Soft Error Rate Estimations of the Kintex-7 FPGA within the ATLAS Liquid Argon (LAr) Calorimeter

TWEPP 2013, 23-27 Sept, 2012, Perugia, Italy

<u>Helio Takai</u> Brookhaven National Laboratory Upton, New York, USA Michael Wirthlin and Alex Harding Brigham Young University, CHREC Provo, Utah, USA

Thanks to collaborators:

- Mauro Citterio, INFN Milan
- Austin Lesea, Xilinx
- Luis Hervas, CERN
- Ketil Røed, University of Oslo

Question: Are FPGAs Suitable for LAr?

- Liquid Argon Calorimeter High Luminosity Upgrade/Phase I
 - Currently using custom ASIC
 - Collect data from ADCs
 - Transfer data with optical links
 - Additional processing and flexibility needed
 - Higher data throughput (higher luminosity)
 - Simple, high throughput data processing
- FPGAs considered as replacement for some ASIC logic
 - Flexibility (through reconfiguration)
 - Perform low-level processing

lauid Magneti, Salenaid Magnet, SCT hacker, Pael Detector, MT hocker

Xilinx Kintex7

- Commercially available FPGA
 - 28 nm, low power programmable logic
 - High-speed serial transceivers (MGT)
 - High density (logic and memory)
- Built-In Configuration Scrubbing
 - Support for Configuration Read back and Self-Repair
 - Auto detect and repair single-bit upsets within a frame
 - SEU Mitigation IP for correcting multiple-bit upsets
- Proven mitigation techniques
 - Single-Event Upset Mitigation (SEM) IP
 - Configuration scrubbing
 - Triple Modular Redundancy (TMR)
 - Fault tolerant Serial I/O State machines
 - BRAM ECC Protection
- Demonstrated success with previous FPGA generations in space
 - Virtex, Virtex-II, Virtex-IV, Virtex 5QV

<u>Kintex7 325T</u>

•407,600 User FFs •326,080 logic cells •840 DSP Slices •445 Block RAM Memory • 16.4 Mb •16 12.5 Gb/s Transceivers

Challenge: Radiation Background

- Total Ionizing Dose (TID)
- Single Event Upsets (SEU)
 - Configuration memory: determines the logic/routing of the design
 - Block Memory: used by circuits for temporary storage and buffering
- Single Event Transient (SET)
 - Impact user FF state
- Single Event Latch-up (SEL)
 - High-current state caused by parasitic bipolar short from power to ground
- Single Event Functional Interrupt
 - Single event that causes functional interrupt of FPGA
 - Power-On Reset (POR) reconfigure device
 - SelectMAP, FAR Global Signal, Readback, and Scrub SEFIs
- Can FPGA operate with high availability in the presence of single event upsets (SEU)?

Kintex7 Testing Goals and Plans

- Estimate FPGA upset rate within ATLAS LAr
 - Determine static cross section of configuration (neutrons and protons)
 - Understand LAr environment (energy spectrum)
 - Model upset rate (used to direct appropriate mitigation methods)
- Estimate device lifetime within LAr
 - Measure/Estimate Total Ionizing Dose of Kintex7
 - Look for unknown/unexpected failure mechanisms
- Single Event Functional Interrupts (SEFI)
 - Observe and measure Kintex7 SEFI modes
 - Verify SEFI detection and response methods
- Validate Mitigation Methods
 - Self Scrubbing and neighborhood watchdog
 - TMR and other detection methods
 - I/O: High Speed MGTs and Conventional I/O

Kintex7 Radiation Testing

- LANSCE, Los Alamos, NM, USA
 - October 9-16, 2012 (ICE house)
 - White spectrum neutrons
 - 12 hours of testing (5.7E10 neutrons)
 - Estimate neutron BRAM/CRAM cross section
 - 10446 Configuration upsets (6.89E-15)
 - 2252 BRAM upsets (6.15E-15)

H4IRRAD, Geneva, Switzerland

- November 15-19, 2012 (West Area beam stop)
 - 50 hours of testing (1.8E9 hadrons)
- Estimate "environment" cross section
 - 1857 Configuration upsets (1.5E-14)
 - 432 BRAM upsets (1.4E-14)
- TSL, Uppsala, Sweden
 - May 15-18, 2013
 - High Energy Protons (180 MeV), White Spectrum Neutrons
 - Estimate proton cross section
 - Correlate cross section estimates with LANSCE
 - Validate scrubber and TMR

Kintex7 Radiation Testing

- Texas A&M, College Station, TX, USA
 - September 6, 2013
 - Heavy Ion Testing (Nitrogen, Xenon, Argon)
 - 16 hours of testing
 - Single Event Latchup (SEL) Testing
 - Wide range LET testing
 - Space Rate Upset estimation
 - Results being evaluated

LANSCE, Los Alamos, NM, USA

- September 17-24, 2013 (ICE House)
 - Over 30 hours of neutron testing
- Mitigation Validation
 - Enhanced scrubber testing
 - Multi-Gigabit Transceiver Testing
 - TMR validation
- Results being evaluated

