Physics at the LHC, LIP, June 3th, 2013

Particle polarizations in LHC physics
 Pietro Faccioli

- Motivations
- Basic principles: angular momentum conservation, helicity conservation, parity properties
- Example: dilepton decay distributions of quarkonium and vector bosons
- Reference frames for polarization measurements
- Frame-independent polarization
- Understanding the production mechanisms of vector particles: The Lam-Tung relation and its generalizations
- Polarization as a discriminant of physics signals: new resonances vs continuum background in the $Z Z$ channel

Why do we study particle polarizations?

Measure polarization of a particle $=$ measure the angular momentum state in which the particle is produced, by studying the angular distribution of its decay

Very detailed piece of information! Allows us to

- test of perturbative QCD [\mathbf{Z} and \boldsymbol{W} decay distributions]
- constrain universal quantities [sin θ_{w} and/or proton PDFs from $Z / W / \gamma^{*}$ decays]
- accelerate discovery of new particles or characterize them [Higgs, Z^{\prime}, anomalous $Z+\gamma$, graviton, ...]
- understand the formation of hadrons (non-perturbative QCD)

Example: how are hadron properties generated? A look at quarkonium (J / Ψ and Υ) formation
Presently we do not yet understand how/when the observed Q-Qbar bound states (produced at the LHC in gluon-gluon fusion) acquire their quantum numbers. Which of the following production processes are more important?

Example: how are hadron properties generated? A look at quarkonium (J / Ψ and Υ) formation
Presently we do not yet understand how/when the observed \mathbf{Q}-Qbar bound states (produced at the LHC in gluon-gluon fusion) acquire their quantum numbers. Which of the following production processes are more important?

- Colour-singlet processes: quarkonia produced directly as observable colour-neutral Q-Qbar pairs
purely perturbative

Example: how are hadron properties generated? A look at quarkonium (J / Ψ and Υ) formation
Presently we do not yet understand how/when the observed \mathbf{Q}-Qbar bound states (produced at the LHC in gluon-gluon fusion) acquire their quantum numbers. Which of the following production processes are more important?

- Colour-singlet processes: quarkonia produced directly as observable colour-neutral Q-Qbar pairs
purely perturbative

- Colour-octet processes: quarkonia are produced through coloured Q-Qbar pairs of any possible quantum numbers

Example: how are hadron properties generated? A look at quarkonium (J / Ψ and Υ) formation
Presently we do not yet understand how/when the observed \mathbf{Q}-Qbar bound states (produced at the LHC in gluon-gluon fusion) acquire their quantum numbers. Which of the following production processes are more important?

- Colour-singlet processes: quarkonia produced directly as observable colour-neutral Q-Qbar pairs
purely perturbative
- Colour-octet processes: quarkonia are produced through coloured Q-Qbar pairs of any possible quantum numbers
perturbative
®
non-perturbative

Polarization of vector particles

$J=1 \rightarrow$ three J_{z} eigenstates $|1,+1\rangle,|1,0\rangle,|1,-1\rangle$ wrt a certain z
Measure polarization = measure (average) angular momentum composition Method: study the angular distribution of the particle decay in its rest frame The decay into a fermion-antifermion pair is an especially clean case to be studied

Polarization of vector particles

$J=1 \rightarrow$ three J_{z} eigenstates $|1,+1\rangle,|1,0\rangle,|1,-1\rangle$ wrt a certain z
Measure polarization = measure (average) angular momentum composition
Method: study the angular distribution of the particle decay in its rest frame
The decay into a fermion-antifermion pair is an especially clean case to be studied
The shape of the observable angular distribution is determined by a few basic principles:

1) "helicity conservation"

Polarization of vector particles

$J=1 \rightarrow$ three J_{z} eigenstates $|1,+1\rangle,|1,0\rangle,|1,-1\rangle$ wrt a certain z
Measure polarization = measure (average) angular momentum composition
Method: study the angular distribution of the particle decay in its rest frame
The decay into a fermion-antifermion pair is an especially clean case to be studied
The shape of the observable angular distribution is determined by a few basic principles:
2) rotational covariance of angular momentum

Polarization of vector particles

$J=1 \rightarrow$ three J_{z} eigenstates $|1,+1\rangle,|1,0\rangle,|1,-1\rangle$ wrt a certain z
Measure polarization = measure (average) angular momentum composition
Method: study the angular distribution of the particle decay in its rest frame
The decay into a fermion-antifermion pair is an especially clean case to be studied
The shape of the observable angular distribution is determined by a few basic principles:
2) rotational covariance of angular momentum

1) "helicity conservation"

2) parity properties

1: helicity conservation

EW and strong forces preserve the chirality (L/R) of fermions. In the relativistic (massless) limit, chirality = helicity = spin-momentum alignment \rightarrow the fermion spin never flips in the coupling to gauge bosons:

example: dilepton decay of J / Ψ

example: dilepton decay of J / Ψ

example: dilepton decay of J / Ψ

J / Ψ angular momentum component along the polarization axis z :

$$
M_{\mathrm{J} / \Psi}=-1,0,+1 \quad \text { (determined by production mechanism) }
$$

example: dilepton decay of J / Ψ

J / Ψ angular momentum component along the polarization axis z :

$$
M_{\mathrm{J} / \Psi}=-1,0,+1 \quad \text { (determined by production mechanism) }
$$

example: dilepton decay of J / Ψ

J / ψ angular momentum component along the polarization axis z :

$$
M_{\mathrm{J} / \psi}=-1,0,+1 \quad \text { (determined by production mechanism) }
$$

example: dilepton decay of J / Ψ

J / ψ angular momentum component along the polarization axis z :

$$
M_{\mathrm{J} / \Psi}=-1,0,+1 \quad \text { (determined by production mechanism) }
$$

The two leptons can only have total angular momentum component

$$
\begin{array}{|l|}
\hline M_{e^{+} e^{-}}^{\prime}=+1 \text { or }-1
\end{array} \text { along their common direction } z^{\prime}
$$

2: rotation of angular momentum eigenstates

2: rotation of angular momentum eigenstates

example: $M=0$

$$
J / \Psi\left(M_{J / \psi}=0\right) \rightarrow \ell^{+} \ell^{-}\left(M_{\ell+\ell-}^{\prime}=+1\right)
$$

example: $M=0$

$J / \psi\left(M_{J / \psi}=0\right) \rightarrow \ell^{+} \ell^{-}\left(M_{\ell+\ell-}^{\prime}=+1\right)$

