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Introduction

χ2 as standard tool

χ2 gives:

value of fit parameter estimate

error bar of parameter confidence interval

goodness-of-fit hypothesis test

must treat these three aspects separately. . .
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Introduction

Ingredients to build a model (3)

Need to choose a “fit method” = an estimator
Desirable properties:

consistent — unbiased — efficient

In principle many possible estimators/fit method.
In practice, two:
Maximum Likelihood
(ML)

Least Squares (LS)

Non-weighted least squares

χ2, exp errors

χ2, theory errors

J7, P36.1
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ML + LS

Maximum Likelihood

Definition: probability distribution P(x , a) with parameter(s) a

L(x1, . . . , xN ; a) =
∏
i

P(xi , a)

Fit/estimate: ML = maximize L = maximize ln L
maximum gives parameter(s) that “makes data most probable”

Two nice properties:

(asymptotically) efficient = reaches MVB (minimum variance
bound)

invariant under parameter transformation

i.e. most efficient method, but in general biased. . .
(expectation value corresponds to mean, not mode)

B5,C6
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ML + LS

Parameter invariance in ML

ML is invariant under “smooth” transformations of parameters a
(since, for a = a(a′), 0 = ∂L/∂a · ∂a/∂a′)

Chose parameter transformation to make L Gaussian in a′ !

1

σ
√

2π
e−(a′−a′

0)
2/2σ2

Can now read off error
bars at 1σ, 2σ etc:

a′ − a′0 1σ 2σ nσ

factor on Lmax e−1/2 e−2 e−n2/2

∆(−2 ln L) 1 4 n2

NB! Same ∆(−2 ln L) after transforming back to a.
Can be justified asymptotically! Use the same rules for χ2 ?
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ML + LS

ML → χ2

When probability distributions are Gaussian

P(x , µ, σ) =
1

σ
√

2π
e−(x−µ)2/2σ2

the log-likelihood turns into

−2 ln L = −2 ln

(∏
i

P(xi , µ, σ)

)

= 2N ln(σ
√

2π) +
∑

i

(xi − µ)2

σ2

NB! Not a derivation of χ2 !
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ML + LS

Different chi-squares

Chi-square distribution with ν dof defined as
∑ν

i=1 X 2
i

where Xi are independent and Gaussian distributed (mean 0,
σ = 1).

So we expect S =
∑

i
(xi−µ)2

σ2 to be χ2 distributed.

The likelihood ratio, λ = −2 ln(L/L0), has approximately a χ2

distribution.

Use S as estimator also for non-Gaussian variables.

Estimate by minimizing S . Minimum gives µ parameters.

σ known / estimated from data / estimated from theory / = 1
(non-weighted LS)
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ML + LS

Example: count numbers

Poisson distributed count numbers ni in histogram
(i = 1, 2, . . . ,N), fit-function yi (with parameters)

Pearson’s χ2, χ2
P =

∑
i(ni − yi)

2/yi

Neyman’s χ2, χ2
N =

∑
i(ni − yi)

2/ni

Poisson likelihood χ2,
χ2

λ = 2
∑

i(yi − ni + ni ln(ni/yi))

S. Baker and R.D. Cousins, NIM 221 (84) 437

What about ni = 0 — or negative yi ?
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ML + LS

Summary for one parameter

Procedure for χ2 and −2 ln L is the same !
Fit function depends on one parameter a, need to calculate χ2

numerically.

Fit by finding minimum of χ2 as function of a (e.g. MINUIT).
Parameter value at minimum, a0, is the fit result.

For uncertainties (nσ error bars): find points where

χ2(a±) = χ2(a0) + n2,

the (asymmetric) error bars are then a+ − a0 and a0 − a−.
(The points are often estimated by a local parabolic approximation. . . )

Will return to goodness-of-fit later.
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ML + LS

Error bars for more parameters

If we only look at each parameter separately: forget about the rest
(integrate them out).

What if we wish combined limits for two or more parameters ?
Easy way through: note that (by definition) for one parameter

PGaussian(within 1 sigma) = Pχ2(ν=1)(less than 1)

This generalizes to more parameters, say k.
Decide on your “confidence level” (1 sigma = 68.27%, 2 sigma =
95.45%).
Look up this probability in tables of chi-square with k dof → ∆.
Find the contours where χ2 = χ2

min + ∆.

B7.2.7, C9.7, J9.1.2, F. James, Comput.Phys.Commun. 20 (80) 29
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Examples from particle physics

CPT test in neutral kaon decay (P PDG figure p. 841)
The two axes in the figure are the difference in mass and the width
of K 0 and K̄ 0. One needs combined uncertainties.

Bs mixing phase: CERN Courier, october 2011, vol 51, no 8, p. 8
= Story on LHCb measurement (improved since then) of Bs

oscillation.
Two Bs mass eigenstates, the figure shows ∆Γ their difference in
width, φs the mixing phase.
CL 68%, 95%: ∆ = 2.28, 5.99

Many other examples in PDG. . .
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Linear least squares

Special case — sufficiently frequent to include — when fit function
is linear in parameters, i.e. can write it in matrix form y=Ca.

In general (including covariance): S = (nT − yT )V−1(n − y)

The solution is:

a0 = V (a)CTV−1n where V (a) = (CTV−1C )−1

Notation: a vector of fit parameters, V (a) its covariance matrix,
n vector of input data, V corresponding covariance matrix,

C matrix in fit function (need not be a square matrix)

B6, C7.2
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Interjection: fit to polynomials

Fit to a power series will typically give large covariances between
fit parameters.
One solution is to change fit functions.

Example: use x − x̄ and c rather than x and c .
A linear calibration E = aCh + b gives an error

s(E )2 = s(a)2Ch2 + s(b)2 + 2cov(a, b)Ch.

Systematic prescription: R. Barlow, SLUO lectures 7
http://www-group.slac.stanford.edu/sluo/lectures/Stat Lectures.html

If frequent situation: consider using e.g. Chebyshev polymonials.
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Confidence levels

Formal theory on error bars → confidence levels / interval
estimation uses Neyman construction.

skip this for the moment

Important conceptual point: “95% confidence interval” means that
19 out of 20 times you construct the interval it will contain the
true value — frequentists cannot talk about the probability of the true

value being somewhere

Trivial point: no unique way to cover 95% (central/lower/upper
interval. . . )
Illustration of symmetric 90% confidence interval in P figure 36.4

B7.2, C9, J9, P36.3
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Reminder on Bayesian methods

Need prior distribution π(θ), use the same likelihood L(x |θ) as
above. Deduce the posterior p(θ|x) distribution:

p(θ|x) =
L(x |θ)π(θ)∫

L(x |θ′)π(θ′)dθ′

Can choose to interpret most likely θ as “fit value” and can choose
a confidence interval from p(θ|x) ↔ same solution as frequentist,
if prior distribution is uniform.

(1) Do not have to interpret in this way, p has more information
(2) Interpretation anyway different !

(3) Prior may not be uniform. . .

C6.13, J7.5+9.6
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