

CNRAD Update

- Results
- New installations
- RadMONs (2nd and 3rd Slots)
- Equipments to be tested in 2012

RF MosFETs

Motivation

- Having a deeper understanding of their behavior and limits
 - ✓ Used in the PS Booster over the last 20 years $\rightarrow 10^5 10^6$ Gy without major failures
- \circ In the PSB \rightarrow **De-rated conditions**:

✓ $V_{DS max}$ = 125 V → Vdrain swings between 0-80V (40 V_{DC})

- For the test:
 - Test setup is placed inside the target area
 - ✓ Dose expected from Slot3 to the end of the year ≈ 11 kGy (will depend on the new schedule)
 - Control/acquisition is located below station 2 with remote reset units
- $_{\odot}$ Test are performed in the worst case condition (80 V $_{\text{DC}}$)
- Evaluation:

J. MEKKI

- Failure rate to single events
- I_D vs V_G characteristic measurements vs dose

RF MosFETs

CERN

Motivation

- Having a deeper understanding of their behavior and limits
 - \checkmark Used in the PS Booster over the last 20 years $\rightarrow 10^5 10^6$ Gy without major failures
- In the PSB \rightarrow **De-rated conditions**: Ο

Cryo test

Motivation

- Validate the design of a new power supply for the LHC beam screen heaters
- \circ Required dose: Up to 1 kGy \rightarrow To validate up to the DS level
- Decided test location : TSG45 451
 - From Slot 3 to the end of the year ≈ 1 kGy (will depend on the new schedule)

• For the application:

- Power supply will be "off" during beam
- Will be "on" only when the beam is off to supply the beam screen heaters
- For the test:
 - Off-line measurements at the end of each slot \rightarrow 3 boards with MosFETs, 1 board will be removed at the end of each slot to measure I_{ds} vs V_{qs} curves.
 - On-line measurements
 - \rightarrow Operate constantly or in switching mode to check if they failed during irradiation. Specific application.

Cryo test

- Motivation
 - Validate the design of a new power supply for the LHC beam screen heaters
- Required dose: Up to 1 kGy \rightarrow To validate up to the DS level
- Decided test location : TSG45 451
 - From Slot 3 to the end of the year ≈ 1 kGy (will depend on the new schedule)
- For the application:
 - Power supply will be "off" during beam
 - Will be "on" only when the beam is off to supply the beam screen heaters

- TE/EPC Puls AC/DC Power Supply
 - \circ Motivation

J. MEKKI

- Improvement of the Puls AC/DC power Supply used in the tunnel
- It has been found that 2 different versions of the PSU exist
 - $\circ~$ One installed in the LHC (not rad. Tolerant).
 - The second one not installed (seems to be more rad. tolerant)
- Those PSU are built by the same manufacturer
 - → Slight difference on the design for the same model → COTS can show different
 behavior under radiation
- During slot 3, PSU failed at around 100 times higher HEH fluence compare to the model installed in LHC.
- During the last Slot, TE/EPC is testing **2 additional PSUs.**

New installations and results

- LED Warning System
- Motivation
- New prototype to be tested based on lessons learned from last year:
 - Safety lighting system powered by voltage transformer + Graetz bridge
 - Power LED technology
- The system is tested on 2 different locations:
 - With monitoring : Position 453
 - Without monitoring to test if the prototype can survive up to higher doses : Position 451
- Radiation levels since the beginning of the year:
 - Position 453: Dose: 337 Gy φ_{eq}: 3.4×10¹² neq/cm² HEH : 2.4×10¹² cm⁻²
 - Position 451: Dose: 760 Gy φ_{eq}: 7.5×10¹² neq/cm² HEH : 5.3×10¹² cm⁻²
- Up to know we are covering locations up to DS levels (close the quadrupole magnets (nom. operation):
 - \$\overline{\over
 - $\phi_{HEH:}$ 50 years
 - Dose: 4 years

New installations and results

LED Warning System

• New installation

- \circ Other lights
- Type 400 W metal iodide
- $\circ \quad \text{Installed in } \textbf{TCC2} \rightarrow \textbf{Several died}$
- Radiation level is measured in TCC2 (end TS #4)
- Which radiaton levels can they stand in **CNRAD**?
- $\circ~$ Correlation with measurement in TCC2

New installations and results

BPM components

• Motivation:

- 4 SFP bidirectional transceivers:
 - 2 × manufacturers (Huihong Ligent)
- 1 SFP Transceiver (2 fibers)
 - FFTX Technology
- Additional 12 SFP bidirectional transceivers have been installed

• QPS

J. MEKKI

CERN

• Motivation

- Up to June, only 1 µFIP failure with auto-reset has been detected and no failure on the PhotoMos relay has been observed so far.
- Radiation levels: Dose = 282 Gy, 2×10^{12} = HEH/cm² and ϕ_{eq} = 2.7×10¹² cm⁻²
- In terms of HEH fluence, we reached 20 years of LHC operation in the DS (close to quadrupole magnets)
- During slot 3 one failure occurred:
- Check and re-start of one DUT during TS → Installation of a remote reset box.

New installations

RadMON Version 6

• Motivation:

- Test of 2 prototypes of the **next version of the RadMON**.
- \circ Same used during the H4 test \rightarrow They already get around 50 Gy (No failure observed)
- \circ Tests have been performed at **PSI** up to ≈ 300 Gy → No failure observed
- \circ Target dose: 200/300 Gy → Installed in TSG45, position 451.

• Acquisition crate for load sensors (BE/ABP)

• Motivation

• They are installed in shielded area in P5 (2) and P2 (2). After LS1, more will be installed

 \circ IP1 (US15) , IP2 (UA23 & UA27), IP5 (>LS1: IL55), and IP8 (UA83 & UA87) \rightarrow Each IP : 2 crates

- \circ Target dose: **100 Gy** \rightarrow Position 453
- Acquisition system composed by several semiconductor devices:

CMOS, MOSFET driver, FPGA (Xilink CPDL), 12 bit DAC ...)

New installations

• IT beacon

• Motivation

- Will be installed everywhere in the LHC tunnel.
- o 15 beacons installed in TSG46 (data transmission monitored on-line)
 - $_{\odot}$ Expected radiation levels:
 - \circ Dose: : ≈ 30 Gy (Nom. Operation \rightarrow 15 years in the Arcs (dose))

◦ HEH fluence: \approx **1.5e11 cm**⁻² (Nom. Operation \rightarrow **1,5 years** in the DS* (HEH fluence))

- 5 beacons installed in TSG45 position 453 (off-line). Check if still working at the end of the slot
 - $_{\odot}$ Expected radiation levels:
 - \circ Dose: ≈ **120 Gy** (Nom. Operation \rightarrow **7** months in the DS* (dose))
 - \circ HEH fluence: ≈ 8e11 cm⁻² (Nom. Operation \rightarrow 8 years in the DS* (dose))

*In the DS, close to quadrupole magnets

RadMONs – 4th Slot

CERM

16/10/12 – RadWG meeting

(12/13)

Equipments tested in 2012

- BPM components
- LED warning system
- QPS
- Ethernet Switches
- Wifi access points
- Cryo power supply
- TE/EPC components
- Acquisition Crate load sensors (BE/ABP)
- IT beacons
- RadMON version V6