$|1,+1\rangle=D_{-1,+1}^{1}(\vartheta, \varphi)|1,-1\rangle+D_{0,+1}^{1}(\vartheta, \varphi)|1,0\rangle+D_{+1,+1}^{1}(\vartheta, \varphi)|1,+1\rangle$

example: $M=0$

$J / \Psi\left(M_{J / \psi}=0\right) \rightarrow \ell^{+} \ell^{-}\left(M_{\ell+\ell-}^{\prime}=+1\right)$
$|1,+1\rangle=D_{-1,+1}^{1}(\vartheta, \varphi)|\mathbf{1},-1\rangle+D_{0,+1}^{1}(\vartheta, \varphi)|\mathbf{1}, \mathbf{0}\rangle+D_{+1,+1}^{1}(\vartheta, \varphi)|\mathbf{1},+1\rangle$
\rightarrow the J_{Z}, eigenstate $|\mathbf{1}, \mathbf{+ 1}\rangle$ "contains" the $J_{\mathbf{Z}}$ eigenstate $|\mathbf{1 , 0}\rangle$ with component amplitude $D_{0,+1}^{1}(\vartheta, \varphi)$

example: $M=0$

$$
J / \Psi\left(M_{J / \psi}=0\right) \rightarrow \ell^{+} \ell^{-}\left(M_{\ell+\ell-}^{\prime}=+1\right)
$$

$$
|1,+1\rangle=D_{-1,+1}^{1}(\vartheta, \varphi)|1,-1\rangle+D_{0,+1}^{1}(\vartheta, \varphi)|\mathbf{1}, 0\rangle+D_{+1,+1}^{1}(\vartheta, \varphi)|1,+1\rangle
$$

\rightarrow the J_{Z}, eigenstate $|\mathbf{1}, \mathbf{+ 1}\rangle$ "contains" the $J_{\mathbf{Z}}$ eigenstate $|\mathbf{1 , 0}\rangle$ with component amplitude $D_{0,+1}^{1}(\vartheta, \varphi)$
\rightarrow the decay distribution is

$$
\begin{aligned}
& |\langle 1,+1| \mathcal{O}| 1,0\rangle\left.\right|^{2} \propto\left|D_{0,+1}^{1^{*}}(\vartheta, \varphi)\right|^{2}=\frac{1}{2}\left(1-\cos ^{2} \vartheta\right) \\
& \quad \ell^{+} \ell^{-} \leftarrow J / \Psi
\end{aligned}
$$

example: $M=0$

$$
J / \Psi\left(M_{J / \psi}=0\right) \rightarrow \ell^{+} \ell^{-}\left(M_{\ell+\ell-}^{\prime}=+1\right)
$$

$$
|1,+1\rangle=D_{-1,+1}^{1}(\vartheta, \varphi)|\mathbf{1},-1\rangle+D_{0,+1}^{1}(\vartheta, \varphi)|\mathbf{1}, \mathbf{0}\rangle+D_{+1,+1}^{1}(\vartheta, \varphi)|\mathbf{1},+1\rangle
$$

\rightarrow the J_{Z}, eigenstate $|\mathbf{1}, \mathbf{+ 1}\rangle$ "contains" the J_{Z} eigenstate $|\mathbf{1 , 0}\rangle$ with component amplitude $D_{0,+1}^{1}(\vartheta, \varphi)$
\rightarrow the decay distribution is

$$
\begin{aligned}
& |\langle 1,+1| \mathcal{O}| 1,0\rangle\left.\right|^{2} \propto\left|D_{0,+1}^{1^{*}}(\vartheta, \varphi)\right|^{2}=\frac{1}{2}\left(1-\cos ^{2} \vartheta\right) \\
& \quad \ell^{+} \ell^{-} \leftarrow J / \Psi
\end{aligned}
$$

$$
\frac{\mathrm{d} N}{\mathrm{~d} \Omega} \propto\left|D_{-1,+1}^{1^{*}}(\vartheta, \varphi)\right|^{2} \propto 1+\cos ^{2} \vartheta-2 \cos \vartheta
$$

3: parity

Are they equally probable?

Are they equally probable?

$$
\mathcal{P}(-1)=\mathcal{P}(+1)
$$

Are they equally probable?

$\mathcal{P}(-1)>\mathcal{P}(+1)$

$\mathcal{P}(-1)=\mathcal{P}(+1)$

Are they equally probable?

$\mathcal{P}(-1)>\mathcal{P}(+1)$

$\mathcal{P}(-1)=\mathcal{P}(+1)$

$\mathcal{P}(-1)<\mathcal{P}(+1)$

distributions are mirror reflections of one another

Are they equally probable?

Decay distribution of $|1,0\rangle$ state is always parity-symmetric:

"Transverse" and "longitudinal"

"Transverse" and "longitudinal"

"Transverse" and "longitudinal"

"Transverse" and "longitudinal"

Why "photon-like" polarizations are common

We can apply helicity conservation at the production vertex to predict that all vector states produced in fermion-antifermion annihilations ($q-\bar{q}$ or $\boldsymbol{e}^{+} \boldsymbol{e}^{-}$) at Born level have transverse polarization

Why "photon-like" polarizations are common

We can apply helicity conservation at the production vertex to predict that all vector states produced in fermion-antifermion annihilations ($q-\bar{q}$ or $\boldsymbol{e}^{+} \boldsymbol{e}^{-}$) at Born level have transverse polarization

Why "photon-like" polarizations are common

We can apply helicity conservation at the production vertex to predict that all vector states produced in fermion-antifermion annihilations ($q-\bar{q}$ or $\boldsymbol{e}^{+} \boldsymbol{e}^{-}$) at Born level have transverse polarization

The "natural" polarization axis in this case is the relative direction of the colliding fermions (Collins-Soper axis)

Why "photon-like" polarizations are common

We can apply helicity conservation at the production vertex to predict that all vector states produced in fermion-antifermion annihilations ($\boldsymbol{q}-\bar{q}$ or $\boldsymbol{e}^{+} \boldsymbol{e}^{-}$) at Born level have transverse polarization

