Physics at the LHC, LIP, June 3th, 2013 Particle polarizations in LHC physics Pietro Faccioli

- Motivations
- Basic principles: angular momentum conservation, helicity conservation, parity properties
- Example: dilepton decay distributions of quarkonium and vector bosons
- Reference frames for polarization measurements
- Frame-independent polarization
- Understanding the production mechanisms of vector particles: The Lam-Tung relation and its generalizations
- Polarization as a discriminant of physics signals: new resonances vs continuum background in the ZZ channel

Why do we study particle polarizations?

Measure **polarization** of a particle = measure the **angular momentum state** in which the particle is produced, by studying the **angular distribution** of its **decay**

Very **detailed** piece of information! Allows us to

- test of perturbative QCD [Z and W decay distributions]
- constrain universal quantities [sin θ_w and/or proton PDFs from Z/W/ γ^* decays]
- accelerate discovery of new particles or characterize them
 [Higgs, Z', anomalous Z+γ, graviton, ...]
- understand the formation of hadrons (non-perturbative QCD)

Presently we do not yet understand how/when the observed *Q***-Qbar bound states** (produced at the LHC in gluon-gluon fusion) acquire their quantum numbers. Which of the following production processes are more important?

Presently we do not yet understand how/when the observed *Q***-Qbar bound states** (produced at the LHC in gluon-gluon fusion) acquire their quantum numbers. Which of the following production processes are more important?

Colour-singlet processes:

quarkonia produced directly as observable *colour-neutral* Q-Qbar pairs

purely perturbative

+ analogous colour combinations

Presently we do not yet understand how/when the observed *Q***-Qbar bound states** (produced at the LHC in gluon-gluon fusion) acquire their quantum numbers. Which of the following production processes are more important?

Colour-singlet processes:

quarkonia produced directly as observable *colour-neutral* Q-Qbar pairs

purely perturbative

+ analogous colour combinations

Colour-octet processes:

quarkonia are produced through *coloured* Q-Qbar pairs *of any possible quantum numbers*

Presently we do not yet understand how/when the observed *Q***-Qbar bound states** (produced at the LHC in gluon-gluon fusion) acquire their quantum numbers. Which of the following production processes are more important?

 $J = 1 \rightarrow$ three J_z eigenstates $|1, +1\rangle$, $|1, 0\rangle$, $|1, -1\rangle$ wrt a certain zMeasure polarization = measure (average) angular momentum composition Method: study the **angular distribution of the particle decay** in its rest frame The decay **into a fermion-antifermion pair** is an especially clean case to be studied

 $J = 1 \rightarrow$ three J_z eigenstates $|1, +1\rangle$, $|1, 0\rangle$, $|1, -1\rangle$ wrt a certain z

Measure polarization = measure (average) angular momentum composition

Method: study the angular distribution of the particle decay in its rest frame

The decay into a fermion-antifermion pair is an especially clean case to be studied

The shape of the observable angular distribution is determined by a few basic principles:

 $J = 1 \rightarrow$ three J_z eigenstates $|1, +1\rangle$, $|1, 0\rangle$, $|1, -1\rangle$ wrt a certain z

Measure polarization = measure (average) angular momentum composition

Method: study the angular distribution of the particle decay in its rest frame

The decay **into a fermion-antifermion pair** is an especially clean case to be studied The shape of the observable angular distribution is determined by

a few basic principles:

 $J = 1 \rightarrow$ three J_z eigenstates $|1, +1\rangle$, $|1, 0\rangle$, $|1, -1\rangle$ wrt a certain z

Measure polarization = measure (average) angular momentum composition

Method: study the angular distribution of the particle decay in its rest frame

The decay **into a fermion-antifermion pair** is an especially clean case to be studied

The shape of the observable angular distribution is determined by a few basic principles:

1: helicity conservation

EW and strong forces preserve the *chirality* (L/R) of fermions. In the relativistic (massless) limit, *chirality* = *helicity* = *spin-momentum alignment* \rightarrow the fermion spin never flips in the coupling to gauge bosons:

 J/ψ angular momentum component along the polarization axis *z*:

 $M_{J/\psi}$ = -1, 0, +1 (determined by *production mechanism*)

 J/ψ angular momentum component along the polarization axis *z*:

