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Question: Are FPGAs Suitable for LAr?
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n Liquid Argon Calorimeter High 
Luminosity Upgrade/Phase I
q Currently using custom ASIC

n Collect data from ADCs
n Transfer data with optical links

q Additional processing and flexibility needed
n Higher data throughput (higher luminosity)
n Simple, high throughput data processing

n FPGAs considered as replacement for 
some ASIC logic
q Flexibility (through reconfiguration)
q Perform low-level processing

Xilinx Kintex7



Xilinx Kintex7
n Commercially available FPGA

q 28 nm, low power programmable logic
q High-speed serial transceivers (MGT)
q High density (logic and memory)

n Built-In Configuration Scrubbing
q Support for Configuration Read back and Self-Repair
q Auto detect and repair single-bit upsets within a frame
q SEU Mitigation IP for correcting multiple-bit upsets

n Proven mitigation techniques
q Single-Event Upset Mitigation (SEM) IP
q Configuration scrubbing
q Triple Modular Redundancy (TMR)
q Fault tolerant Serial I/O State machines
q BRAM ECC Protection

n Demonstrated success with previous FPGA generations in space
q Virtex, Virtex-II, Virtex-IV, Virtex 5QV
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Kintex7 325T
•407,600 User FFs
•326,080 logic cells
•840 DSP Slices
•445 Block RAM Memory

• 16.4 Mb
•16 12.5 Gb/s Transceivers



Challenge: Radiation Background
n Total Ionizing Dose (TID)
n Single Event Upsets (SEU)

q Configuration memory: determines the logic/routing of the design
q Block Memory: used by circuits for temporary storage and buffering

n Single Event Transient (SET)
q Impact user FF state

n Single Event Latch-up (SEL)
q High-current state caused by parasitic bipolar short from power to ground

n Single Event Functional Interrupt
q Single event that causes functional interrupt of FPGA

n Power-On Reset (POR) – reconfigure device
n SelectMAP, FAR Global Signal, Readback, and Scrub SEFIs

n Can FPGA operate with high availability in the presence of single event 
upsets (SEU)?
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Kintex7 Testing Goals and Plans
n Estimate FPGA upset rate within ATLAS LAr

q Determine static cross section of configuration (neutrons and protons)
q Understand LAr environment (energy spectrum)
q Model upset rate (used to direct appropriate mitigation methods)

n Estimate device lifetime within LAr
q Measure/Estimate Total Ionizing Dose of Kintex7
q Look for unknown/unexpected failure mechanisms

n Single Event Functional Interrupts (SEFI)
q Observe and measure Kintex7 SEFI modes
q Verify SEFI detection and response methods

n Validate Mitigation Methods
q Self Scrubbing and neighborhood watchdog
q TMR and other detection methods
q I/O: High Speed MGTs and Conventional I/O
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Kintex7 Radiation Testing
n LANSCE, Los Alamos, NM, USA

q October 9-16, 2012 (ICE house)
n White spectrum neutrons
n 12 hours of testing (5.7E10 neutrons)

q Estimate neutron BRAM/CRAM cross section
n 10446 Configuration upsets (6.89E-15)
n 2252 BRAM upsets (6.15E-15)

n H4IRRAD, Geneva, Switzerland
q November 15-19, 2012 (West Area beam stop)

n 50 hours of testing (1.8E9 hadrons)
q Estimate “environment” cross section

n 1857 Configuration upsets (1.5E-14)
n 432 BRAM upsets (1.4E-14)

n TSL, Uppsala, Sweden
q May 15-18, 2013

n High Energy Protons (180 MeV), White Spectrum Neutrons

q Estimate proton cross section
n Correlate cross section estimates with LANSCE

q Validate scrubber and TMR

7



Kintex7 Radiation Testing
n Texas A&M, College Station, TX, USA

q September 6, 2013
n Heavy Ion Testing (Nitrogen, Xenon, Argon)
n 16 hours of testing 

q Single Event Latchup (SEL) Testing
q Wide range LET testing

n Space Rate Upset estimation

q Results being evaluated

n LANSCE, Los Alamos, NM, USA
q September 17-24, 2013 (ICE House)