The "natural" polarization axis in this case is
 the relative direction of the colliding fermions (Collins-Soper axis)

Drell-Yan is a paradigmatic case
But not the only one

The most general distribution

$$
\begin{aligned}
\frac{d N}{d \Omega} \propto 1+\lambda_{\theta} \cos ^{2} \theta & +\lambda_{\varphi} \sin ^{2} \theta \cos 2 \varphi+\lambda_{\theta \varphi} \sin 2 \theta \cos \varphi \\
& +2 A_{\theta} \cos \theta+2 A_{\varphi} \sin \theta \cos \varphi
\end{aligned}
$$

The most general distribution

$$
\frac{d N}{d \Omega} \propto 1+\lambda_{\theta} \cos ^{2} \theta+\lambda_{\varphi} \sin ^{2} \theta \cos 2 \varphi+\lambda_{\theta \varphi} \sin 2 \theta \cos \varphi
$$

$$
\frac{+2 A_{\theta} \cos \theta+2 A_{\varphi} \sin \theta \cos \varphi}{\prod_{\text {parity violating }}}
$$

The most general distribution

$$
\frac{d N}{d \Omega} \propto 1+\lambda_{\theta} \cos ^{2} \theta+\lambda_{\varphi} \sin ^{2} \theta \cos 2 \varphi+\lambda_{\theta \varphi} \sin 2 \theta \cos \varphi
$$

The most general distribution

$$
\frac{d N}{d \Omega} \propto 1+\lambda_{\theta} \cos ^{2} \theta+\lambda_{\varphi} \sin ^{2} \theta \cos 2 \varphi+\lambda_{\theta \varphi} \sin 2 \theta \cos \varphi
$$

Polarization frames

production plane

Polarization frames

Helicity axis ($H X$): quarkonium momentum direction
production plane

Polarization frames

Helicity axis (HX): quarkonium momentum direction
Gottiried-Jackson axis (GJ): direction of one or the other beam
production plane

Polarization frames

Helicity axis (HX): quarkonium momentum direction
Gottiried-Jackson axis (GJ): direction of one or the other beam Collins-Soper axis (CS): average of the two beam directions

Polarization frames

Helicity axis (HX): quarkonium momentum direction
Gottiried-Jackson axis (GJ): direction of one or the other beam Collins-Soper axis (CS): average of the two beam directions Perpendicular helicity axis (PX): perpendicular to CS
production plane

The observed polarization depends on the frame

The observed polarization depends on the frame

For $\left|p_{\mathrm{L}}\right| \ll p_{\mathrm{T}}$, the CS and HX frames differ by a rotation of 900

The observed polarization depends on the frame

For $\left|p_{\mathrm{L}}\right| \ll p_{\mathrm{T}}$, the CS and HX frames differ by a rotation of 900

The observed polarization depends on the frame

For $\left|p_{\mathrm{L}}\right| \ll p_{\mathrm{T}}$, the CS and HX frames differ by a rotation of 900

The observed polarization depends on the frame

For $\left|p_{\mathrm{L}}\right| \ll p_{\mathrm{T}}$, the CS and HX frames differ by a rotation of 900

The observed polarization depends on the frame

For $\left|p_{\mathrm{L}}\right| \ll p_{\mathrm{T}}$, the CS and HX frames differ by a rotation of 900

The observed polarization depends on the frame

For $\left|p_{\mathrm{L}}\right| \ll p_{\mathrm{T}}$, the CS and HX frames differ by a rotation of 900

$$
\begin{aligned}
& \frac{d N}{d \Omega} \propto 1-\frac{1}{3} \cos ^{2} \theta+\frac{1}{3} \sin ^{2} \theta \cos 2 \varphi \\
& \quad \text { moderately "longitudinal" }
\end{aligned}
$$

$$
|\psi\rangle=\frac{1}{2}|+1\rangle+\frac{1}{2}|-1\rangle \mp \frac{1}{\sqrt{2}}|0\rangle
$$

(mixed state)

All reference frames are equal... but some are more equal than others

What do different detectors measure with arbitrary frame choices?

Gedankenscenario:

- dileptons are fully transversely polarized in the CS frame
- the decay distribution is measured at the $\Upsilon(1 S)$ mass by 6 detectors with different dilepton acceptances:

CDF	$\|\mathrm{y}\|<0.6$
D0	$\|\mathrm{y}\|<1.8$
ATLAS \& CMS	$\|\mathrm{y}\|<2.5$
ALICE e e^{-}	$\|\mathrm{y}\|<0.9$
ALICE $\mu^{+} \mu^{-}$	$2.5<y<4$
LHCb	$2<y<4.5$

The lucky frame choice

(CS in this case)

ALICE $\mu^{+} \mu^{-} /$LHCb
ATLAS / CMS
DO
ALICE $\mathrm{e}^{+} \mathrm{e}^{-}$
CDF

Less lucky choice

(HX in this case)

ALICE $\mu^{+} \mu^{-} /$LHCb ATLAS / CMS
DO
ALICE $\mathrm{e}^{+} \mathrm{e}^{-}$
CDF

Less lucky choice

(HX in this case)

ALICE $\mu^{+} \mu^{-} /$LHCb
ATLAS / CMS
DO
ALICE $\mathrm{e}^{+} \mathrm{e}^{-}$
CDF
artificial (experiment-dependent!)
kinematic behaviour
\rightarrow measure in more than one frame!

Frames for Drell-Yan, Z and W polarizations

- polarization is always fully transverse...

$$
V=\gamma^{*}, Z, W
$$

Frames for Drell-Yan, Z and W polarizations

- polarization is always fully transverse...

$$
V=\gamma^{*}, Z, W
$$

Due to helicity conservation at the $q-\bar{q}-V\left(q-q^{*}-V\right)$ vertex, $J_{z}= \pm 1$ along the $q-\bar{q}\left(q-q^{*}\right)$ scattering direction z

- ...but with respect to a subprocess-dependent quantization axis

$z=$ relative dir. of incoming q and $q b a r$ (~ Collins-Soper frame)
important only up to $p_{\mathrm{T}}=\mathcal{O}\left(\right.$ parton $\left.k_{\mathrm{T}}\right)$

Frames for Drell-Yan, Z and W polarizations

- polarization is always fully transverse...

