Statistical tools for nuclear experiments, 2

Karsten Riisager
Aarhus University

March 19, 2013

Contents

Main topics

- Preliminaries
- Fitting
- Testing
- Other topics

Subtopics

- Least squares, χ^2 etc
- Maximum likelihood
- Parameter fit
- Finding error bars

χ^2 as standard tool

χ^2 gives:

- value of fit parameter estimate
- error bar of parameter confidence interval
- goodness-of-fit hypothesis test

must treat these three aspects separately. . .

Ingredients to build a model (3)

Need to choose a "fit method" = an estimator Desirable properties:

consistent — unbiased — efficient

In principle many possible estimators/fit method. In practice, two:

Maximum Likelihood (ML)

Least Squares (LS)

- Non-weighted least squares
- χ^2 , exp errors
- χ^2 , theory errors

J7, **P**36.1

ML + LS

Maximum Likelihood

Definition: probability distribution P(x, a) with parameter(s) a

$$L(x_1,\ldots,x_N;a)=\prod_i P(x_i,a)$$

Fit/estimate: $ML = maximize \ L = maximize \ln L$ maximum gives parameter(s) that "makes data most probable"

Two nice properties:

- (asymptotically) efficient = reaches MVB (minimum variance bound)
- invariant under parameter transformation

i.e. most efficient method, but in general biased... (expectation value corresponds to mean, not mode)

Parameter invariance in ML

ML is invariant under "smooth" transformations of parameters a (since, for a=a(a'), $0=\partial L/\partial a\cdot\partial a/\partial a'$)

Chose parameter transformation to make L Gaussian in a'!

$$\frac{1}{\sigma\sqrt{2\pi}}e^{-(a'-a_0')^2/2\sigma^2}$$

Can now read off error bars at 1σ , 2σ etc:

NB! Same $\Delta(-2 \ln L)$ after transforming back to a. Can be justified asymptotically! Use the same rules for χ^2 ?

$$ML \rightarrow \chi^2$$

When probability distributions are Gaussian

$$P(x, \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

the log-likelihood turns into

$$-2 \ln L = -2 \ln \left(\prod_{i} P(x_{i}, \mu, \sigma) \right)$$
$$= 2N \ln(\sigma \sqrt{2\pi}) + \sum_{i} \frac{(x_{i} - \mu)^{2}}{\sigma^{2}}$$

NB! Not a derivation of χ^2 !

Different chi-squares

Chi-square distribution with ν dof defined as $\sum_{i=1}^{\nu} X_i^2$ where X_i are independent and Gaussian distributed (mean 0, $\sigma = 1$).

So we expect $S = \sum_{i} \frac{(x_i - \mu)^2}{\sigma^2}$ to be χ^2 distributed.

The likelihood ratio, $\lambda = -2 \ln(L/L_0)$, has approximately a χ^2 distribution.

Use S as estimator also for non-Gaussian variables.

Estimate by minimizing $\emph{S}.$ Minimum gives μ parameters.

 σ known / estimated from data / estimated from theory /=1 (non-weighted LS)

Example: count numbers

Poisson distributed count numbers n_i in histogram (i = 1, 2, ..., N), fit-function y_i (with parameters)

Pearson's
$$\chi^2$$
, $\chi_P^2 = \sum_i (n_i - y_i)^2/y_i$

Neyman's
$$\chi^2$$
, $\chi^2_N = \sum_i (n_i - y_i)^2 / n_i$

Poisson likelihood
$$\chi^2$$
, $\chi^2 = 2 \sum_i (y_i - n_i + n_i \ln(n_i/y_i))$

What about $n_i = 0$ — or negative y_i ?

Summary for one parameter

Procedure for χ^2 and $-2 \ln L$ is the same! Fit function depends on one parameter a, need to calculate χ^2 numerically.

Fit by finding minimum of χ^2 as function of a (e.g. MINUIT). Parameter value at minimum, a_0 , is the fit result.

