Spice model of irradiation detectors (SPID)

Li Long and Ralf Röder

11th RD50 Workshop

CERN, November 12 -14, 2007

I. SPID, the Spice model of irradiation detectors

II. Test sensor design and manufacture

III. Model parameters for irradiation detectors after irradiation

IV. Prodid, a windows program for computer aided Spice model generation

V. Application examples

VI. Summary

Contents

I. SPID, a spice model of irradiation detectors

INNOWATT project SPID

Irradiation detectors

- Pad diodes
- Micro strip detectors
- Micro pixel detectors

Application

- High energy particle physics
- Medicine
- Material diagnose

Performance degradation

- Leakage current
- Effective acceptor
- Charge collection efficiency

Operation

- Baising
- Coupling
- Noise suppression

Introduction

I. SPID, a Spice model of irradiation detectors

Prodid:

- Calculate the sensor degradation as function of irradiation and annealing
- Simulate any irradiation and maintenance scenario
- Generate the Spice model library for sensor after given irradiation and annealing history

Structure

I. The application of Spice model to irradiation detectors

Detector designer

- Process parameters
- Breakdown voltage
- Inter strip capacitance
- Inter strip resistance
- Sensitivity (CCE, MIPS)

Readout designer

- Shape time
- Amplification
- Noise optimization

System designer

- Detector lifetime
- Resolution
- Event identification

Applications

All parameters are function of parameters of last slide

Model parameters are generated by the windows program PRODID

An example in model library

II: Model parameters

Parameters of sensor in initial condition:

- a spectrum of sensor designed and manufactured in frame of SPID
- published data
- Simulation

Id, C, Cinter, Ccoup, CCE ~ geometry, doping and defect

Parameters of sensor degradation:

- Output of RD50
- Published data
- Looking for possible irradiation test for SPID sensors.

Id, Neff, CCE, Q, Noise ~ irradiation dose, annealing temperature and time

II. Before irradiation, CBM

CBM detector designed by GSI Darmstadt, Layout designed by CiS Erfurt

Material applied: n-Si <111> 4~6kΩcm 285µm Double side polished

Double layer metallization is developed and introduced to the production line.

The other process steps are standard for irradiation detector.

Yield: full detector 20 good from 24 wafers

CBM detector

L. Long, R. Röder

II. The process of CBM detector

1. CBM_01 Detector front side

2. CBM_01 Detector back side

Photos

II. Performance of CBM

The IV curves of detectors form Wafer #7 (The dark current of bias ring with guard rings floating)

Active area: $S_D=27.5$ cm², $S_{B1}=4.2$ cm², $S_{B2\sim B5}=1.7$ cm² Dark current of D at operation bias ~10nA/cm², at 300V < 1µA.

II. SPID

In frame of **INNOWATT** project "SPID ", we are planning the second iteration of manufacture to test more possibilities.

Status: simulation & layout finished, process started.

Material: n-silicon

Bias method: Punch through, Poly-silicon (Bias resistance $1M\Omega \rightarrow 4.3k \Omega / \Box$)

Isolation technology: pspray, pstop, field plate

Breakdown voltage: Charge, Micro discharge

Field distribution of junction and ohmic side (500V)

II. SPID Layout

Layout of SPID designed by CiS Erfurt

II. SPID, sensor variants

Group	Quantity	biasing	isolation	pitch	Guard
Twpsp15	1	Poly	Spray	80,48	Guard
Twpsp12	1	punch	Spray	80	Guard
Twpsp13	1	Poly+punch	Pstop	80	Guard
Twpsp14	1	punch	Spray	80	Guard
Twpsp2	1	Poly	Spray	50	Guard
Twpsp22	1	punch	Spray	50	Guard
Twpsp23	1	poly+punch	Pstop	50	Guard
Twpsp24	1	poly+punch	Plate	50	Guard
Twpsp25	1	punch	Spray	50	2xguard
Twpsp5	1	Poly+punch	Spray	80	No
Twpsp6	1	poly+punch	Spray	50	No
Twpsp7	1	Punch	Spray	w/p	Guard
Twpspg5	2	poly+punch	Spray	80 w/p	Guard
Twpspg6	1	poly+punch	Spray	50 w/p	Guard
Twpx1	1	Punch	Pixel	80*120	No
Twpx3	1	Punch	Pixel	80*120	Guard
Twsp5	2	Punch	Spray	80	Guard
Twsp6	1	Punch	Spray	50	Guard
mastercis	5	Punch	Pixel		Guard

Cooperation partners:

- GSI Darmstadt
- CPPM
- Uni. Bonn

Irradiation test:

- Different biasing
- Different isolation
- No budget
- Sample

Chip list of SPID

A detector with pstop and poly-silicon biasing

Thank the support from:Uni. Hamburg

• MPI. Munich

Layout designed by CiS Erfurt

Results from RD50, e.g. Hamburg model and update

Use effective fluence of 1MeV neutron

Exceptions can be handled, proton, neutron, gamma

If necessary microscopic model of defect formation and evolution can be involved.