n Over 30 hours of neutron testing

q Mitigation Validation
n Enhanced scrubber testing
n Multi-Gigabit Transceiver Testing
n TMR validation

q Results being evaluated
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Static Cross Section Results
n Large amount of data on CRAM/BRAM static cross section

q Neutrons: LANSCE and TSL (>5.7E10 neutrons)
q Protons: TSL (1.3E13 protons)
q Mixed field: H4IRRAD (1.8E9 hadrons)
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Facility CRAM BRAM
LANSCE (WS Neutron) 6.89E-15 6.15E-15
CERN H4 (HE Hadron) 1.50E-14 1.40E-14
TSL (180 MeV Proton) 8.29E-15 8.19E-15
TSL (WS Neutron) 6.55E-15 N/A

Cross Section Measurements



LAr Static Cross Section Estimation

n Experimentally determined cross-section are defined as:

n σ0 can	
  be	
  determined	
  from	
  experimental	
  measurement	
  if	
  w(E)	
  
is	
  known.	
  	
  We	
  use	
  three	
  different	
  parameteriza:ons	
  for	
  w(E)	
  
and	
  calculate	
  the	
  range	
  of	
  results.	
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where

B. Bergmann et al, 2013 "Time of flight measurement of fast neutron interactions in 
silicon by means of timepix detectors", in IWorid2013, France



LAr Static Cross Section Estimation
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(bit-1fb-1)

1obtained	
  by	
  mul:plying	
  the	
  measure	
  cross	
  sec:on	
  by	
  the	
  fluence	
  of	
  par:cles	
  above	
  20	
  MeV	
  (2.84x108	
  
cm-­‐2H-­‐1)

1

n Phase 2 will integrate 2 fb in 10 h (5.56E-5 fb/s)
q CRAM:	
  1.01E-­‐10	
  upsets/bit/s
q BRAM:	
  9.06E-­‐11	
  BRAM	
  upsets/bit/s

n Estimate accuracy: ± 50%



Kintex7 Device Upset Estimates
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Upset Rate: Device upsets / s

MTTU:   Mean Time to Upset (seconds) = 1/Upset Rate

7K325 (Device Under Test):
•6.84E-3 CRAM upsets per second (every 150 s)
•1.49E-3 BRAM upsets per second (every 670 s)

 7K70 7K160 7K325 7K355 7K410 7K420 7K480
CRAM 1.7E+07 3.7E+07 6.8E+07 7.7E+07 8.7E+07 1.0E+08 1.0E+08
BRAM 5.0E+06 1.2E+07 1.6E+07 2.6E+07 2.9E+07 3.1E+07 3.5E+07
CRAM Upset 
Rate

1.72E-03 3.75E-03 6.85E-03 7.77E-03 8.83E-03 1.04E-02 1.04E-02

CRAM MTTU 5.8E+02 2.7E+02 1.5E+02 1.3E+02 1.1E+02 9.7E+01 9.7E+01
BRAM Upset 
Rate

4.51E-04 1.08E-03 1.49E-03 2.39E-03 2.65E-03 2.79E-03 3.19E-03

BRAM MTTU 2.2E+03 9.2E+02 6.7E+02 4.2E+02 3.8E+02 3.6E+02 3.1E+02



Implications of  Upset Estimations
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n Configuration RAM (CRAM) : 1 upset/150 s
q Continuous configuration scrubbing is required

n Prevent build-up of configuration errors
n Scrub rate > 10x upset rate ( > 1/15 s)

q Active hardware redundancy required
n Mitigate effects of single configuration upset
n Example: Triple-Modular Redundancy (TMR)

n BRAM : 1 upset/670 s
q Exploit BRAM ECC (SEC/DED)
q Employ BRAM scrubbing

n Prevent build-up of errors to “break” SEC/DED code



Multi-Bit Upsets
n Single event may upset more than one cell

q Charge sharing by adjacent circuit nodes
q More common with smaller process technology (28 nm)

n MBUs may “break” mitigation methods
q Error Correction Codes (FrameECC, SEC/DED)
q Triple Modular Redundancy (assumes single fault)

n Multi-bit upset analysis
q Multi-bit CRAM and BRAM events were

 observed
q Mitigation methods must anticipate some

MBU events
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Configuration Frame Interleaving
n CRAM bits interleaved to avoid intra-frame MBUs
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Configuration Frame Interleaving
n CRAM bits interleaved to avoid intra-frame MBUs
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Example MBU:
-two “intra-frame” upsets
-four “inter-frame” upsets



