolution in the storage ring DELTA at the University of Dortmund as a function of the
particle energy

The synchrotron radiation was investigated the first time by Liénard at the end of the last century. It

was observed almost 50 years later at the 70 GeV-synchrotron of General Electric in the USA.

At high electron energies the bending radius of the magnets has to increase with higher power of the

energy because of the relation

(3.27)

£
AE oc —
P
Table 3.1 Parameter of a few circular electron accelerators
L [m] E [GeV] p [m] B[T] AE [keV]

BESSY | 62.4 0.80 1.78 1.500 20.3
DELTA 115 1.50 3.34 1.500 134.1
DORIS 288 5.00 12.2 1.370 4.53.10°
ESRF 844 6.00 23.4 0.855 4.90-10°
PETRA 2304 23.50 195.0 0.400 1.38-10°
LEP 27.10° 70.00 3000 0.078 7.08-10°

3.2 Spatial distribution of the radiation from a relativistic particle

The power per unit solid angle was given in (3.5) as

ap
dQ
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for the radiation of a charged particle in the reference frame K*. The angular distribution
corresponds to that of the Hertz' dipole as shown in fig. 3.1. For relativistic particles the radiation
pattern is significantly different. The radiation is focused forward into a narrow cone with the
opening angle of approximately 1/y .

The radiation power per unit solid angle is according to (3.3)

dP ~
——=-fiS'R? 2
) (3.28)
With the relation (2.109) for the Poynting vector at the radiated time we get
dP 1 - ~
— =——FE*(1+0iB)R’ 3.29
0o (L+7B) (3.29)

Inserting the electrical field (2.93) and with the charge of an electron q=e we find

P 1 e 1 (= fr= o=y =N o
o o (i) T {Rx[(R+BR)xB} (1+AB)R

1 e’ R® { ( _.) =1) 2 (330)
= Ax|{A+B)xB }
Cly (47580)2 c’a’®
A
z
N __ _observer
3 . N
ch v
X
/ \ / Ky
particle \ /
trajectory \\\ //
Fig. 3.3 The coordinate system of the moving charged particle
The vector R pointing from the observer to the moving particle is (see fig. 3.3)
Sin ® cos ¢
R=-R|sin®sin¢ (3.31)
cos®
and the correlated unit vector
—sSin®cosd
n=| —sin®sin ¢ (3.32)
—C0os®
The Lorentz force of an electron traveling along a trajectory in a magnet is
-VB,
F=—eVxB=—e| 0 |=ymV (3.33)
0

with
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0 v, 0
V=|0 V=0 and B=|B, (3.34)
v 0 0
A straight forward calculation yields
ym,v, =evB, =ecpB, (3.35)
On the other hand the bending radius of a trajectory in a magnet can be evaluated according to
1 e eB m,V
~=—B, = z — B, = YV (3.36)
p P Y MV ep
The transverse acceleration of the particle can now be written in the form
2n2
g =P (3.37)
P
With (3.34) and (3.37) we get
. 0 0
-~V
p=-=| 0 |=|0 (3.39)
v/ic) \B
and
_(wre) ((eB?)/p
B=| 0 |= 0 (3.39)
0 0

—_——
5
X
—_—
—
S
+
=
—_
=
~——
—_———
l
@l
~——
/—\
l
\_/
!
—_—
S
—
S
+
—_— ™!
—_
~——

_sin@sin —sm@cosq)c— 0 |(1-Bcos®)  (3.40)

=(f+
=(i+
{—sm@cosd) sz_ (cB?)/p

B—cos® P 0
, sin® @ cos® ¢ 1-Bcos®
C . :
_cP sin® ®sin ¢ cos ¢ -~ 0
P —(B—cos®)sin©cos ¢ 0

The square of this expression is
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2

J — 2sin® ® cos? ¢(1—[3cos®) +(1—Bcos®)
0

sin” ® cos® ¢
sin” ®sin ¢ cos ¢
— (B~ cos®)sin® cos

|

{sin4 @cos’ ¢ +sin* @sin? ¢ cos® ¢ + (B - cos@)2 sin® ®cos® ¢ —

(3.41)

}

*@®cos* ¢ +sin* @sin® ¢ cos® ¢ + B* sin® O cos® ¢ —

~Bcos®) +(1—-BcosO)’

1

(

¢

2

©® cos

—2sin?

o+

2

{sin

}
} (3.42)

2

~BcosO)

@cos® ¢ +(1

2

2O cos” ¢ —2sin” © cos” ¢ + 2B cos O sin

2@sin

+ COS

and

)2

?¢+(1-PBcos®

sin® ® cos

_1)

¢ +sin? ¢ —1) +(p?

{ sin* ® cos® ¢(0052

4

B

2

C

© cos ¢+(1—Bcos®)2}

sin?

Y

From the definition (2.69) we derive with (3.32) and (3.38)

(3.43)

We insert (3.42) and (3.43) into (3.30) and the radiated power per unit solid angle becomes

(3.44)

B ([32 —1)5in2 ©cos? ¢ + (1 pcos O

eZ

s
R
o A R R
e
—
N
T
N
SRR
T
»m”f o

N

o 0,/ o
ASetetetely
IO N

0.3

p
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SYNCHROTRON RADIATION

=0.9.

O0andp

Fig. 3.4 Radiation pattern for different particle velocities between 3

With the dimensionless particle energy

(3.45)

JL+B?

we vary the angle ® between the direction of particle motion and the direction of photon emission

according to

(3.46)

(u= dimensionless number)

u
Y
and calculate the photon intensity using equation (3.44). The result is shown in fig. 3.5.