 $M_{J/\psi}$ = -1, 0, +1 (determined by *production mechanism*)

 J/ψ angular momentum component along the polarization axis *z*:

 $M_{J/\psi}$ = -1, 0, +1 (determined by *production mechanism*)

 J/ψ angular momentum component along the polarization axis *z*:

 $M_{J/\psi} = -1, 0, +1$ (determined by *production mechanism*)

The **two leptons** can only have total angular momentum component $M'_{e^+e^-} = +1 \text{ or } -1$ along their common direction z'**0** is forbidden

 $|\mathbf{1,+1}\rangle = D_{\mathbf{-1,+1}}^{1}(\vartheta,\varphi) |\mathbf{1,-1}\rangle + D_{\mathbf{0,+1}}^{1}(\vartheta,\varphi) |\mathbf{1,0}\rangle + D_{\mathbf{+1,+1}}^{1}(\vartheta,\varphi) |\mathbf{1,+1}\rangle$

 $|\mathbf{1, +1}\rangle = D_{-1,+1}^{1}(\vartheta,\varphi) |\mathbf{1, -1}\rangle + D_{0,+1}^{1}(\vartheta,\varphi) |\mathbf{1, 0}\rangle + D_{+1,+1}^{1}(\vartheta,\varphi) |\mathbf{1, +1}\rangle$

→ the J_{χ} , eigenstate $|1, +1\rangle$ "contains" the J_{χ} eigenstate $|1, 0\rangle$ with component amplitude $D_{0,+1}^{1}(\vartheta, \varphi)$

 $|\mathbf{1, +1}\rangle = D_{-1,+1}^{1}(\vartheta,\varphi) |\mathbf{1, -1}\rangle + D_{0,+1}^{1}(\vartheta,\varphi) |\mathbf{1, 0}\rangle + D_{+1,+1}^{1}(\vartheta,\varphi) |\mathbf{1, +1}\rangle$

→ the J_{χ} , eigenstate $|1, +1\rangle$ "contains" the J_{χ} eigenstate $|1, 0\rangle$ with component amplitude $D_{0,+1}^{1}(\vartheta, \varphi)$

 \rightarrow the decay distribution is

$$\begin{aligned} |\langle \mathbf{1}, \mathbf{+1} | \mathcal{O} | \mathbf{1}, \mathbf{0} \rangle|^2 & \propto |D_{\mathbf{0}, \mathbf{+1}}^{\mathbf{1}^*}(\vartheta, \varphi)|^2 &= \frac{\mathbf{1}}{2} \left(\mathbf{1} - \cos^2 \vartheta \right) \\ & \ell^+ \ell^- \leftarrow J/\psi \end{aligned}$$

 $|\mathbf{1, +1}\rangle = D_{-1,+1}^{1}(\vartheta,\varphi) |\mathbf{1, -1}\rangle + D_{0,+1}^{1}(\vartheta,\varphi) |\mathbf{1, 0}\rangle + D_{+1,+1}^{1}(\vartheta,\varphi) |\mathbf{1, +1}\rangle$

→ the J_{χ} , eigenstate $|1, +1\rangle$ "contains" the J_{χ} eigenstate $|1, 0\rangle$ with component amplitude $D_{0,+1}^{1}(\vartheta, \varphi)$

 \rightarrow the decay distribution is

$$\begin{aligned} |\langle \mathbf{1}, \mathbf{+1} | \mathcal{O} | \mathbf{1}, \mathbf{0} \rangle|^2 & \propto |D_{\mathbf{0}, \mathbf{+1}}^{\mathbf{1}^*}(\vartheta, \varphi)|^2 &= \frac{\mathbf{1}}{2} \left(\mathbf{1} - \cos^2 \vartheta \right) \\ \theta^+ \theta^- &\leftarrow J/\psi \end{aligned}$$

Z

3: parity

3: parity

Are they equally probable?

Are they equally probable?

Are they equally probable?

Are they equally probable?

Are they equally probable?