Due to helicity conservation at the $q-\bar{q}-V\left(q-q^{*}-V\right)$ vertex, $J_{z}= \pm 1$ along the $q-\bar{q}\left(q-q^{*}\right)$ scattering direction z

- ...but with respect to a subprocess-dependent quantization axis

$z=$ relative dir. of incoming q and qbar (~ Collins-Soper frame)
important only up to $p_{\mathrm{T}}=\mathcal{O}\left(\right.$ parton $\left.k_{\mathrm{T}}\right)$

$z=$ dir. of one incoming quark (~ Gottfried-Jackson frame)

Frames for Drell-Yan, Z and W polarizations

- polarization is always fully transverse...

Due to helicity conservation at the $q-\bar{q}-V\left(q-q^{*}-V\right)$ vertex, $J_{z}= \pm 1$ along the $q-\bar{q}\left(q-q^{*}\right)$ scattering direction z

- ...but with respect to a subprocess-dependent quantization axis

$z=$ relative dir. of incoming q and qbar (~ Collins-Soper frame)
important only up to $p_{\mathrm{T}}=\mathcal{O}\left(\right.$ parton $\left.k_{\mathrm{T}}\right)$

$z=$ dir. of one incoming quark
(~ Gottfried-Jackson frame)
corrections

$z=$ dir. of outgoing q (= parton-cms-helicity \approx lab-cms-helicity)

"Optimal" frames for Drell-Yan, Z and W polarizations

Different subprocesses have different "natural" quantization axes

For s-channel processes the natural axis is the direction of the outgoing quark (= direction of dilepton momentum)
\rightarrow optimal frame (= maximizing polar anisotropy): HX
(neglecting parton-parton-cms vs proton-proton-cms difference!)

"Optimal" frames for Drell-Yan, Z and W polarizations

Different subprocesses have different "natural" quantization axes

For \boldsymbol{t} - and \boldsymbol{u}-channel processes the natural axis is the direction of either one or the other incoming parton (~ "Gottfried-Jackson" axes)
\rightarrow optimal frame: geometrical average of GJ1 and GJ2 axes $=\mathrm{CS}\left(p_{\mathrm{T}}<M\right)$ and $\mathrm{PX}\left(p_{\mathrm{T}}>M\right)$

example: Z

$$
y=+0.5
$$

A complementary approach: frame-independent polarization

The shape of the distribution is (obviously) frame-invariant (= invariant by rotation)

A complementary approach: frame-independent polarization

The shape of the distribution is (obviously) frame-invariant (= invariant by rotation)
\rightarrow it can be characterized by frame-independent parameters:

$$
\tilde{\lambda}=\frac{\lambda_{\vartheta}+3 \lambda_{\varphi}}{1-\lambda_{\varphi}} \quad \lambda^{*}=\frac{\lambda_{\vartheta}-3 \Lambda^{*}}{1+\Lambda^{*}} \Lambda^{*}=\frac{1}{4}\left\{\lambda_{\vartheta}-\lambda_{\varphi} \pm \sqrt{\left(\lambda_{g}-\lambda_{\varphi}\right)^{2}+4 \lambda_{g_{\varphi}}}\right\} \quad \tilde{\mathcal{A}}=\frac{\sqrt{A_{\vartheta}^{2}+A_{\varphi}^{2}}}{3+\lambda_{\vartheta}}
$$

A complementary approach: frame-independent polarization

The shape of the distribution is (obviously) frame-invariant (= invariant by rotation)
\rightarrow it can be characterized by frame-independent parameters:

$$
\tilde{\lambda}=\frac{\lambda_{\vartheta}+3 \lambda_{\varphi}}{1-\lambda_{\varphi}} \quad \lambda^{*}=\frac{\lambda_{\vartheta}-3 \Lambda^{*}}{1+\Lambda^{*}} \quad \Lambda^{*}=\frac{1}{4}\left\{\lambda_{\vartheta}-\lambda_{\varphi} \pm \sqrt{\left(\lambda_{g}-\lambda_{\varphi}\right)^{2}+4 \lambda_{g_{\varphi}}}\right\} \quad \tilde{\mathcal{A}}=\frac{\sqrt{A_{g}^{2}+A_{\varphi}^{2}}}{3+\lambda_{\vartheta}}
$$

$$
\begin{aligned}
& \\
& \lambda_{\vartheta}=+1 \\
& \lambda_{\varphi}=0
\end{aligned}
$$

A complementary approach: frame-independent polarization

The shape of the distribution is (obviously) frame-invariant (= invariant by rotation)
\rightarrow it can be characterized by frame-independent parameters:

$$
\tilde{\lambda}=\frac{\lambda_{\vartheta}+3 \lambda_{\varphi}}{1-\lambda_{\varphi}} \quad \lambda^{*}=\frac{\lambda_{\vartheta}-3 \Lambda^{*}}{1+\Lambda^{*}} \Lambda^{*}=\frac{1}{4}\left\{\lambda_{\vartheta}-\lambda_{\varphi} \pm \sqrt{\left(\lambda_{\vartheta}-\lambda_{\varphi}\right)^{2}+4 \lambda_{9 \varphi}^{2}}\right\} \quad \tilde{\mathcal{A}}=\frac{\sqrt{A_{\vartheta}^{2}+A_{\varphi}^{2}}}{3+\lambda_{\vartheta}}
$$

A complementary approach: frame-independent polarization

The shape of the distribution is (obviously) frame-invariant (= invariant by rotation)
\rightarrow it can be characterized by frame-independent parameters:

$$
\tilde{\lambda}=\frac{\lambda_{\vartheta}+3 \lambda_{\varphi}}{1-\lambda_{\varphi}} \quad \lambda^{*}=\frac{\lambda_{\vartheta}-3 \Lambda^{*}}{1+\Lambda^{*}} \Lambda^{*}=\frac{1}{4}\left\{\lambda_{g}-\lambda_{\varphi} \pm \sqrt{\left(\lambda_{g}-\lambda_{\varphi}\right)^{2}+4 \lambda_{9 \varphi}^{2}}\right\} \quad \tilde{\mathcal{A}}=\frac{\sqrt{A_{\vartheta}^{2}+A_{\varphi}^{2}}}{3+\lambda_{\vartheta}}
$$