0=
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2

Fig. 3.5 Photon intensity of the synchrotron radiation as a function of the angle ® in terms of 1/y

It is directly to see that the radiation is mainly concentrated within a cone of an opening angle of
+1/y . In equation (3.44) we set ¢ = =/2 and the fraction on the right hand side reduces to

1
wWO)=——"— (3.47)
(1— [ cos @)
With the conditions y >1 and ® <« 1 we find the approximations
1 1 e?
B= 1_y_2~1_ 277 and cos®~1—7

and we get from (3.47)
-3 -3 -3
1 @j © 1 @2 (@2 1 J
~|1-|1-—||1-— =1-1+—+——-——5| ~| =+ 3.48
w(®)~|1 (1 ZYZJ( > {1 1+ > +2y2 4, > +2y2 (3.48)
The peak intensity isat ® =0, i.e.
1 -3
w0)=|— 3.49

We chose now an angle of ® =1/y and find the relation
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1 1)

W(J/v)_(ZYZWLZVZj (11

w(0) ( 1 jz ‘(zj 8 (3:50)
2y

One can see that most of the radiation is emitted within the cone of ®, =1/y. Therefore, the
opening angle of the synchrotron radiation is given by this amount.

3.3 Time structure and radiation spectrum

In the following we will only present a phenomenological approach to the calculation of the photon
spectrum of the synchrotron radiation. A detailed evaluation of the spectral functions can be derived
in "J.D. Jackson, Classical Electrodynamics, Sect. 14" or in "H. Wiedemann, Particle Accelerator
Physics I, chapter 7.4".

As shown above the synchrotron radiation is focused sharply within a cone of an opening angle
® =1/y . Therefore, an observer locking onto the particle trajectory while the electron passes a

bending magnet (fig. 3.6) can see the radiation the first time when the electron has reached the point
A.

observer

electron
trajectory R

t

Fig. 3.6 Generation of a short flash of synchrotron light by an electron passing a bending magnet

The photons emitted at point A fly along a straight line directly to the observer with the velocity of
light. The electron, however, takes the circular trajectory and its velocity is slightly less than the
velocity of light. During this time the radiation cone strokes across the observer until the point B is
reached. This is the last position from which radiation can be observed. The duration of the light
flash is simply the difference of the time used by the electron and by the photon moving from the
point A to point B

2p® 2psSin®
At=t, -t = - 351
= g (351)
or
2 3
(3.52)
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With

1 1 1 1( 1) 1 1
-= ~ 14— | == — (3.53)
y-V2y oy 1-12y? Ty U 292y 28
we get
(1 1 1 1 4
Atz—p(—+—3——+—3j= p3 (3-54)
c\y 2y y 6y 3cy

In order to calculate the pulse length we assume a bending radius of p = 3.3 m and a beam energy of
E =1.5GeV, i.e. y = 2935. With this parameters the pulse length becomes

At =58-107" sec (3.55)
This extremely short pulse causes a broad frequency spectrum with the typical frequency
2n 3ney’
=== , 3.56
Pop = At 2p (3:56)
More often the critical frequency
o 3cy®
o, =2 == (3.57)
T 2p

is used. The exact calculation of the radiation spectrum has been carried out the first time by
Schwinger. He found
dN P, [co)
—=—-5 | — .
de/e o *\o, (3.58)

With the radiation power given in (3.23)

the total power radiated by N electrons is

S AN

- = I 3.59
0 6n80p2 380[3 b ( )
with the beam current
| - Nec (3.60)
b — an .
The spectral function in (3.58) has the form
N
5.(8) =5 &] Kas(e)de (361)

g

where K, (&) is the modified Bessel function and & = o/w, .

Because of energy conservation the spectral function satisfies the condition
[s.(g)de =1 (3.62)
0

Integrating until the upper limit £ =1, i.e. ® = wc, gives

31



SYNCHROTRON RADIATION JUAS  28. January — 1. February 2013 Klaus Wille

1

s,(&)de = > (3.63)

O e

This result shows that the critical frequency . divides the spectrum into two parts of identical
radiation power. An example of a spectrum radiated from a bending magnet is shown in fig. 3.7.

critical frequency
1 4
o
T o
I =+ g
0.1 e
LY
0.01
i
0.001 \‘
0.0001
0.001 0.01 0.1 1 W/t 10,

Fig. 3.7 Spectrum of the synchrotron radiation emitted by electrons with a kinetic energy of E = 1.5 GeV and a bending
radius of p=3.3m

The radiation from a bending magnet is emitted within a horizontal fan as shown in fig. 3.8.

radiation fan
electron beam

- \

—

/

bending magnet

Fig. 3.8 Synchrotron radiation
from a bending magnet

electron beam

The broad spectrum emits in the visible regime
almost white light as to be seen in fig. 3.9. Above the
critical frequency the spectral intensity drops down
rapidly.

Fig. 3.9 The visible light emitted by relativistic electrons
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4 Electron Dynamics with Radiation

4.1 The particles as harmonic oscillators

Because of the longitudinal and transverse focusing, the particles oscillate with respect to the
reference phase of the rf-cavity or the beam orbit defined by the magnet structure. In a good
approximation we can investigate the oscillations like a harmonic oscillator.

4.1.1 Synchrotron oscillation

In a circular accelerator as a synchrotron or a storage ring it is necessary to compensate the energy
loss during the revolutions by a rf-cavity. Averaged over many revolutions the compensation must
be perfect. Therefore, the so called "phase focusing™ takes care of a stable phase of the particled
with respect to the rf-voltage.

\

HF-Resonator

Ap
p 0

/
/éB:O
/ p
_ ép£>0

< o
N

y

Ap
T2
Fig. 4.1 Principal of the phase focusing in a cyclic machine

For an on-momentum particle (Ap/p = 0) the energy change per revolution is
E, =eU,sin¥, -\, (4.1)

with the reference phase Vs , the peak voltage Uy and the energy loss Wy due to synchrotron
radiation. For any particle with a phase deviation AW we find

E =eU,sin(¥, + A¥)-W 4.2)
The energy loss can be expanded as
W =W, + d—WAE 4.3
The difference between (4.1) and (4.2) is
. . dw
AE =E-E, =eU0[S|n(‘PS+A‘P)—S|n‘I’S]—d—EAE (4.4)

Since the frequency of the phase oscillations is very low compared to the revolution frequency
f, =1/T, the time derivative of (4.4) can therefore be written as

. AE eU,r. .
AE:T—O:T—Oo[sm(‘Ps+A‘P)—S|n‘PS]——— (4.5)

The phase difference AW is caused by the different revolution time of the particles with energy
deviation. The time difference for relativistic particles is