Decay distribution of $|1, 0\rangle$ state is always parity-symmetric:

We can apply **helicity conservation at the** *production* **vertex** to predict that all *vector* states produced in *fermion-antifermion annihilations* ($q-\overline{q}$ or e^+e^-) at Born level have *transverse* polarization

We can apply **helicity conservation at the** *production* **vertex** to predict that all *vector* states produced in *fermion-antifermion annihilations* ($q-\overline{q}$ or e^+e^-) at Born level have *transverse* polarization

We can apply **helicity conservation at the** *production* **vertex** to predict that all *vector* states produced in *fermion-antifermion annihilations* ($q-\overline{q}$ or e^+e^-) at Born level have *transverse* polarization

<u>The "natural" polarization axis in this case is</u> <u>the relative direction of the colliding fermions</u> (Collins-Soper axis)

We can apply **helicity conservation at the** *production* **vertex** to predict that all *vector* states produced in *fermion-antifermion annihilations* ($q-\overline{q}$ or e^+e^-) at Born level have *transverse* polarization

<u>The "natural" polarization axis in this case is</u> the relative direction of the colliding fermions (Collins-Soper axis)

> Drell-Yan is a paradigmatic case But not the only one

$$\frac{dN}{d\Omega} \propto 1 + \lambda_{\theta} \cos^2 \theta + \lambda_{\varphi} \sin^2 \theta \cos 2\varphi + \lambda_{\theta\varphi} \sin 2\theta \cos \varphi + 2A_{\theta} \sin \theta \cos \varphi$$

$$\frac{dN}{d\Omega} \propto 1 + \lambda_{\theta} \cos^2 \theta + \lambda_{\varphi} \sin^2 \theta \cos 2\varphi + \lambda_{\theta\varphi} \sin 2\theta \cos \varphi + 2A_{\theta} \sin \theta \cos \varphi$$

$$+ 2A_{\theta} \cos \theta + 2A_{\varphi} \sin \theta \cos \varphi$$

$$\int_{\rhoarity violating} \rhoarity violating \rhoarity violating \rhoarity violating \rhoarity violating parameters of the second s$$

Helicity axis (HX): quarkonium momentum direction

Helicity axis (HX): quarkonium momentum direction Gottfried-Jackson axis (GJ): direction of one or the other beam

Helicity axis (HX): quarkonium momentum direction Gottfried-Jackson axis (GJ): direction of one or the other beam Collins-Soper axis (CS): average of the two beam directions

Helicity axis (HX): quarkonium momentum direction Gottfried-Jackson axis (GJ): direction of one or the other beam Collins-Soper axis (CS): average of the two beam directions Perpendicular helicity axis (PX): perpendicular to CS

All reference frames are equal... but some are more equal than others

What do different detectors measure with arbitrary frame choices?

Gedankenscenario:

- dileptons are fully transversely polarized in the CS frame
- the decay distribution is measured at the Υ(1S) mass by 6 detectors with different dilepton acceptances:

CDF	y < 0.6
D0	y < 1.8
ATLAS & CMS	y < 2.5
ALICE e ⁺ e ⁻	y < 0.9
ALICE $\mu^+\mu^-$	2.5 < y < 4
LHCb	2 < y < 4.5

The lucky frame choice

(CS in this case)

Less lucky choice

(HX in this case)

Less lucky choice

(HX in this case)

Frames for Drell-Yan, Z and W polarizations

• polarization is *always fully transverse*...

 $V = \gamma^*, Z, W$

Due to helicity conservation at the $q-\overline{q}-V$ ($q-q^*-V$) vertex, $J_z = \pm 1$ along the $q-\overline{q}(q-q^*)$ scattering direction z

Frames for Drell-Yan, Z and W polarizations

• polarization is *always fully transverse*...

 $V = \gamma^*, Z, W$

Due to helicity conservation at the $q-\overline{q}-V$ ($q-q^*-V$) vertex, $J_z = \pm 1$ along the $q-\overline{q}(q-q^*)$ scattering direction z

• ...but with respect to a *subprocess-dependent quantization axis*

z = relative dir. of incoming q and qbar (~ Collins-Soper frame)

important only up to $p_{T} = \mathcal{O}(\text{parton } k_{T})$
Frames for Drell-Yan, Z and W polarizations

• polarization is *always fully transverse*...

 $V = \gamma^*, Z, W$

Due to helicity conservation at the $q-\overline{q}-V$ ($q-q^*-V$) vertex, $J_z = \pm 1$ along the $q-\overline{q}(q-q^*)$ scattering direction z

• ...but with respect to a *subprocess-dependent quantization axis*

Frames for Drell-Yan, Z and W polarizations

• polarization is *always fully transverse*...