A complementary approach: frame-independent polarization

The shape of the distribution is (obviously) frame-invariant (= invariant by rotation)
\rightarrow it can be characterized by frame-independent parameters:

$$
\tilde{\lambda}=\frac{\lambda_{\vartheta}+3 \lambda_{\varphi}}{1-\lambda_{\varphi}} \quad \lambda^{*}=\frac{\lambda_{\vartheta}-3 \Lambda^{*}}{1+\Lambda^{*}} \Lambda^{*}=\frac{1}{4}\left\{\lambda_{g}-\lambda_{\varphi} \pm \sqrt{\left(\lambda_{g}-\lambda_{\varphi}\right)^{2}+4 \lambda_{\Omega \varphi}^{2}}\right\} \quad \tilde{\mathcal{A}}=\frac{\sqrt{A_{\vartheta}^{2}+A_{\varphi}^{2}}}{3+\lambda_{\vartheta}}
$$

$$
\tilde{\lambda}=-1
$$

Reduces acceptance dependence

Gedankenscenario: vector state produced in this subprocess admixture: assumed indep.

- 60\% processes with natural transverse polarization in the CS frame of kinematics, for simplicity

Reduces acceptance dependence

Gedankenscenario: vector state produced in this subprocess admixture: assumed indep.

- 60\% processes with natural transverse polarization in the CS frame of kinematics,

```
M=10 GeV/c}\mp@subsup{c}{}{2
CDF }\quad|y|<0.
DO |y|<1.8
ATLAS/CMS |y|<2.5
ALICE e+e}\mp@subsup{}{}{-}\quad|y|<0.
ALICE }\mp@subsup{\mu}{}{+}\mp@subsup{\mu}{}{-}\quad2.5<y<
LHCb 2<y<4.5
```


Reduces acceptance dependence

Gedankenscenario: vector state produced in this subprocess admixture: assumed indep.

- 60\% processes with natural transverse polarization in the CS frame of kinematics,

Reduces acceptance dependence

Gedankenscenario: vector state produced in this subprocess admixture: assumed indep.

- 60\% processes with natural transverse polarization in the CS frame
- 40\% processes with natural transverse polarization in the HX frame
of kinematics, for simplicity

Reduces acceptance dependence

Gedankenscenario: vector state produced in this subprocess admixture: assumed indep.

- 60\% processes with natural transverse polarization in the CS frame
- 40\% processes with natural transverse polarization in the HX frame
of kinematics, for simplicity

Physical meaning: Drell-Yan, Z and W polarizations

- polarization is always fully transverse...

$$
V=\gamma^{*}, Z, W
$$

$\longmapsto \stackrel{Z}{\longleftrightarrow} \quad$| Due to helicity conservation at the $q-\bar{q}-V\left(q-q^{*}-V\right)$ vertex, |
| :--- |
| $\mathbf{J}_{z}= \pm 1$ along the $q-\bar{q}\left(q-q^{*}\right)$ scattering direction \boldsymbol{z} |

- ...but with respect to a subprocess-dependent quantization axis

Physical meaning: Drell-Yan, Z and W polarizations

- polarization is always fully transverse...

$$
V=\gamma^{*}, Z, W
$$

	Z	Due to helicity conservation at the $q-\bar{q}-V\left(q-q^{*}-V\right)$ vertex, $J_{z}= \pm 1$ along the $q-\bar{q}\left(q-q^{*}\right)$ scattering direction z

- ...but with respect to a subprocess-dependent quantization axis

"natural" $z=$ relative dir. of q and q bar

$$
\rightarrow \lambda_{\vartheta}\left({ }^{(" C S ")}\right)=+1
$$

wrt any axis: $\tilde{\lambda}=+1$

Physical meaning: Drell-Yan, Z and W polarizations

- polarization is always fully transverse...

$$
V=\gamma^{*}, Z, W
$$

 Due to helicity conservation at the $q-\bar{q}-V\left(q-q^{*}-V\right)$ vertex, $J_{z}= \pm 1$ along the $q-\bar{q}\left(q-q^{*}\right)$ scattering direction z

- ...but with respect to a subprocess-dependent quantization axis

$$
\begin{aligned}
& \text { "natural" } z=\text { relative dir. of } q \text { and } q \text { bar } \\
& \\
& \rightarrow \lambda_{\vartheta}(\text { "CS") }=+1 \\
& \text { wrt any axis: } \tilde{\lambda}=+1
\end{aligned}
$$

$O\left(\alpha_{S}^{1}\right)$

$z=$ dir. of one incoming quark
$\rightarrow \lambda_{v}($ " $G J$ ") $=+1$
$\tilde{\lambda}=+1$
(LO) QCD
corrections

Physical meaning: Drell-Yan, Z and W polarizations

- polarization is always fully transverse...
 Due to helicity conservation at the $q-\bar{q}-V\left(q-q^{*}-V\right)$ vertex, $J_{z}= \pm 1$ along the $q-\bar{q}\left(q-q^{*}\right)$ scattering direction z
- ...but with respect to a subprocess-dependent quantization axis

Physical meaning: Drell-Yan, Z and W polarizations

- polarization is always fully transverse...

Due to helicity conservation at the $q-\bar{q}-V\left(q-q^{*}-V\right)$ vertex, $J_{z}= \pm 1$ along the $q-\bar{q}\left(q-q^{*}\right)$ scattering direction z

- ...but with respect to a subprocess-dependent quantization axis

In all these cases the $q-q-V$ lines are in the production plane (planar processes);
The CS, GJ, pp-HX and qg-HX axes only differ by a rotation in the production plane

Example: $Z / \gamma^{*} / W$ polarization (CS frame) as a function of contribution of LO QCD corrections:

λ_{ϑ} vs $\tilde{\lambda}$

Example: $Z / \gamma^{*} / W$ polarization (CS frame) as a function of contribution of LO QCD corrections:
Case 1: dominating \boldsymbol{q}-qbar QCD corrections

λ_{v} vs $\tilde{\lambda}$

Example: $Z / \gamma^{*} / W$ polarization (CS frame) as a function of contribution of LO QCD corrections:

Case 1: dominating $\boldsymbol{q}-\mathbf{q}$ bar QCD corrections

Case 2: dominating $\boldsymbol{q}-\boldsymbol{g}$ QCD corrections

λ_{ϑ} vs $\tilde{\lambda}$

Example: $Z / \gamma^{*} / W$ polarization (CS frame) as a function of contribution of LO QCD corrections:
Case 1: dominating $\boldsymbol{q}-\mathbf{q}$ bar QCD corrections