AT =T, AL T AE (4.6)
= — = o— .
0 LO 0 E

Here we have used the momentum-compaction-factor o defined as
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—=0— 4.7)
With the period of the rf-voltage T+ the phase shift becomes
AT
AY = 27'I:T— = O AT (4.8)

rf

The ratio of the rf-frequency and the revolution frequency must be an integer number

rf

g= O with g = integer (4.9
()

u

q is often called the harmonic number. Combining (4.6) and (4.8) we get

AT AE
AY =qo AT =2rq—=2nqa— (4.10)
T, E
and after differentation
. AY 2nqo AE
AY = —=—""FT-— (4.11)
T, T, E

First we discuss only the case with small phase oscillations, i.e. A¥Y < ¥. Then we can write

sin(\PS + A‘P) —sin'Y,
=sin ¥, cosAY + cos ', sin AY —sin ‘Y, (4.12)
~ A¥cos'P,
With this appriximation equation (4.5) reduces to
eU, dW AE

AE = 2 A¥CcOsY, - —— 4.13
o * dE T, (413)
A second differentiation provides
. ey, . dW AE
AE =—2A¥cosW¥, - —— 4.14
T, * dE T, (414)
Insertion of (4.11) gives
- 1dw _. 2rngqeaU,cosY,
AE + — AE — *AE =0 4.15
T, dE T/E (4.15)
or
AE +2a,AE + Q?AE =0 (4.16)
with
am b W @1
* 2T, dE '
and
eU,qacos‘¥
Q= -—2 : 4.18
0’“\/ 2nE (4.18)
The equation (4.16) can be solved by the ansatz
AE(t) = AE,expot (4.19)

Then we get
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w=-a +,a2—Q* (4.20)
Since the damping is very weak (a, < Q) the energy oscillation can be written in the form
AE(t) = AE, exp(— a, t) exp(i Qt) (4.22)
We have a damped harmonic oscillation with the frequency Q. This oscillation is called the
synchrotron oscillation.

4.1.2 Betatron oscillation

The motion of a charged particle through the magnet lattice of a cyclic accelerator can be expressed
in linear approximation by the fundamental equations
1 1 Ap
— k(s j X(8)=—=—
o =59 (422
2"(s)+k(s)z(s)=0

X"(s) +[

where p(s) and k(s) give the bending radius and the quadrupole strength of the magnet lattice.
Here only on-momentum particles are interesting and with K(s) =]/p2(s)— k(s) we find for the
horizontal plane

x"(s) + K(s)x(s) =0 (4.23)

In the vertical plane a similar equation holds. According to Floquet's theorem we find the solution

X(s) = V& {/B(s) cog ¥(s) + 0] (4.24)

with the constant beam emittance ¢ and the variable but periodic betafunction p(s). The phase also
varies with the place along the orbit and can be expressed as

S do

The solution (4.24) is a transverse spatial particle oscillation with respect to the beam orbit. For
ultra relativistic particles with v = c there is a strong correlation between the position s at the orbit
and the time t

s(t)=s, +ct (4.26)

With this relation one can also understand the spatial oscillation (4.24) as a time dependent
oscillation within the magnet structure. This transverse periodic particle motion is called betatron
oscillation. The formalism in (4.22) contains no damping, it is only valid for particles without
radiation. This is true for all particles of very low energies or for particles with high mass (see eq.
(3.23)). In the case of high energy electrons we have a damping of the betatron oscillation. This
damping will be introduced below.

4.2 Radiation damping

The damping needs under all circumstances an energy loss depending on the oscillation amplitude.
The mechanism of the damping of particle oscillations is based on the emission of synchrotron
radiation. This will be discussed in the following.
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4.2.1 Damping of synchrotron radiation
The radiated power of the synchrotron radiation is (3.23)

e’c 1 E!
P = - = (4.27)
bre, (m002>4 PZ

The bending radius is

2
1_ 8% o E _ecp (4.28)
p p E p
With this expression we can write the radiated power in the form
e'c®
P =CE’B* with C=——"— (4.29)
61180(m0C2)4

In order to evaluate the radiation damping of the synchrotron oscillation we use the equation (4.16)
AE +2a AE + Q°AE =0

with the damping constant (4.17)
1 dw

o7 dE

It is necessary to calculate the ration dw/dE . For this purpose we estimate the energy loss along a
dispersion trajectory with the element

A
ds’ = (1+ —Xj ds (4.30)
p
Using ds’/ dt =c we get the energy loss per revolution
T,
¢ ds’ 1 AX
W=J‘Psdt=§Ps—=—§Ps(1+—)ds (4.31)
0 cC ¢ p
The displacement Ax is caused by an energy deviation according to
AE
AX = D? (4.32)
With this relation the energy loss becomes
1 D AE
_= === 4.33
. jg Ps(1+ > E j ds (4.33)
Differentiating gives
dw 1 (| dP D(dP AE 1)
—_— == L —|==— — 4.34
dE cﬂdE’Lp dEE+PSE}dS (4.34)

The energy deviation AE performs periodic vibrations about the reference energy. After averaging
over a long time the influence of the energy deviation vanishes

AE
<?> =0 (4.35)
Equation (4.34) becomes
dw 1 [|dP. DP
d_E:E§{dE +p—E}ds (4.36)
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For further calculations we need an expression for dP,/dE . We use the radiation formula (4.29) and
get
dR

— 2CEB? + 2CE Bd—B—zp(l 1dB) (4.37)
dE E BdE

In quadrupoles with non vanishing dispersion the field variation with the particle energy is
dB dBdx dBD

dE " dxdE Ox E (4:38)
It is put into the expression (4.37) and we get from (4.36)
W _1flop(1, D38} Dy
de ¢ E ' BE dx pE
4.39
:—4Pds-—§DP2dB 1d (4.39)
zw0
E
With (4.17) the damping constant is then
a, = Ldw W, |, 1 DP, 2B 1l (4.40)
2T, dE 2T,E| oW, Bdx p
or
W0
=—2(2+D
2=y g?P) (4.41)
with
D -+ DP 2dB 1 (4.42)
cW, Bdx »p

For practical use it is more convenient to apply the bending radius p and the quadrupole strength k
rather than the magnetic field and its gradient. From the definition of the magnet parameter we can
derive

_ecds  dB_KE
E dx dx ec 1dB
EZEB R EZE = E&ka (4.43)
o E B EF
In addition we write the radiation power in the form
c E*
P = = (4.44)

Then the integral (4.42) becomes

(4.45)

The energy radiated by an on-momentum particle is
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:
‘ CE" [ ds
WO:!:Psdt de =2 c3§? (4.46)
and we modify the damping constant for the synchrotron oscillation as
WO
= 2+D
% 2T0E( )
§0(acr L} )
with D = P
ds
p?