For uncertainties ($n\sigma$ error bars): find points where

$$\chi^2(a_{\pm}) = \chi^2(a_0) + n^2,$$

the (asymmetric) error bars are then $a_{+} - a_{0}$ and $a_{0} - a_{-}$. (The points are often estimated by a local parabolic approximation...)

Will return to goodness-of-fit later.

Error bars for more parameters

If we only look at each parameter separately: forget about the rest (integrate them out).

What if we wish combined limits for two or more parameters? Easy way through: note that (by definition) for one parameter $P_{Gaussian}(\text{within 1 sigma}) = P_{\chi^2(\nu=1)}(\text{less than 1})$

This generalizes to more parameters, say k.

Decide on your "confidence level" (1 sigma = 68.27%, 2 sigma = 95.45%).

Look up this probability in tables of chi-square with k dof $\rightarrow \Delta$. Find the contours where $\chi^2 = \chi^2_{min} + \Delta$.

B7.2.7, C9.7, J9.1.2, F. James, Comput. Phys. Commun. 20 (80) 29

oscillation.

Examples from particle physics

CPT test in neutral kaon decay (P PDG figure p. 841)

The two axes in the figure are the difference in mass and the width of K^0 and \bar{K}^0 . One needs combined uncertainties.

 B_s mixing phase: CERN Courier, october 2011, vol 51, no 8, p. 8 = Story on LHCb measurement (improved since then) of B_s

Two B_s mass eigenstates, the figure shows $\Delta\Gamma$ their difference in width, ϕ_s the mixing phase.

CL 68%, 95%: $\Delta = 2.28, 5.99$

Many other examples in PDG...

Linear least squares

Special case — sufficiently frequent to include — when fit function is linear in parameters, i.e. can write it in matrix form y=Ca.

In general (including covariance): $S = (n^T - y^T)V^{-1}(n - y)$

The solution is:

$$a_0 = V(a)C^TV^{-1}n$$
 where $V(a) = (C^TV^{-1}C)^{-1}$

Notation: a vector of fit parameters, V(a) its covariance matrix, n vector of input data, V corresponding covariance matrix, C matrix in fit function (need not be a square matrix)

B6. **C**7.2

Interjection: fit to polynomials

Fit to a power series will typically give large covariances between fit parameters.

One solution is to change fit functions.

Example: use $x - \overline{x}$ and c rather than x and c.

A linear calibration
$$E = aCh + b$$
 gives an error $s(E)^2 = s(a)^2 Ch^2 + s(b)^2 + 2cov(a, b)Ch$.

Systematic prescription: R. Barlow, SLUO lectures 7 http://www-group.slac.stanford.edu/sluo/lectures/Stat_Lectures.html

If frequent situation: consider using e.g. Chebyshev polymonials.

Confidence levels

Formal theory on error bars \rightarrow confidence levels / interval estimation uses Neyman construction.

skip this for the moment

Important conceptual point: "95% confidence interval" means that 19 out of 20 times you construct the interval it will contain the true value — frequentists cannot talk about the probability of the true value being somewhere

Trivial point: no unique way to cover 95% (central/lower/upper interval...)

Illustration of symmetric 90% confidence interval in P figure 36.4

B7.2, **C**9, **J**9, **P**36.3

ML + LS

Reminder on Bayesian methods

Need prior distribution $\pi(\theta)$, use the same likelihood $L(x|\theta)$ as above. Deduce the posterior $p(\theta|x)$ distribution:

$$p(\theta|x) = \frac{L(x|\theta)\pi(\theta)}{\int L(x|\theta')\pi(\theta')d\theta'}$$

Can choose to interpret most likely θ as "fit value" and can choose a confidence interval from $p(\theta|x) \leftrightarrow$ same solution as frequentist, if prior distribution is uniform.

- (1) Do not have to interpret in this way, p has more information
- (2) Interpretation anyway different!
- (3) Prior may not be uniform...