Case 2: dominating $\boldsymbol{q}-\boldsymbol{g}$ QCD corrections

λ_{ϑ} vs $\tilde{\lambda}$

Example: $Z / \gamma^{*} / W$ polarization (CS frame) as a function of contribution of LO QCD corrections:
Case 1: dominating $\boldsymbol{q}-\mathbf{q}$ bar QCD corrections

Case 2: dominating $\boldsymbol{q}-\boldsymbol{g}$ QCD corrections

λ_{ϑ} vs $\tilde{\lambda}$

Example: $Z / \gamma^{*} / W$ polarization (CS frame) as a function of contribution of LO QCD corrections:
Case 1: dominating \boldsymbol{q}-qbar QCD corrections

Case 2: dominating $\boldsymbol{q}-\boldsymbol{g}$ QCD corrections

λ_{ϑ} vs $\tilde{\lambda}$

Example: $Z / \gamma^{*} / W$ polarization (CS frame) as a function of contribution of LO QCD corrections:

Case 1: dominating \boldsymbol{q}-qbar QCD corrections

$\mathrm{M}=\mathbf{8 0} \mathrm{GeV} / \mathrm{c}^{\mathbf{2}}$

Case 2: dominating $\boldsymbol{q}-\boldsymbol{g}$ QCD corrections

- depends on p_{T}, y and mass
\rightarrow by integrating we lose significance
- is far from being maximal
- depends on process admixture \rightarrow need pQCD and PDFs

λ_{9} vs $\tilde{\lambda}$

Example: $Z / \gamma^{*} / W$ polarization (CS frame) as a function of contribution of LO QCD corrections:

Case 1: dominating \boldsymbol{q}-qbar QCD corrections

$\mathrm{M}=\mathbf{8 0} \mathrm{GeV} / \mathrm{c}^{\mathbf{2}}$

Case 2: dominating $\boldsymbol{q}-\boldsymbol{g}$ QCD corrections

- depends on p_{T}, y and mass
\rightarrow by integrating we lose significance
- is far from being maximal
- depends on process admixture \rightarrow need pQCD and PDFs
$\tilde{\lambda}$ is constant, maximal and independent of process admixture

λ_{ϑ} vs $\tilde{\lambda}$

Example: $\boldsymbol{Z} / \gamma^{*} / W$ polarization (CS frame) as a function of contribution of LO QCD corrections:

Case 1: dominating \boldsymbol{q}-qbar QCD corrections

$\mathrm{M}=\mathbf{8 0} \mathrm{GeV} / \mathrm{c}^{\mathbf{2}}$

Case 2: dominating $\boldsymbol{q}-\boldsymbol{g}$ QCD corrections

On the other hand, $\tilde{\lambda}$ forgets about the direction of the quantization axis. This information is crucial if we want to disentangle the $\boldsymbol{q g}$ contribution, the only one resulting in a rapidity-dependent $\boldsymbol{\lambda}_{\vartheta}$

Measuring $\lambda_{\vartheta}(\mathrm{CS})$ as a function of rapidity gives information on the gluon content of the proton

The Lam-Tung relation

A fundamental result of the theory of vector-boson polarizations (Drell-Yan, directly produced Z and W) is that, at leading order in perturbative QCD,
$\lambda_{\vartheta}+4 \lambda_{\varphi}=1 \quad$ independently of the polarization frame Lam-Tung relation, Pysical Review D 18, 2447 (1978)

This identity was considered as a surprising result of cancellations in the calculations

The Lam-Tung relation

A fundamental result of the theory of vector-boson polarizations (Drell-Yan, directly produced Z and W) is that, at leading order in perturbative QCD,
$\lambda_{\vartheta}+4 \lambda_{\varphi}=1 \quad$ independently of the polarization frame
Lam-Tung relation, Pysical Review D 18, 2447 (1978)
This identity was considered as a surprising result of cancellations in the calculations

Today we know that it is only a special case of general frame-independent polarization relations, corresponding to a transverse intrinsic polarization:

$$
\tilde{\lambda}=\frac{\lambda_{\vartheta}+3 \lambda_{\varphi}}{1-\lambda_{\varphi}}=+1 \quad \Rightarrow \lambda_{\vartheta}+4 \lambda_{\varphi}=1
$$

It is, therefore, not a "QCD" relation, but a consequence of

1) rotational invariance
2) properties of the quark-photon/Z/W couplings (helicity conservation)

Beyond the Lam-Tung relation

Even when the Lam-Tung relation is violated,
$\tilde{\lambda}$ can always be defined and is always frame-independent

Beyond the Lam-Tung relation

Even when the Lam-Tung relation is violated,
$\tilde{\lambda}$ can always be defined and is always frame-independent
$\tilde{\lambda}=+1 \rightarrow$ Lam-Tung. New interpretation: only vector boson - quark - quark couplings (in planar processes) \rightarrow automatically verified in DY at QED \& LO QCD levels and in several higher-order QCD contributions

Beyond the Lam-Tung relation

Even when the Lam-Tung relation is violated,
$\tilde{\lambda}$ can always be defined and is always frame-independent
$\tilde{\lambda}=+1 \rightarrow$ Lam-Tung. New interpretation: only vector boson - quark - quark couplings (in planar processes) \rightarrow automatically verified in DY at QED \& LO QCD levels and in several higher-order QCD contributions

$$
\begin{aligned}
\tilde{\lambda} & =+1-\mathcal{O}(0.1) \\
& \rightarrow+1 \text { for } p_{T} \rightarrow 0
\end{aligned}
$$

\rightarrow vector-boson - quark - quark couplings in non-planar processes (higher-order contributions)

Beyond the Lam-Tung relation

Even when the Lam-Tung relation is violated,
$\tilde{\lambda}$ can always be defined and is always frame-independent
$\tilde{\lambda}=+1 \rightarrow$ Lam-Tung. New interpretation: only vector boson - quark - quark couplings (in planar processes) \rightarrow automatically verified in DY at QED \& LO QCD levels and in several higher-order QCD contributions

$$
\begin{aligned}
\tilde{\lambda} & =+1-\mathcal{O}(0.1) \\
& \rightarrow+1 \text { for } p_{T} \rightarrow 0
\end{aligned} \quad \begin{aligned}
\text { vector-boson - quark - quark couplings in } \\
\text { non-planar processes (higher-order contributions) }
\end{aligned}
$$

$\left.\begin{array}{l}\tilde{\lambda} \ll+1 \\ \tilde{\lambda}>+1\end{array}\right\} \rightarrow$ contribution of different/new couplings or processes
(e.g.: Z from Higgs, W from top, triple $Z Z \gamma$ coupling, higher-twist effects in DY production, etc...)