It is important to mention that the damping only depends on the magnet structure of the machine. It
is possible to change the damping by varying the function D. In particular for D < -2 the synchrotron
damping is disappeared and the beam is unstable. This would happen using an alternating gradient
synchrotron (combined function magnets) as a storage ring with constant fields. In existing
synchrotrons with combined function magnets antidamping is compensated by the adiabatic
damping during the acceleration.

4.2.2 Damping of betatron oscillations

We will now discuss the damping of the transverse particle oscillations. Following Floquet's
transformation we can write

z—b,/B(s) cos¢d A':bm z=Acos¢

A (4.48)
=———=sin '=———sin¢ '
o - "B
Then we can calculate the amplitude A using the trajectory parameter z and z .
A% = A’ cos® o+ A’sin® ¢ = z° +[B(s) z’]2 (4.49)
'} -
z O :
momentum - JSPT
of the photon P /—-
particle
trajectory
L~ s
__/

Fig. 4.2 The damping of the transversal particle oscillations

A photon is emitted in the direction of particle motion and the particle momentum p is reduced by

3p . The electron momentum is then

>k

p=p-9p (4.50)

The longitudinal component ps of the particle momentum is restored by the rf-cavity, the transverse
component, however, stays reduced. Accordingly, the angle z’ is reduced by the amount
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52— - P (4.51
I
The energy variation of the ultra-relativistic electron is then
C2
OE = vépl (4.52)
orusingv =z’c
C
OE = ;SpL . (4.53)
With the relation E = c\f)\ follows
0z' = o8 z' (4.54)
= :
From (4.49) we get the variation (z does not change (1))
8(A2) =8(22)+5(z"%B(s)) = B*(5)3(2"?) (4.55)
=0
and we find
2A8A=2B°(s)z'82' = ASA=P*(s)z'dz’ (4.56)
After insertion of (4.54) we get
OE
ASA=—Pp*(s)z"” = (4.57)
Now one has to average over z 2. Taking the formula (4.48) gives
2 2n 2
2'%) = sin®¢do = 4.58
&)= e | =2 (49
In this way we find with the relation (4.57)
A’ oE A* 3E
A(SA) =— () —=——— 4.59
T O LA (4.59)

After a full revolution the energy losses O0E have accumulated to the total loss Wo. The average
amplitude variation per revolution is then

AA =D (3A) (4.60)
From equation (4.59) we get
MW (4.61)
A 2E '

Obviously the amplitude decreases, i.e. we have a damping of the betatron oscillation. The damping
constant can be evaluated according to

—=-a dt 4.62
Q Z ( )
With the revolution time At =T, we finally find

39



SYNCHROTRON RADIATION JUAS  28. January — 1. February 2013 Klaus Wille

a,—-22_ 4.63
© AAL 2ET, (4.63)

A similar calculations which includes the dispersion function provides the expression for the
horizontal damping constant

W0
a, = 1-D 4.64
X ZETO( ) (4.64)

4.3 The Robinson theorem

With the equations (4.47), (4.63) and (4.64) we have derived the damping constants for the
longitudinal synchrotron oscillation and the both transverse betatron oscillations:

= (24D )= 1o,
2T,E 2T,E
a =M _ Wy (4.65)
2T,E  2T,E
a, = WO (1_D ): WO ‘]x
2T.E 2T,E
with
J,=2+D
J, =1 (4.66)
J,=1-D
From these relations we can directly derive the Robinson criteria
J,+J,+J, =4 (4.67)
The total damping is constant. The change of the damping partition is possible by varying the
quantity
fﬁ E(Zk + F;Lszs
D = e (4.68)
R?

In most of the cases and in particular we have D << 1. This condition is called the "natural damping
partition”. In strong focusing machines it is possible to shift the particles onto a dispersion
trajectory by variation of the particle energy. With this measure one can change the value of D
within larger limits. The trajectory circumference L depends on the rf-frequency f as
C df
L:qk:qT = dL:—qc? (4.69)
We get
=—— (4.70)

With the momentum compaction factor we get
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AL AE E 1AL 1 Af

— =0 == 4.71
L %E 7 E oL of (4.71)
The variation of the rf-frequency f shifts the beam onto the dispersion trajectory
1 Af
Xp(8)=-D(s)—— (4.72)
o f
A
41J
________ L, L
=
kol =
8n o0 O
__ g8 ¢ _..E & __
o 2 a,
s g £ E
-_. 8 i% N 2,8 __
et -
0 Af

f

Fig. 4.3 Variation of the damping partition by changing the rf.frequency

Particles traveling along a dispersion trajectory pass through a quadrupole off-axis. Then the quads
act like a combined function magnet and the amount of D increases or decreases depending on the
frequency shift. The result is a change of the damping partition as shown in Fig. 4.3.
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5 Particle distribution in the transversal phase space

5.1 Transversal beam emittance

The natural beam emittance is determined by the emission of synchrotron radiation. This happens
only in the bending magnets and therefore only effects in the bending magnet have to be taken into
account.

bending magnet

photon

dispersion
trajectory

- pO-Ap Sx L G

particle

R trajectory /

g + -

orbit

Fig. 5.1 Generation of betatron oscillations by emission of a photon

We start with an electron traveling along the ideal orbit with the reference momentum po. The
emittance is then & = 0. In the dipole the particle emits a photon with the momentum Ap and
continues the flight with the momentum po - Ap. It now belongs to a dispersion trajectory with the
displacement and angle

A A
SXZDTp and 8X’=D’?p (5.1)

with respect to the orbit. As a consequence it starts oscillating after the emission of a photon and
has therefore a finite emittance. It can be calculated using the ellipse relation.

g, = yOX* + 205X’ + BOX'?