 $V = \gamma^*, Z, W$

Due to helicity conservation at the $q-\overline{q}-V$ ($q-q^*-V$) vertex, $J_z = \pm 1$ along the $q-\overline{q}(q-q^*)$ scattering direction z

• ...but with respect to a *subprocess-dependent quantization axis*

"Optimal" frames for Drell-Yan, Z and W polarizations

Different subprocesses have different "natural" quantization axes

For *s*-channel processes the natural axis is the direction of the outgoing quark (= direction of dilepton momentum)

 \rightarrow optimal frame (= maximizing polar anisotropy): **HX**

(neglecting parton-parton-cms vs proton-proton-cms difference!)

"Optimal" frames for Drell-Yan, Z and W polarizations

Different subprocesses have different "natural" quantization axes

For *t*- and *u*-channel processes the natural axis is the direction of either one or the other incoming parton (~ "Gottfried-Jackson" axes)

 \rightarrow optimal frame: geometrical average of GJ1 and GJ2 axes = CS ($p_T < M$) and PX ($p_T > M$)

The shape of the distribution is (obviously) frame-invariant (= invariant by rotation)

$$\tilde{\lambda} = \frac{\lambda_g + 3\lambda_{\varphi}}{1 - \lambda_{\varphi}} \qquad \qquad \lambda^* = \frac{\lambda_g - 3\Lambda^*}{1 + \Lambda^*} \underset{\Lambda^* = \frac{1}{4} \left\{ \lambda_g - \lambda_{\varphi} \pm \sqrt{\left(\lambda_g - \lambda_{\varphi}\right)^2 + 4\lambda_{g\varphi}^2} \right\}}{\Lambda^* = \frac{\sqrt{A_g^2 + A_{\varphi}^2}}{3 + \lambda_g}}$$

$$\tilde{\lambda} = \frac{\lambda_g + 3\lambda_{\varphi}}{1 - \lambda_{\varphi}} \qquad \lambda^* = \frac{\lambda_g - 3\Lambda^*}{1 + \Lambda^*} \Lambda^* = \frac{1}{4} \left\{ \lambda_g - \lambda_{\varphi} \pm \sqrt{(\lambda_g - \lambda_{\varphi})^2 + 4\lambda_{g\varphi}^2} \right\} \qquad \tilde{\mathcal{A}} = \frac{\sqrt{A_g^2 + A_{\varphi}^2}}{3 + \lambda_g}$$

$$\tilde{\mathcal{A}}_g = +1$$

$$\lambda_g = 0$$

$$\lambda_g = +1/5$$

$$\lambda_{\varphi} = +1/5$$

$$\lambda_{\varphi} = -1/3$$

$$\lambda_{\varphi} = +1/3$$

The *shape* of the distribution is (obviously) frame-invariant (= invariant by rotation) \rightarrow it can be characterized by frame-independent parameters:

rotations in the production plane

Gedankenscenario: vector state produced in this subprocess admixture: (assumed indep.

- 60% processes with natural transverse polarization in the CS frame
- 40% processes with natural transverse polarization in the HX frame

assumed indep. of kinematics, for simplicity

Gedankenscenario: vector state produced in this subprocess admixture: (assumed indep.

- 60% processes with natural transverse polarization in the CS frame
- 40% processes with natural transverse polarization in the HX frame

 $M = 10 \, \text{GeV}/c^2$

CDF	y < 0.6
D0	y < 1.8
ATLAS/CMS	y < 2.5
ALICE e ⁺ e ⁻	y < 0.9
ALICE μ ⁺ μ ⁻	2.5 < y < 4
LHCb	2 < y < 4.5

of kinematics,

Gedankenscenario: vector state produced in this subprocess admixture: Cassumed indep.

- 60% processes with natural transverse polarization in the CS frame
- 40% processes with natural transverse polarization in the HX frame

 $M = 10 \, \text{GeV}/c^2$

CDF	
DU	y < 1.8
ATLAS/CMS	y < 2.5
ALICE e ⁺ e ⁻	y < 0.9
ALICE μ ⁺ μ ⁻	2.5 < y < 4
LHCb	2 < y < 4.5

of kinematics,

Gedankenscenario: vector state produced in this subprocess admixture: Cassumed indep.