Polarization can be used to distinguish between different kinds of physics signals, or between "signal" and "background" processes (\rightarrow improve significance of new-physics searches)

Example: W from top $\leftrightarrow W$ from $q-q$ bar and $q-g$

Example: W from top $\leftrightarrow W$ from $q-q$ bar and $q-g$

Iongitudinally polarized:
$\lambda_{\vartheta}^{\mathrm{SM}} \cong-0.65$ wrt W direction in
$\lambda_{\varphi}^{\mathrm{SM}} \cong 0 \quad$ the top rest frame (top-frame helicity)

independently of top production mechanism

The top quark decays almost always to $W+b$
\rightarrow the longitudinal polarization
of the W is a signature of the top

Example: W from top $\leftrightarrow W$ from $q-q$ bar and $q-g$

longitudinally polarized:

$$
\begin{array}{ll}
\lambda_{\vartheta}^{\mathrm{SM}} \cong-0.65 & \text { wrt } W \text { direction in } \\
\lambda_{\varphi}^{\mathrm{SM}} \cong 0 & \text { the top rest frame } \\
& \text { (top-frame helicity) }
\end{array}
$$

independently of top production mechanism

The top quark decays almost always to $W+b$
\rightarrow the longitudinal polarization of the W is a signature of the top
transversely polarized, $\lambda_{\vartheta}=+1 \& \lambda_{\varphi}=0$ wrt 3 different axes:

direction of outgoing q (cms-helicity)

a) Frame-dependent approach

We measure λ_{ϑ} choosing the helicity axis

a) Frame-dependent approach

We measure λ_{ϑ} choosing the helicity axis

a) Frame-dependent approach

We measure λ_{ϑ} choosing the helicity axis

a) Frame-dependent approach

We measure λ_{ϑ} choosing the helicity axis

a) Frame-dependent approach

We measure λ_{ϑ} choosing the helicity axis

The polarization of W from $q-q$ bar / $q-g$

- is generally far from being maximal
- depends on p_{T} and y \rightarrow integration in p_{T} and y degrades significance
- depends on the actual mixture of processes \rightarrow we need pQCD and PDFs to evaluate it

b) Rotation-invariant approach

Example: the q-qbar \rightarrow ZZ continuum background

dominant Standard Model background for new-signal searches in the $Z Z \rightarrow 4 \ell$ channel with $m(Z Z)>200 \mathrm{GeV} / c^{2}$

The new Higgs-like resonance was discovered also thanks to these techniques

The distribution of the 5 angles depends on the kinematics

$$
W\left(\cos \theta, \cos \vartheta_{1}, \varphi_{1}, \cos \vartheta_{2}, \varphi_{2} \mid M_{z z} \vec{p}\left(Z_{1}\right), \vec{p}\left(Z_{2}\right)\right)
$$

- for helicity conservation each of the two Z's is transverse along the direction of one or the other incoming quark
- t-channel and u-channel amplitudes are proportional to $\frac{1}{1-\cos \Theta}$ and $\frac{1}{1+\cos \Theta}$ for $M_{Z} / M_{z z} \rightarrow 0$

Z Z from Higgs \leftrightarrow Z Z from q-qbar

Discriminant n 으: \mathbf{Z} polarization

Z Z from Higgs \leftrightarrow Z Z from q-qbar

Discriminant n 으: \mathbf{Z} polarization

Z Z from Higgs \leftrightarrow Z Z from q-qbar

Discriminant n 으: \mathbf{Z} polarization

Z Z from Higgs \leftrightarrow Z Z from q-qbar

Discriminant no2: Z emission direction

Z Z from Higgs \leftrightarrow Z Z from q-qbar

Discriminant no2: Z emission direction

Z Z from Higgs \leftrightarrow Z Z from q-qbar

Discriminant no2: Z emission direction

Putting everything together

5 angles $\left(\boldsymbol{\theta}, \boldsymbol{\vartheta}_{1}, \boldsymbol{\varphi}_{1}, \boldsymbol{\vartheta}_{2}, \boldsymbol{\varphi}_{2}\right)$, with distribution depending on
5 kinematic variables $\left(M_{z z}, p_{T}\left(Z_{1}\right), y\left(Z_{1}\right), p_{T}\left(Z_{2}\right), y\left(Z_{2}\right)\right)$

1 shape discriminant: $\boldsymbol{\xi}=\ln \frac{\mathcal{P}_{H \rightarrow z z}}{\mathcal{P}_{a}} \quad$ detector acceptance and efficiency effects

Putting everything together

5 angles $\left(\boldsymbol{\theta}, \boldsymbol{\vartheta}_{1}, \boldsymbol{\varphi}_{1}, \boldsymbol{\vartheta}_{2}, \boldsymbol{\varphi}_{2}\right)$, with distribution depending on
5 kinematic variables $\left(M_{z z}, p_{T}\left(Z_{1}\right), y\left(Z_{1}\right), p_{T}\left(Z_{2}\right), y\left(Z_{2}\right)\right)$

1 shape discriminant: $\boldsymbol{\xi}=\ln \frac{\mathcal{P}_{H \rightarrow z z}}{\mathcal{P}_{q \bar{q} \rightarrow z z}} \quad \begin{aligned} & \text { detector acceptata } \\ & \text { efficiency effects }\end{aligned}$

$$
\begin{aligned}
& V s=14 \mathrm{TeV} \\
& 500<M_{Z Z}<900 \mathrm{GeV} / c^{2} \\
& M_{H}=700 \mathrm{GeV} / c^{2} \\
& \left|y_{Z Z}\right|<2.5
\end{aligned}
$$

lepton selection:

$$
p_{\mathrm{T}}>15 \mathrm{GeV} / c
$$

$$
|\eta|<2.5
$$

$\beta=$ ratio of observed / expected signal events
$\beta>0 \rightarrow$ observation of something new
$\beta<1 \rightarrow$ exclusion of expected hypothetical signal
$\beta=$ ratio of observed / expected signal events
$\beta>0 \rightarrow$ observation of something new
$\beta<1 \rightarrow$ exclusion of expected hypothetical signal
"integrated yield" constraint: signal = excess yield wrt expected number of BG events