{%pj (° + 20DD' + pD”) (52)

:(d_pJ H (S)
p

This relation is correct only for one certain single electron. To get the beam emittance one had to
integrate over all particles in the beam, or, with other words, over the energy distribution of the
electrons. For relativistic particles is

ok 5.3
— (53)

A similar calculation as for the bunch length gives the natural beam emittance in the form
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g = 5.4
hine 1] -

The damping is represented by the amountJ, =1-D . The averaging (...) has to be done only in
the bending magnets. If all bending magnets are equal, i.e. they have the same bending radius R and
the same length |, we get with J ~ 1 the simplified expression

21
£, :1_47.106%IH (s)ds (5.5)
0

In this formula we have E in [GeV], R in [m] and &4 in [m rad]. One can directly see that because of

H (s) = (yD? + 20DD’ + BD’?) (5.6)

the emittance is small whenever the betafunction and the dispersion is small inside a bending
magnet. Circular electron machines for low emittance beams need therefore a magnet focusing
providing small waists for the optical functions.

5.2 Examples

Increasing the quadrupole strength decreases within a usual range the betafunctions and the
dispersion. This consequently reduces the function H(s) and produces a lower beam emittance. We
can demonstrate such behavior taking a cyclic machine with a simple so called "FODO-lattice". In
this case we have a succession of a focussing quadrupole (F), a drift space with a bending magnet
(0), a defocusing quadrupole (D) and again a drift space with a bending magnet (0). This explains
the name FODO-lattice. An example for a machine with such magnet structure is shown in fig. 5.2.

The chosen parameters of the cell allow the variation of both quadrupole strengths within a range
from k = 0.4 m? to k = 1.6 m™. Values between this limits give stable optics. In fig. 6.3 the beam
emittance is shown as a function of the quadrupole strengths. Here for simplicity the gradients for
both quadrupole families have been set always to the same value. Variation of k from 0.4 m? to
~1.5 m™ reduces the emittance almost by two orders of magnitude !

Fig. 5.2 A simple ring with FODO-structure. On the right hand side one cell of the lattice is drawn
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Fig. 5.3 Beam emittance as a function of the quadrupole Fig. 5.4 Chromaticity as a function of the quadrupole
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Fig. 5.5 Optical functions of the FODO lattice
The strong focusing with the low beam emittance has, however, a significant disadvantage. With
increasing quadrupole strength, the chromaticity increases rapidly as shown in fig. 5.4. Machines
with extremely low beam emittances, i.e. dedicated synchrotron light sources, need a very effective
sextupole structure for chromaticity compensation. The main problem is the reduction of the
dynamic aperture by the strong nonlinear magnetic fields.

The betafunction and the dispersion have in the bending magnet not the minimum value. Therefore,
the FODO lattice provides for given bending magnets not necessarily extremely low emittances.

Much lower beam emittances are available with the "triplett-structure™, as shown in fig. 5.6. In this
case between the bending magnets three quadrupoles are arranged, namely QD-QF-QD. The
resulting optical functions have inside the bending magnet a waist. The smallest values of the
horizontal optical functions are now in the bending magnet, which gives low amounts for H(s).
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335 m

Fig. 5.6 Triplet structure and its optical functions

This structure has been used for the electron storage ring DELTA at the University of Dortmund.
The emittance at an beam energy of E = 1.5 GeV is & = 7-10° m rad. This is state of the art in
modern synchrotron radiation sources.
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6 Low emittance lattices

6.1 Basic idea of low emittance lattices
What is the lowest possible beam emittance ?

In electron storage rings optimized as dedicated synchrotron radiation sources long straight sections
for wiggler and undulator magnets are required. This straight sections have usually no dispersion,
i.e. D = 0. Therefore, at the beginning of the bending magnet next to the insertion the dispersion has

D' O .

i
B
D
D(s)
DO ! /
D 'O\ﬁ / orbit _
D=0 s
Y 5 \

—

- / > Dbending magnet

Fig. 6.1 Optical functions at in a bending magnet for minimum possible emittance

With this initial condition the dispersion in the bending magnet is well defined. With s/R <1 we
get

s) s
D(s)=R|{1-cos—|~——
( R) 2R (6.2)

.S S
D'(s)=sin—~=—
(s) R R

Under these conditions the emittance can only be changed by varying the initial values o and o of
the betafunction. These functions can be transformed in the bending magnet as

Bs) —oafs)) (1 s\ (B, ~—op) (1 0
(_a@ y(s)jz(o J'(—ao voj'(s J ¢
and after straight forward calculations
B(S):BO—ZOLOS+y052
o(S)=0,—7,S (6.4)

v(s) =y, = const.

With this results we can write the function H(s) in the form
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H (s) =(s)D*(s) +20.(s)D(s)D'(s) +B(s) D"*(s)

1 (6.5)
= ?(%0 st —o,st + BOSZJ

For identical bending magnets and with J, = 1 we get from (5.4) or (5.5)

2 1
_ Y_
=C, j (s)ds
° (6.6)
"\RJL20 4 3
with
=—i_3832-10‘13m (6.7)
32J3mec '
The relation
I
—= 6.8
- (6.8)
is the bending angle of the magnet. With this expression we can write
| B
—C v20° Yol  ©o +Po
! (20 43 J (6.9)

Since the emittance grows with ®° one should use many short bending magnets rather than a few
long ones to get beams with low emittances.

In order to get the minimum possible emittance we have to vary the initial conditions o and oy in
(6.9) until the minimum is found. This is the case if

Og, A8(1+al %“LB_OJ

oo, B, 20 4 3l 6.10
:A(&L_ljzo
B, 10 4
and
aaX:A{ Lo | 1) . (611
By B 203 '

with A=C, v2®°. With the two equations (6.10) and (6.11) we can calculate the unknown initial
conditions By and op. We get

Bomin = 2\E| =1.549]
‘ S5 (6.12)
Olg,mn = V15 =3.873

The minimum possible emittance is therefore determined only by the magnet length I.