- 60% processes with natural transverse polarization in the CS frame
- 40% processes with natural transverse polarization in the HX frame

 $M = 10 \, {\rm GeV}/c^2$

CDF	y < 0.6
D0	y < 1.8
ATLAS/CMS	y < 2.5
ALICE e ⁺ e ⁻	y < 0.9
ALICE μ ⁺ μ ⁻	2.5 < y < 4
LHCb	2 < y < 4.5

of kinematics,

Gedankenscenario: vector state produced in this subprocess admixture: *Cassumed indep*.

- 60% processes with natural transverse polarization in the CS frame
- 40% processes with natural transverse polarization in the HX frame

 $M = 10 \, {\rm GeV}/c^2$

CDF	v < 0.6
DO	y < 1.8
ATLAS/CMS	y < 2.5
ALICE e ⁺ e ⁻	y < 0.9
ALICE μ⁺μ [−]	2.5 < y < 4
LHCb	2 < y < 4.5

of kinematics,

- Immune to "extrinsic" kinematic dependencies
- \rightarrow less acceptance-dependent
- \rightarrow facilitates comparisons
- useful as closure test

• polarization is *always fully transverse*...

 $V = \gamma^*, Z, W$

Due to helicity conservation at the $q-\overline{q}-V$ ($q-q^*-V$) vertex, $J_z = \pm 1$ along the $q-\overline{q}(q-q^*)$ scattering direction z

• ...but with respect to a *subprocess-dependent quantization axis*

• polarization is *always fully transverse*...

 $V = \gamma^*, Z, W$

Due to helicity conservation at the $q-\overline{q}-V$ ($q-q^*-V$) vertex, $J_z = \pm 1$ along the $q-\overline{q}$ ($q-q^*$) scattering direction z

• ...but with respect to a *subprocess-dependent quantization axis*

"natural" z = relative dir. of q and qbar $\rightarrow \lambda_{\vartheta}$ ("CS") = +1 wrt any axis: $\tilde{\lambda}$ = +1

• polarization is *always fully transverse*...

 $V = \gamma^*, Z, W$

Due to helicity conservation at the $q-\overline{q}-V$ ($q-q^*-V$) vertex, $J_z = \pm 1$ along the $q-\overline{q}(q-q^*)$ scattering direction z

• ...but with respect to a *subprocess-dependent quantization axis*

• polarization is *always fully transverse*...

 $V = \gamma^*, Z, W$

Due to helicity conservation at the $q-\overline{q}-V$ ($q-q^*-V$) vertex, $J_z = \pm 1$ along the $q-\overline{q}(q-q^*)$ scattering direction z

• ...but with respect to a *subprocess-dependent quantization axis*

• polarization is *always fully transverse*...

 $V = \gamma^*, Z, W$

Due to helicity conservation at the $q-\overline{q}-V$ ($q-q^*-V$) vertex, $J_z = \pm 1$ along the $q-\overline{q}$ ($q-q^*$) scattering direction z

• ...but with respect to a *subprocess-dependent quantization axis*

In all these cases the q-q-V lines are in the production plane (planar processes); The CS, GJ, pp-HX and qg-HX axes only differ by a rotation in the production plane

Example: $Z/\gamma^*/W$ polarization (CS frame) as a function of contribution of LO QCD corrections:

Example: $Z/\gamma^*/W$ polarization (CS frame) as a function of contribution of LO QCD corrections:

Example: $Z/\gamma^*/W$ polarization (CS frame) as a function of contribution of LO QCD corrections:

Example: $Z/\gamma^*/W$ polarization (CS frame) as a function of contribution of LO QCD corrections:

Example: $Z/\gamma^*/W$ polarization (CS frame) as a function of contribution of LO QCD corrections:

Example: $Z/\gamma^*/W$ polarization (CS frame) as a function of contribution of LO QCD corrections:

Example: $Z/\gamma^*/W$ polarization (CS frame) as a function of contribution of LO QCD corrections:

Example: $Z/\gamma^*/W$ polarization (CS frame) as a function of contribution of LO QCD corrections:

Example: $Z/\gamma^*/W$ polarization (CS frame) as a function of contribution of LO QCD corrections:

On the other hand, λ forgets about the direction of the quantization axis. This information is crucial if we want to **disentangle the** *qg* **contribution**, the only one resulting in a *rapidity-dependent* λ_{ϑ}