CRAM MBU Testing Results

n 9.9% of events cause multiple upsets within a frame
q Estimated CRAM MBU rate: 1.02E-11
q 7K325 rate : 1515 seconds (~25 min)
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Upsets/
event

Frequency

1 90.1%
2 7.5%
3 1.4%
4 .60%
5 .26%

6+ .16%

Upsets/
event

Frequency

1 65.0%
2 26.8%
3 2.9%
4 3.5%
5 .61%

6+ 1.3%

Intra-Frame MBUs Inter-Frame MBUs

*results based on 2012 LANSCE neutron test



Configuration Scrubbing
n Configuration Scrubbing Constraints

q Must repair single and multiple-bit upsets quickly
n Accumulation of upsets will break mitigation (such as TMR)
n Accumulation of upsets will increase static power 

q Minimize external circuitry (avoid radiation hardened scrubbing HW)
n Kintex7 FPGA contains internal “Frame” Scrubber

q Continuously monitors state of configuration memory (FrameECC)
q Automatically repairs single-bit errors within a frame
q Identifies multi-bit errors and configuration CRC failures

n Additional scrubber support needed to repair MBUs
q JTAG connection to host controller (slow, limited hardware)
q Configuration controller and on-board memory (fast, complex hardware)

n Several Configuration Scrubbing approaches currently being validated
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TID and SEFI
n Total Ionizing Dose (TID): two FPGAs tested

q High energy protons (180 MeV)
q Two FPGAs tested for TID

n FPGA #1: 340 kRad (cause of FPGA failure not yet determined)
n FPGA #2: 446 kRad (FPGA still operational at end of test)

q Initial results are very positive
n More TID testing needed for sufficient statistics (TID is expensive: parts, beam)

n Single-Event Functional Interrupt (SEFI)
q No SEFIs observed during neutron testing
q 3 likely SEFIs observed during proton testing

n Loss of configuration (Power On Reset?)
n Limited capability to identify and characterize SEFI (scrubber needed)

q SEFI cross section appears very small
n Additional SEFI cross section testing needed (better SEFI characterization)
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Future Testing Plans
n SEFI testing

q Obtain more SEFI events to improve statistics
q Observe more SEFI event types
q Understand how to characterize/respond to SEFIs

n TID testing
q Obtain more data on TID failure (more FPGAs, much more beam time)

n Mitigation
q Test TMR for larger circuits and more data

n High flux / scrub ratio needed to break TMR

q Test BRAM ECC 
n High-Speed Serial I/O (GTX)

q Understand failure mechanisms of serializer
q Test serial I/O mitigation methods (AuroraFT)
q Estimate bit-error rate, availability, and overall throughput
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Summary
n Significant radiation testing completed on Kintex7

q Static cross-section well understood (CRAM, BRAM)
q Multi-bit upset behavior identified

n Upset estimates completed for ATLAS LAr environment
n CRAM Scrubber approaches developed and currently 

being tested
q Inner Kintex7 self-scrubber (Single-bit upsets)
q Outer low-resource JTAG scrubber (Multi-bit upsets)
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All results suggest that, with proper SEU mitigation, the Kintex7 may be 
used within the ATLAS Liquid Argon Calorimeter



“Earworm of  the day”
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• The best place to test an FPGA is actually inside the detector itself, 
near the place your electronics will be located. Therefore having a 
test board that is accessible remotely could be the best development 
platform for mitigation techniques. 

• Collaborative work could speed up development of mitigation 
techniques. Could start with a workshop. 



Contact Information
q Mike Wirthlin     wirthlin@byu.edu

q Helio Takai    takai@bnl.gov 
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