This principle is used by the Chasman Green lattice, as shown in fig. 6.2. Looking into the details
one will find that the optical functions do not exactly fit the conditions (6.12). In particular we have
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in realistic beam optics o, < V15. The reason is the extremely high chromaticity caused by the
ideal initial conditions (6.12). The reduction of the dynamic aperture would be too large.

N1 MM RaSaN [P RRRaN MmNy M

Fig. 6.2 An example of a Chassman Green lattice (HiSOR project, Japan)

The simple magnet structure in fig. 7.2 has no flexibility. Therefore, more quadrupole magnets are
used in modern light sources as the ESRF in Grenoble (fig. 6.3 and 6.4)

e

Fig. 6.3 Site of the European Synchrotron Radiation Facility ESRF in Grenoble
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Fig. 6.4 The optical functions of one cell of the ESRF lattice.

Magnet structures of this type are often called "double bend achromat lattice™ (DBA). Another
modification of this optical principle is the "triple bend achromat lattice™ (TBA), as applied in the
storage ring BESSY Il in Berlin (fig. 6.5).

B(s) 7
. D
8, (s)
15.0 — ~0.8
10.0 Lo.5
8.0 1 ~0.8
0.0 T T T T T T T T T T T T T i(m)r 0.0
o 2 4 6 8 10 14
If B [l -
B L I N I i

Fig. 6.5 The optical functions of one cell of BESSY Il in Berlin
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7 Appendix A: Undulator radiation

Synchrotron radiation is nowadays mostly generated by use of undulators (or ,,insertion devices®).

undulator periode

/
Z }\u

7

electron beam

I/

magnet poles

Fig. 7.1 Principal of an wiggler or undulator manet

This is a magnet with a larger number of short dipoles with alternating polarity. The difference
between ,,wiggler and ,,undulators* is mainly given by the magnet strength and will be defined
later. First we will call it W/U-magnet.

7.1 The field of a wiggler or undulator

Along the orbit one has a periodic field with the period length A,. The potential is

o(s.2) = T (2) 005(271%) - £ (z)cos(k, ) (7.1)

u
In x-direction the magnet is assumed to be unlimited.
The function f(z) gives the vertical field pattern. With the Laplace equation

VZp(s,z) =0 (7.2)
we get
dzdigz) —f(@)kZ=0 (7.3)
and find the solution
f (z) = Asinh(k,z2) (7.4)
Inserting into (7.1) the potential becomes
¢(s,z) = Asinh(k,z) cos(k,s) (7.5)

and the vertical field component
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o
B,(s,z) = — =k, ,Acosh(k k,S). :
,(8,2) o = K cos ( uz)cos( »S) (7.6)
; Az
| pole
I
|
|
R
| 0 -
i ()
4 Pos
|
|
|
|
|
I
|
I

Fig. 7.2 Definition of the poletip field

In order to get the integration constant A we take the pole tip field By at {s, z} = {O, g/2} . With (7.6)

we get
_ gj _ ( g) _ ( gj
B, = BZ(O, 5) = k,Acosh| Kk, 5) = k,Acosh RM
and
A B
9
K, cosh(n MJ
Insertion into (7.6) provides
B
B,(s,2) = —Ogcosh(kuz) cos(k,s)
cosh(nMj
and
B, : .
B,(s,z) = ——————=sinh(k,z) sin(k,s)

9
cosh(n MJ

At the orbit the periodic field has the maximum value
BO

g9
cosh[n kuj

B=

(7.7)

(7.8)

(7.9)

(7.10)

(7.11)

For given period length the A, the field decreases with increasing gap height g. Short periods

require therefore small pole distances.
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Fig. 7.3 Peak field at the orbit as a function of the relation between gap height and period length

At the beam the periodic field is
B,(s,z) = Bsin(k,s) .

The most simple design is an electromagnet

. OO I I I N
NI TR

. Q; , r: S
AW IR

Fig. 7.4 Design as an electromagnet

(7.12)

Shorter period length down to a few cm are possible by use of permanent magnets. The field

variation is made by changing the gap height.

" ImE e—

T I
I L I i I
ﬂ!H)“.“T

permanent magnets

Fig. 7.5 Undulator using permanent magnets
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A hybrid magnet consists of permanent magnets and iron poles.

e Ay~ iron

\

— U’J/

] ~ S
x

\

permanent magnets

N

el | AR

o | 1
7
|
l
|
i z/ — )

Fig. 7.6 Principal of a hybrid magnet

W/U-magnets have maximum fields at the beam about 1 T. The minimum wave length is limited
because of

hy= == (7.13)

io parlod F
symmetric peried I 1500 —]

Fig. 7.7 Example of a superconductive wiggler

53



SYNCHROTRON RADIATION JUAS  28. January — 1. February 2013 Klaus Wille

The W/U-field has to be matched that the total bending angle is zero.
Lu Au
4

aand trajectory =™

\m/

NIIS|IN[|[S|IN|IS

S
o half

pole

Fig. 7.8 Matched undulator trajectory
We have then

S
[ B,(s)ds=B]cos(k,s)ds=0 (7.14)
wW/u S
This condition is fulfilled if
A
=0 and S, =nku+7“ (7.15)
with n = 1,2, ... . It is possible to utilize at both ends short magnet pieces of half pole length. In

addition one has to shim the single poles to compensate the unavoidable tolerances.