Measuring $\lambda_{\vartheta}(CS)$ as a function of rapidity gives information on the gluon content of the proton

The Lam-Tung relation

A fundamental result of the theory of vector-boson polarizations (Drell-Yan, directly produced Z and W) is that, at leading order in perturbative QCD,

 $\lambda_g + 4\lambda_{\varphi} = 1$ independently of the polarization frame *Lam-Tung relation*, Pysical Review D 18, 2447 (1978)

This identity was considered as a surprising result of cancellations in the calculations

The Lam-Tung relation

A fundamental result of the theory of vector-boson polarizations (Drell-Yan, directly produced Z and W) is that, at leading order in perturbative QCD,

 $\lambda_g + 4\lambda_{\varphi} = 1$ independently of the polarization frame *Lam-Tung relation*, Pysical Review D 18, 2447 (1978)

This identity was considered as a surprising result of cancellations in the calculations

Today we know that it is only a *special* case of general frame-independent polarization relations, corresponding to a *transverse* intrinsic polarization:

$$\tilde{\lambda} = \frac{\lambda_g + 3\lambda_{\varphi}}{1 - \lambda_{\varphi}} = +1 \quad \Longrightarrow \lambda_g + 4\lambda_{\varphi} = 1$$

It is, therefore, not a "QCD" relation, but a consequence of

1) rotational invariance

2) properties of the quark-photon/Z/W couplings (helicity conservation)

Even when the Lam-Tung relation is violated,

 $\widetilde{\lambda}$ can always be defined and is always frame-independent

Even when the Lam-Tung relation is violated,

 $\widetilde{\lambda}$ can always be defined and is always frame-independent

 $\tilde{\lambda} = +1 \rightarrow$ Lam-Tung. New interpretation: only *vector boson – quark – quark* couplings (in planar processes) \rightarrow automatically verified in DY at QED & LO QCD levels and in several higher-order QCD contributions

Even when the Lam-Tung relation is violated,

 $\hat{\lambda}$ can always be defined and is always frame-independent

 $\tilde{\lambda} = +1 \rightarrow$ Lam-Tung. New interpretation: only *vector boson – quark – quark* couplings (in planar processes) \rightarrow automatically verified in DY at QED & LO QCD levels and in several higher-order QCD contributions

 $\tilde{\lambda} = +1 - \mathcal{O}(0.1)$ $\rightarrow +1 \text{ for } p_T \rightarrow 0$

→ vector-boson – quark – quark couplings in non-planar processes (higher-order contributions)

Even when the Lam-Tung relation is violated,

 $\widetilde{\lambda}$ can always be defined and is always frame-independent

 $\tilde{\lambda} = +1 \rightarrow$ Lam-Tung. New interpretation: only *vector boson – quark – quark* couplings (in planar processes) \rightarrow automatically verified in DY at QED & LO QCD levels and in several higher-order QCD contributions

$$\begin{split} \tilde{\lambda} &= +1 - \mathcal{O}(0.1) \\ &\rightarrow +1 \text{ for } p_T \rightarrow 0 \end{split}$$

→ vector-boson – quark – quark couplings in non-planar processes (higher-order contributions)

 $\left. \begin{array}{c} \tilde{\lambda} \ll +1 \\ \tilde{\lambda} > +1 \end{array} \right\} \rightarrow \text{contribution of } \textit{different/new couplings or processes} \\ \text{(e.g.: } \textit{Z} \text{ from Higgs, } \textit{W} \text{ from top, triple } \textit{ZZ}\gamma \text{ coupling,} \\ \text{higher-twist effects in DY production, etc...} \end{array}$

Polarization can be used to distinguish between different kinds of physics signals, or between "signal" and "background" processes (→improve significance of new-physics searches)
Example: *W* from top \leftrightarrow *W* from *q*-*q*bar and *q*-*g*

Example: *W* from top \leftrightarrow *W* from *q*-*q*bar and *q*-*g*

of the W is a signature of the top

Example: W from top \leftrightarrow W from q-qbar and q-g

We measure λ_{ϑ} choosing the helicity axis

We measure $\lambda_{artheta}$ choosing the helicity axis

We measure λ_{ϑ} choosing the helicity axis \sim Х^вХ ჯ_მჯ m Marine 2 0.5 0.5 directly ┿ 0 produced W $y_W = 0$ r, -0.5 t W from top -1 0 20 60 80 100 140 0 20 80 100 120 140 40 120 40 60 p_{_}(W) [GeV/c] p_{_}(W) [GeV/c]