1) $\mathcal{P}_{\text {BGnorm }}(\beta) \propto \frac{e^{-\left(\mu_{\mathrm{B}}+\beta \mu_{\mathrm{s}}\right)}\left(\mu_{\mathrm{B}}+\beta \mu_{\mathrm{s}}\right)^{N}}{N!}$
crucially dependent on the expected BG normalization
$\mu_{\mathrm{B}}=$ avg. number of BG events expected for the given luminosity $\mu_{\mathrm{s}}=$ avg. number of Higgs events expected for the given luminosity
$N=$ total number of events in the sample
```
\beta>0}->\mathrm{ observation of something new
\beta<1-> exclusion of expected hypothetical signal
```

"integrated yield" constraint: signal = excess yield wrt expected number of BG events
1)

$$
\mathcal{P}_{\text {BGnorm }}(\beta) \propto \frac{e^{-\left(\mu_{\mathrm{B}}+\beta \mu_{\mathrm{s}}\right)}\left(\mu_{\mathrm{B}}+\beta \mu_{\mathrm{s}}\right)^{N}}{N!}
$$

crucially dependent on the expected BG normalization
constraint from angular distribution:
signal = deviation from the shape of the BG angular distribution
2) \mathcal{P}

$$
(\beta) \propto \prod_{i=1}^{N}\left(\frac{\mu_{\mathrm{B}}}{\mu_{\mathrm{B}}+\beta \mu_{\mathrm{s}}} w_{\mathrm{B}}\left(\xi_{i}\right)+\frac{\beta \mu_{\mathrm{s}}}{\mu_{\mathrm{B}}+\beta \mu_{\mathrm{S}}} w_{\mathrm{S}}\left(\xi_{i}\right)\right)
$$

independent of luminosity and crosssection uncertainties!
$\mu_{\mathrm{B}}=$ avg. number of BG events expected for the given luminosity $\mu_{\mathrm{s}}=$ avg. number of Higgs events expected for the given luminosity $N=$ total number of events in the sample
$\beta=$ ratio of observed / expected signal events

```
\beta>0}->\mathrm{ observation of something new
\beta<1-> exclusion of expected hypothetical signal
```

"integrated yield" constraint: signal = excess yield wrt expected number of BG events

1) $\mathcal{P}_{\text {BGnorm }}(\beta) \propto \frac{e^{-\left(\mu_{\mathrm{B}}+\beta \mu_{\mathrm{s}}\right)}\left(\mu_{\mathrm{B}}+\beta \mu_{\mathrm{S}}\right)^{N}}{N!}$
crucially dependent on the expected BG normalization
constraint from angular distribution:
signal = deviation from the shape of the BG angular distribution
2)

independent of luminosity and crosssection uncertainties!
3) $\mathcal{P}_{\text {tot }}(\beta)=\mathcal{P}_{\text {angular }}(\beta) \times \mathcal{P}_{\text {BGnorm }}(\beta) \quad$ combination of the two methods
$\mu_{\mathrm{B}}=$ avg. number of BG events expected for the given luminosity $\mu_{\mathrm{s}}=$ avg. number of Higgs events expected for the given luminosity
$N=$ total number of events in the sample

Confidence levels

Limits vs \boldsymbol{m}_{H}

Variation with mass essentially due to varying BG level: 30% for $m_{H}=500 \mathrm{GeV} / c^{2} \rightarrow 70 \%$ for $m_{H}=800 \mathrm{GeV} / c^{2}$ Angular method more advantageous with higher BG levels

Further reading

- P. Faccioli, C. Lourenço, J. Seixas, and H.K. Wöhri, J/psi polarization from fixed-target to collider energies, Phys. Rev. Lett. 102, 151802 (2009)
- HERA-B Collaboration, Angular distributions of leptons from J/psi's produced in 920-GeV fixed-target proton-nucleus collisions, Eur. Phys. J. C 60, 517 (2009)
- P. Faccioli, C. Lourenço and J. Seixas, Rotation-invariant relations in vector meson decays into fermion pairs, Phys. Rev. Lett. 105, 061601 (2010)
- P. Faccioli, C. Lourenço and J. Seixas, New approach to quarkonium polarization studies, Phys. Rev. D 81, 111502(R) (2010)
- P. Faccioli, C. Lourenço, J. Seixas and H.K. Wöhri, Towards the experimental clarification of quarkonium polarization, Eur. Phys. J. C 69, 657 (2010)
- P. Faccioli, C. Lourenço, J. Seixas and H. K. Wöhri, Rotation-invariant observables in parity-violating decays of vector particles to fermion pairs, Phys. Rev. D 82, 096002 (2010)
- P. Faccioli, C. Lourenço, J. Seixas and H. K. Wöhri, Model-independent constraints on the shape parameters of dilepton angular distributions, Phys. Rev. D 83, 056008 (2011)
- P. Faccioli, C. Lourenço, J. Seixas and H. K. Wöhri, Determination of -chi_c and chi_-b polarizations from dilepton angular distributions in radiative decays, Phys. Rev. D 83, 096001 (2011)
- P. Faccioli and J. Seixas, Observation of χ_{c} and χ_{b} nuclear suppression via dilepton polarization measurements, Phys. Rev. D 85, 074005 (2012)
- P. Faccioli, Questions and prospects in quarkonium polarization measurements from proton-proton to nucleus-nucleus collisions, invited "brief review", Mod. Phys. Lett. A Vol. 27 N. 23, 1230022 (2012)
- P. Faccioli and J. Seixas, Angular characterization of the $Z Z \rightarrow 4 \ell$ background continuum to improve sensitivity of new physics searches, Phys. Lett. B 716, 326 (2012)
- P. Faccioli, C. Lourenço, J. Seixas and H. K. Wöhri, Minimal physical constraints on the angular distributions of two-body boson decays, submitted to Phys. Rev. D