7.2 Equation of motion in an W/U-magnet
In a W/U-magnet we have the Lorentz force

F:ﬁ:moyV:erg (7.16)
With the approximation
0 v,
B=|B, und  V=|0 (7.17)
BS VS
we get
-V Bz
. e
V= ~v, B, (7.18)
myy
VX BZ

The velocity component in z-direction is very small and can be neglected. With x=v, and $ =,
we have the motion in the s-x-plane

X=—$2 B, (s)
Mmyy

o (7.19)
§=x—-=2B,(s)
myy
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This is a coupled set of equations. The influence of the horizontal motion on the longitudinal
velocity is very small

X=V, <<C and $=v, =pc=const. (7.20)

In this case only the first equation of (7.19) is important and we get

~

. PceB
X =———cos(k s 7.21
Moy (k,s) (7.21)

We replace with
x=xBc and  X=x"p’c?

the time derivative by a spatial one and get

X" eB cos(k,s) eB cos(Z > j (7.22)
= — u = — ™ .
myBCy meBCy Ay

With B = 1 we can write

A eB
i — u H k

X'(s) 2nm, Csm( us)
, = (7.23)

X(s) = ﬂcos(k s)

~ 4n*myyc !
The maximum angle is at sin(k,s) =1
121.eB
), @, =X =" (7.24)

"y 2nmc

S
AL %\ > The dimensionless parameter
\_{ \‘\ o
LB
K= (7.25)

trajectory 27MC

is called wiggler or undulator parameter. The
maximum trajectory angle is then

K
Y

This is the natural opening angle of the synchrotron radiation. With the parameter K we can now
distinguish between wiggler and undulator:

® =

w

(7.26)

undulator if K<1 ie. O, <1y
wiggler if K>1 i.e. e, >1y (7.27)

Now we go back to the system of coupled equations (7.19). We assume that the horizontal motion is
only determined by a constant average velocity V, = ($). From (7.23) and (7.25) we get

X'(s) zgsin(kus) =0, sin(k,s) (7.28)

With x=Bcx’, s=Bct and w, = k,Bc one can write
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K
x(t) =Bc®, sin(o,t) = Bcvsin(mut) (7.29)
For the velocity holds
C .
B X 5-2 — (BC)Z _ XZ
: - 1
S and with p? = 1—Y—2 we get
. 1 %
$(t)=c,|1- (Y_Z + C_Zj (7.30)

Since the expression in the brackets is very small, the root can be expand in the way

0=qi-3(5+%)

- (7.31)
- i - 2Y2 + C2
Inserting the horizontal velocity (7.29) and using the relation
sin®(x) = (1—cos2x)/2
we get
. l BZ KZ
§(t) = c{l—ﬁ{br , (l—cos(Zmut))} (7.32)

This can be written in the form
$(t) = (8) + AS(t)

<s’>:c{1—i{l+BZK2} (7.33)

with the average velocity

2y? 2
and the oscillation

2K2
AS(t) = Ciyz cos(20,t) (7.34)
From (7.33) we derive the relative velocity with 3 =
. {9 1 K?
=—=1-— — 7.
B c 1 2,2 1+ > (7.35)
With (7.29) and (7.33) to (7.35) we get
K
X(t) = Bc73in(cout)
cB2K?2 (7.36)
s(t)=pc+ 47 cos(2m,t)

Using o, =k,8c and B = 1 one can evaluate the velocity simply by integration. In the laboratory
frame we have
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X(t) = —%cos(mut)

u

(7.37)

2

« K .
s(t)=p ct+ 8k 17 sin(2m t)

u

We get an impressive form of motion in the center of mass system K', which moves with the
velocity B~ with respect to the laboratory system. With the transformation

X' =x und s = y(s—Bct) (7.38)
we get

X(t) = —kicos(oout)

u

) K? (7.39)
s(t)y=PBct+ 8k 17 sin(2wm,t)
-5
10 m
5 |
X
0 _ —
-5
s
-5 0 5 5

10 m
Fig. 7.9 Particle motion in the center of mass frame traveling through an undulator magnet

7.3 Undulatorradiation

Because of the periodic motion in the undulator radiation is emitted in the laboratory frame with a
well defined frequency

QW =_=_:kuBC (740)

In the moving frame with the average velocity B~ the frequency is transformed according to
o =7Q, (7.41)
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The system emits monochromatic radiation. In order to transform a photon into the laboratory
system we take a photon emitted under the angle ®,

A

X
}
e, -
Ps S
Energy and momentum of the photon are
E=lo
_he (7.42)
P="
and the 4-vector becomes
E/c E/c
px pSin ®0
P = = :
! 0. 0 (7.43)
P, pcos®,
Transformation into the System K is then
E'/c v 0 0 —-BY E/c
) 0 10 O sin®
. PSIN®o (7.44)
P, 0 01 0 0
Py By 00 v pCcosO,
The energy of the photon becomes
EE L.E .. wh “
< =Y E_By pcos®, =y Pu (1—[3 cos@o) (7.45)
With E" =7m" we get
ho LR .
Ty T (1B cos O, ) (7.46)
and
o (7.47)
®, =" p :
Yy (1-B cos®,)
Using (7.41) we can write
" 1-Bcos®,
and find
Q, A, 1-Bcos®, '
with
dow = A1 OO, ) (7.49)
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Now we replace B~ by (7.35) and expand
e’ 1
cos®, ~1-— da 06,~—«<l1
2 Y
After this manipulations we find
. | 1+ Kz/zj( @2]
A, (1-PB cos®,)=2,|1-|1- 1-—2
U( B 0) U_ ( 2Y2 2
| @ 1+K?/2
=2, 1—(1—70— / j+} (7.50)

+
u 2 2y2

0; 1+K?2

2y2

J

This approximation is usually fulfilled with high precision. Using equation (7.49) we get the

important "coherence condition for undulator radiation”

w 2'}’2

2
A = (1+K7+VZ®SJ

(7.51)

The wavelength of the radiation is mainly determined by A, v, and K. With increasing angle ®

also the wavelength increases.

The total length of the undulator is

L, =N, (7.52)
If sp marks the center of the undulator, the emitted wave has the time dependent function
o, t if T <t< T
U(w,,t) =123 P 1w ' 25150 (7.53)
0 otherwise
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undulator
N u ?Lrad
)
T ] o~
wave
[ I |
The wave has the duration
T=NA,/c = o,T=21N, (7.54)

Such limited wave generates a continuous spectrum of partial waves. Their amplitudes are given by

the Fourier integral

Alw) = ﬁ Tu(ww, t)exp(-imt)dt

Insertion into (7.53) gives
+T/2

Alw) = % I exp[— i((o - cow) t] dt

-T2
2a Sin(oo -o,|T

“V2rT Je-o,

With Ao = ® —®,, and (7.54) we get

S~ —

The intensity is proportional to the square of amplitude

2
. A
sm(n N, ]
(Q)

A
nNufw

Oy,

W

[(A®) o<

60

(7.55)

(7.56)

(7.57)

(7.58)