31

We measure λ_{ϑ} choosing the helicity axis

We measure λ_{ϑ} choosing the helicity axis

b) Rotation-invariant approach

Example: the q-qbar \rightarrow ZZ continuum background

 $\boldsymbol{\vartheta}_{1} \boldsymbol{\varphi}_{1}$

dominant Standard Model background for new-signal searches in the $ZZ \rightarrow 4\ell$ channel with $m(ZZ) > 200 \text{ GeV}/c^2$

6

The new Higgs-like resonance was discovered also thanks to these techniques

The distribution of the **5** angles depends on the kinematics $W(\cos\Theta, \cos\vartheta_1, \varphi_1, \cos\vartheta_2, \varphi_2 \mid M_{ZZ}, \vec{p}(Z_1), \vec{p}(Z_2))$

 Z_2

 ℓ_2^{\dagger}

 $\vartheta_2 \varphi_2$

- for helicity conservation each of the two Z's is transverse along the direction of one or the other incoming quark
- t-channel and u-channel amplitudes are proportional to $\frac{1}{1-\cos\Theta}$ and $\frac{1}{1+\cos\Theta}$ for $M_Z/M_{ZZ} \rightarrow 0$

Discriminant nº1: **Z polarization**

Discriminant nº1: Z polarization

Discriminant nº1: **Z polarization**

Discriminant nº2: **Z** emission direction

Putting everything together

5 angles (Θ , ϑ_1 , φ_1 , ϑ_2 , φ_2), with distribution depending on 5 kinematic variables (M_{ZZ} , $p_T(Z_1)$, $y(Z_1)$, $p_T(Z_2)$, $y(Z_2)$)

event probabilities, including detector acceptance and efficiency effects

Putting everything together

5 angles ($\boldsymbol{\Theta}$, $\boldsymbol{\vartheta}_1$, $\boldsymbol{\varphi}_1$, $\boldsymbol{\vartheta}_2$, $\boldsymbol{\varphi}_2$), with distribution depending on 5 kinematic variables (M_{ZZ} , $p_T(Z_1)$, $y(Z_1)$, $p_T(Z_2)$, $y(Z_2)$)

 $\beta > 0 \rightarrow$ observation of something new

 $\beta < 1 \rightarrow$ exclusion of expected hypothetical signal

 $\beta > 0 \rightarrow$ observation of something new

 $\beta < 1 \rightarrow$ exclusion of expected hypothetical signal

"integrated yield" constraint: signal = excess yield wrt expected **number of BG events**

1)
$$\mathcal{P}_{BGnorm}(\boldsymbol{\beta}) \propto \frac{e^{-(\mu_{B} + \boldsymbol{\beta} \, \mu_{S})} (\mu_{B} + \boldsymbol{\beta} \, \mu_{S})^{N}}{N!}$$

crucially dependent on the expected BG normalization

 $\mu_{\rm B}$ = avg. number of BG events expected for the given luminosity $\mu_{\rm S}$ = avg. number of Higgs events expected for the given luminosity N = total number of events in the sample

 $\beta > 0 \rightarrow$ observation of something new

 $\beta < 1 \rightarrow$ exclusion of expected hypothetical signal

"integrated yield" constraint: signal = excess yield wrt expected **number of BG events**

1)
$$\mathcal{P}_{BGnorm}(\beta) \propto \frac{e^{-(\mu_{B} + \beta \mu_{S})} (\mu_{B} + \beta \mu_{S})^{N}}{N!}$$

crucially dependent on the expected BG normalization

constraint from angular distribution:

signal = deviation from the *shape* of the BG angular distribution

2)
$$\mathcal{P}_{angular}(\beta) \propto \prod_{i=1}^{N} \left(\frac{\mu_{B}}{\mu_{B} + \beta \mu_{S}} w_{B}(\xi_{i}) + \frac{\beta \mu_{S}}{\mu_{B} + \beta \mu_{S}} w_{S}(\xi_{i}) \right)$$

*in*dependent of luminosity and crosssection uncertainties!