Parameters

L. Long, R. Röder

Variation of effective doping

 $\begin{aligned} \Delta N_{eff} \left(\Phi_{eq}, t(T) \right) &= N_{C} \left(\Phi_{eq} \right) + N_{a} \left(\Phi_{eq}, t(T) \right) + N_{Y} \left(\Phi_{eq}, t(T) \right) \\ N_{C} \left(\Phi_{eq} \right) &= N_{C0} \left(1 - \exp(-c\Phi_{eq}) \right) + g_{C} \Phi_{eq} \\ N_{C0} &= (0.60 - 0.90) N_{eff0} \\ c &= (1 - 3) \times 10^{-13} \, cm^{2} \\ g_{C} &= (1.49 \pm 0.03) \times 10^{-2} \, cm^{-1} \\ N_{Y} \left(\Phi_{eq}, t(T) \right) &= N_{Y\infty} \left(1 - \exp(-t/\tau) \right) \approx N_{Y\infty} \left(1 - \frac{1}{1 + t/\tau} \right) \\ N_{Y\infty} &= g_{Y} \Phi_{eq} \\ g_{Y} &= (5.16 \pm 0.09) \times 10^{-2} \, cm^{-1} \\ \tau (60^{\circ}C) &= 100 \, \text{min}; \tau (20^{\circ}C) = 350 \, days \\ N_{a} \left(\Phi_{eq}, t(T) \right) &= N_{A,0} \exp(-t/\tau) \\ N_{A,0} &= g_{a} \Phi_{eq} \\ g_{a} &= (1.92 \pm 0.05) \times 10^{-2} \, cm^{-1} \\ \tau (60^{\circ}C) &= 20 \, \text{min}; \tau (20^{\circ}C) = 2 \, days \end{aligned}$

N-Si FZ, DOFZ

Variation of dark current

$$\Delta I / V = \alpha \Phi_{eq}$$

$$\alpha(t) = \alpha_0 \exp(-t / \tau_1) + \alpha_1 + \alpha_2 \ln(t / t_0)$$

$$\alpha_0 = (1.23 \pm 0.06) \times 10^{-17} A / cm.$$

$$1 / \tau_1 = k_{ol} \exp(-E_1 / kT)$$

$$k_{0l} = 1.2^{+5.3}_{-1.0} \times 10^{13} S^{-1}$$

$$k_{0l} = 1.2^{+5.3}_{-1.0} \times 10^{-18} S^{-1}$$

$$E_1 = (1.11 \pm 0.05) eV$$

$$\alpha_2 = (3.07 \pm 0.18) \times 10^{-18} A / cm$$

$$\alpha_1(T_a) = \alpha_{10} + \alpha_{11} \times 1 / T_a$$

$$\alpha_{10} = -(8.9 \pm 1.3) \times 10^{-17} A / cm$$

$$\alpha_{11} = (4.6 \pm 0.4) \times 10^{-14} AK / cm$$

Further parameters or formulea for P-Si, Epilayer, MCZ, CZ Under the same empirical formalism or new

M. Moll, TN/01-04.; G. Lindstroem, M. Moll, E. Fretwurst, NIMA 426 1-15

IV. Prodid, a windows program for computer aided model generation

VC++ 6.0 Update to VC 2005 N-FZ-DOFZ-Silicon implemented

4 input forms for sensor description

- Detector (.det: material, process and geometry)
- Damage (.dam: leakage, Neff, CCE, detection)
- Irradiation (dose, temp, time)
- Parasitic (.par: area, periphery, parasitic)

2 actions:

- Scenario: leakage current, effective doping as a function of time
- Spice: Spice model generation for sensor at given time

IV. Prodid

Detector1.det	<u></u>	
Material	Process	
Material 🔂	🗖 Damage1.dam	
Dielectric constant 10	D 🛩 🖬 X 🖻 🖻 🗇 ?	
Kce Parasitic1.p		
Kve	Leakage	
Band g Area	Koi 000000000 Effective Acceptor	Qamman 1e-010
Electron JS1		
Hole m Tref1		gailinap re oro
siden	Alpha0 1e-015 Ea '	trapn0 1e-012
vdrift JS2	Alpha10 -1e-015 Gy 1	trapp0 1e-012
Genera Mijd	K0y 1e+015	
Electror	Ey 1	U generation
Hole life	Alpha2 1e-016 Donor	mip 100000
Orienta Tm1	Leakage t0 10 nc0 1e+017	emin 1
Doping	cc 1e-017	
Doping		
0 conc		

Input forms

IV. Prodid

- Fast, due to the separation of fast and slow process
- Charge sharing, charge division can be simulated
- CCE charge trapping induced degradation can be implemented
- Assist front end electronic development
- Extend to complicated system
- If Irradiation degradation can not be uniquely described by the empirical formulae, database can be planned

Features

Irradiation fluence and temperature scenario Degradation of leakage current and effective doping

Application examples

L. Long, R. Röder

One channel: 1mm*1mm, 300µ thick, after 2e14/cm2 1MeV neutron irradiation Detecting 1 particle of 880MeV Front end: CSA, Shaper, SF, Buffer. E. Nygard,..., NIMA 301, 1991, p506.

Signal formation and processing

VI. Summary

- SPICE model for irradiation detectors
- PRODID n-silicon FZ DOFZ material
- Irradiation induced degradation
- Test sensors manufacture: 50~80µm pitch N-Si, P-Si
 - Different bias, isolation technology, double metallization
- Sensors test: external

Readout, Irradiation test.

- Tested the wave form of readout
- Fast, due to separation
- Multiple channels application with charge sharing