SYNCHROTRON RADIATION JUAS  28. January — 1. February 2013 Klaus Wille

A

I{Aw)

spontaneous
undulator

- radiation

|
|
|
|
]
]
]
i
]
i
]
'
b
]
I
i
1
I
i
1
1
I
I
h
1
I

Q- -
raa Aw
We get the half width of maximum from
- 2
(%) =% with  x=nN, 22 _139 (7.59)
('OW
and find
2A  2x 0886 1
. xN._ N N, (7.60)
The spectrum of an undulator is
A
dP 1. center of mass frame
do laboratory frame
doppler
effect
-
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8 Appendix B: Longitudinal Phase Space

8.1 Particle distribution in longitudinal phase space

In chapter 4 we have discussed the radiation damping. This effect alone would reduce the amplitude
of the synchrotron and betatron oscillations to zero. The photons, however, are emitted randomly
and we have sudden emission of many single photons. Every emission of a photon excites
synchrotron and betatron oscillations. We will now evaluate the energy distribution in a bunch due
to quantum effects caused by synchrotron radiation.

The power of the photons with the energy & emitted from an energy interval {8,8+d8} can be
derived from the equation (3.58)

dP, =en(e)de (8.1)

(e )ilss(g J 52)

Po is the total power of all photons as given in (3.59) and ¢_ = 2w, the critical energy derived from

equation (3.57). The function S (&) is the spectral function (3.61). The total rate of quantum
emission is then

with

o0

P 1543 P
N _jn(g) de =2 1s ds_S—\@— (8.3)
€. ) € 8 g,
With this relations the mean quantum energy is
R 1 5 8
g)=——=——|en(e)de=—+c¢, 8.4
< > Ntot NtotJ(: ( ) 15\/5 ( )
More important is the mean of the square energy
1 [e) . o0
<82> =X jaz n(e)de = Nt0t<82>=J82 n(e)de (8.5)
tot 0 0

The synchrotron oscillation is an energy oscillation with the frequency Q, as shown in chapter
4.1.1. Without damping we have

AE(t) = AE, expiQ)t —t,) (8.6)
After emission of a photon at the time t; with the energy ¢ the amplitude is reduced according to
AE(t) = AE, exp iQ(t — to) —gexp iQ(t — ti)

(8.7)
= AE, exp iQ(t - tl)

with
AE? = AEZ +&% — 2 AE, £ cost; — 1) (8.8)

The phase is completely random and the expectation value of COSQ(ti —to) vanishes. The probable
amplitude change is then

(8AE?) = (AE? — AEZ) = & (8.9)
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One can see that the square of the amplitude change is proportional to the square of the energy of
the emitted photons.

We take now all photons emitted from an interval {8, e+ Ag} of the radiation spectrum. Since the
number of photons per second is n(e) Ae the contribution to the rate of amplitude change is

d(AE?
A{%} =¢”n(e) Ae (8.10)
Integration over all energies of the spectrum gives with (8.5)
d(AE®) ¢ :
<dt > = Igzh(a) de = Nt0t<82> (8.11)

0

On the other hand we have the radiation damping of the energy oscillations
AE(t) = AE, exp(— ast) =  AE*(t)=AE; exp(— 2ast) (8.12)
with the time derivative
dE()

=28, AE] exp(— 2a,t) = —2a, AE*(t) (8.13)
or after averaging
d(AE®
% = —2a,(AE?) (8.14)

The two effects the quantum excitation (8.11) and the damping (8.14) compensate each other and
we get

Ny (e2) - 2a,(AE?) = 0 (8.15)

The energy oscillations are sinusoidal and the probable amplitude square is just ¥z of the peak
amplitude. Therefore, we get from (8.15)

AE2> 1 .
2 _ < _ 2
(o —T—4—asNtot<8 > (816)
At first we use (8.11) and evaluate
i . P € 55
Nt0t<82>lezn(s)d8=§JSS(zj dSZmSCPO (8.17)

= ho, =~ (8.18)

The emitted photon power is given in (3.59) in the form

e’c vy
p=—— 1 8.19
0 67[80 p2 ( )

The average is
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eyt _(R) 1
(R = 6rie, <pz> - P(’_<J/p2>p2 (8.20)

Insertion of (8.18) and (8.20) into (8.17) gives

: 55 55 1 1
N (e*)=—=¢ P =—=ncy*P — 8.21
t0t<8 > 24\/58(: ° = 1643 Y < 0><]/p2> 0’ (8.21)
With W, = P, T, the damping constant in (4.65) becomes
Wi, () (R)), oz
* 2T,E 2E  2ym,c? '
Replacing this expression in (8.16) the probable amplitude square is then
o)
o N o (€7) _ 55 nemc’yt \p’ 8.23)
4a, 3243 I, 1
p?
Usually the relative energy spread is more interesting and with E =y m,c* we get
o)
2 2 3
o _ 55 ncy” \p
E? 323 J.mc? /1 (8:24)
o’

8.2 Bunch length

The synchrotron oscillation causes a periodic phase and an energy shift. In equation (4.11) it was
shown that these two physical quantities have the relation

. 2nqo AE AE
AY = — = — 8.25
TO E (Du q(x E ( )
and we find
AE  AY
— = 8.26
E oJgqa (8.26)
The phase is a real number and the phase oscillation has the form
AY(t) = ¥sin(Qt + ¢
( ) (8.27)

A¥(t) = Q¥ cos(Qt + )
We are in the following only interested in the amplitude of the phase. Then we get from (8.26)
AE_ Q¥
E oJgqao

(8.28)

The phase amplitude can then be expressed in the form
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~  o,0ua AE
VYV=--— 8.29
O E (8.29)
The bunch length o is strongly correlated with the phase amplitude namely
A = C .~ CaAE
c o= po2EE (8.30)

* T 2n qo, Q E

We replace the synchrotron frequency by the expression (4.18) and set the energy deviation to the
natural energy fluctuation as calculated in (8.24) we get the bunch length in the form

cs—i __2maE o (8.31)
* o,\ geUcos¥, E '

It is important to mention that the bunch length decreases with decreasing momentum compaction
factor o and increasing rf-voltage U as

G. oC,|— (8.32)
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