 $\mu_{\rm B}$ = avg. number of BG events expected for the given luminosity $\mu_{\rm S}$ = avg. number of Higgs events expected for the given luminosity N = total number of events in the sample

 $\beta > 0 \rightarrow$ observation of something new

 $\beta < 1 \rightarrow$ exclusion of expected hypothetical signal

"integrated yield" constraint: signal = excess yield wrt expected **number of BG events**

1)
$$\mathcal{P}_{BGnorm}(\beta) \propto \frac{e^{-(\mu_{B} + \beta \mu_{S})} (\mu_{B} + \beta \mu_{S})^{N}}{N!}$$

crucially dependent on the expected BG normalization

constraint from angular distribution:

signal = deviation from the *shape* of the BG angular distribution

2)
$$\mathcal{P}_{angular}(\beta) \propto \prod_{i=1}^{N} \left(\frac{\mu_{B}}{\mu_{B} + \beta \mu_{S}} w_{B}(\xi_{i}) + \frac{\beta \mu_{S}}{\mu_{B} + \beta \mu_{S}} w_{S}(\xi_{i}) \right)$$

*in*dependent of luminosity and crosssection uncertainties!

3) $\mathcal{P}_{tot}(\beta) = \mathcal{P}_{angular}(\beta) \times \mathcal{P}_{BGnorm}(\beta)$

combination of the two methods

 $\mu_{\rm B}$ = avg. number of BG events expected for the given luminosity $\mu_{\rm S}$ = avg. number of Higgs events expected for the given luminosity N = total number of events in the sample

Confidence levels

Limits vs m_H

Variation with mass essentially due to varying BG level: 30% for $m_H = 500 \text{ GeV}/c^2 \rightarrow 70\%$ for $m_H = 800 \text{ GeV}/c^2$ Angular method more advantageous with higher BG levels

Further reading

- P. Faccioli, C. Lourenço, J. Seixas, and H.K. Wöhri, J/psi polarization from fixed-target to collider energies, Phys. Rev. Lett. 102, 151802 (2009)
- HERA-B Collaboration, Angular distributions of leptons from J/psi's produced in 920-GeV fixed-target proton-nucleus collisions, Eur. Phys. J. C 60, 517 (2009)
- P. Faccioli, C. Lourenço and J. Seixas, *Rotation-invariant relations in vector meson decays into fermion pairs*, Phys. Rev. Lett. 105, 061601 (2010)
- P. Faccioli, C. Lourenço and J. Seixas, *New approach to quarkonium polarization studies*, <u>Phys. Rev. D 81, 111502(R) (2010)</u>
- P. Faccioli, C. Lourenço, J. Seixas and H.K. Wöhri, *Towards the experimental clarification of quarkonium polarization*, <u>Eur. Phys. J. C 69, 657 (2010)</u>
- P. Faccioli, C. Lourenço, J. Seixas and H. K. Wöhri, Rotation-invariant observables in parity-violating decays of vector particles to fermion pairs, Phys. Rev. D 82, 096002 (2010)
- P. Faccioli, C. Lourenço, J. Seixas and H. K. Wöhri, *Model-independent constraints on the shape parameters of dilepton angular distributions*, <u>Phys. Rev. D 83, 056008 (2011)</u>
- P. Faccioli, C. Lourenço, J. Seixas and H. K. Wöhri, Determination of -chi_c and chi_-b polarizations from dilepton angular distributions in radiative decays, Phys. Rev. D 83, 096001 (2011)
- P. Faccioli and J. Seixas, Observation of χ_c and χ_b nuclear suppression via dilepton polarization measurements, Phys. Rev. D 85, 074005 (2012)
- P. Faccioli, Questions and prospects in quarkonium polarization measurements from proton-proton to nucleus-nucleus collisions, invited "brief review", Mod. Phys. Lett. A Vol. 27 N. 23, 1230022 (2012)
- P. Faccioli and J. Seixas, Angular characterization of the $ZZ \rightarrow 4\ell$ background continuum to improve sensitivity of new physics searches, Phys. Lett. B 716, 326 (2012)
- P. Faccioli, C. Lourenço, J. Seixas and H. K. Wöhri, *Minimal physical constraints on the angular distributions of two-body boson decays*, submitted to Phys. Rev. D