Static Cross Section Results

- Large amount of data on CRAM/BRAM static cross section
 - Neutrons: LANSCE and TSL (>5.7E10 neutrons)
 - Protons: TSL (1.3E13 protons)
 - Mixed field: H4IRRAD (1.8E9 hadrons)

Facility	CRAM	BRAM			
LANSCE (WS Neutron)	6.89E-15	6.15E-15			
CERN H4 (HE Hadron)	1.50E-14	1.40E-14			
TSL (180 MeV Proton)	8.29E-15	8.19E-15			
TSL (WS Neutron)	6.55E-15	N/A			
Cross Section Measurements					

Cross Section Measurements

LAr Static Cross Section Estimation

Experimentally determined cross-section are defined as:

 $\sigma_{SEU} = \sigma_0 \frac{\int_{E_0}^{\infty} w(E) \frac{dn}{dE} dE}{\int_{E_{thresh}}^{\infty} \frac{dn}{dE} dE} \quad \text{where} \quad w(E) = 1 - exp((\frac{E - E_0}{W})^{\alpha})$

σ₀ can be determined from experimental measurement if w(E) is known. We use three different parameterizations for w(E) and calculate the range of results.

E_0	W	α	σ_0 (BRAM)	σ ₀ (CRAM)
(0.5 ± 0.4)	(63.6 ± 4.6)	(0.986 ± 0.038)	7.98×10^{-15}	7.13×10^{-15}
4	80	0.586	8.74×10^{-15}	7.80×10^{-15}
1	20	1.546	6.24×10^{-15}	5.57×10^{-15}

B. Bergmann et al, 2013 "Time of flight measurement of fast neutron interactions in silicon by means of timepix detectors", in IWorid2013, France

LAr Static Cross Section Estimation

	Timepix	V-4VQ(1)	V-4VQ(2)	Simple
	(bit ⁻¹ fb ⁻¹)			
CRAM	1.87×10^{-6}	$2.04 imes 10^{-6}$	1.82×10^{-6}	1.96×10^{-6}
BRAM	$1.67 imes 10^{-6}$	1.82×10^{-6}	$1.63 imes 10^{-6}$	1.75×10^{-6}

¹obtained by multiplying the measure cross section by the fluence of particles above 20 MeV (2.84×10^8 cm⁻²fb⁻¹)

- Phase 2 will integrate 2 fb in 10 h (5.56E-5 fb/s)
 - CRAM: 1.01E-10 upsets/bit/s
 - BRAM: 9.06E-11 BRAM upsets/bit/s
- Estimate accuracy: ± 50%

Kintex7 Device Upset Estimates

	7K70	7K160	7K325	7K355	7K410	7K420	7K480
CRAM	1.7E+07	3.7E+07	6.8E+07	7.7E+07	8.7E+07	1.0E+08	1.0E+08
BRAM	5.0E+06	1.2E+07	1.6E+07	2.6E+07	2.9E+07	3.1E+07	3.5E+07
CRAM Upset Rate	1.72E-03	3.75E-03	6.85E-03	7.77E-03	8.83E-03	1.04E-02	1.04E-02
CRAM MTTU	5.8E+02	2.7E+02	1.5E+02	1.3E+02	1.1E+02	9.7E+01	9.7E+01
BRAM Upset Rate	4.51E-04	1.08E-03	1.49E-03	2.39E-03	2.65E-03	2.79E-03	3.19E-03
BRAM MTTU	2.2E+03	9.2E+02	6.7E+02	4.2E+02	3.8E+02	3.6E+02	3.1E+02

Upset Rate: Device upsets / s

MTTU: Mean Time to Upset (seconds) = 1/Upset Rate

7K325 (Device Under Test):

•6.84E-3 CRAM upsets per second (every 150 s)

•1.49E-3 BRAM upsets per second (every 670 s)

Implications of Upset Estimations

- Configuration RAM (CRAM) : 1 upset/150 s
 - Continuous configuration scrubbing is required
 - Prevent build-up of configuration errors
 - Scrub rate > 10x upset rate (> 1/15 s)
 - Active hardware redundancy required
 - Mitigate effects of single configuration upset
 - Example: Triple-Modular Redundancy (TMR)
- BRAM : 1 upset/670 s
 - Exploit BRAM ECC (SEC/DED)
 - Employ BRAM scrubbing
 - Prevent build-up of errors to "break" SEC/DED code

Multi-Bit Upsets

- Single event may upset more than one cell
 - Charge sharing by adjacent circuit nodes
 - More common with smaller process technology (28 nm)
- MBUs may "break" mitigation methods
 - Error Correction Codes (FrameECC, SEC/DED)
 - Triple Modular Redundancy (assumes single fault)
- Multi-bit upset analysis
 - Multi-bit CRAM and BRAM events were observed
 - Mitigation methods must anticipate some MBU events

Configuration Frame Interleaving

CRAM bits interleaved to avoid intra-frame MBUs

Configuration Frame Interleaving

CRAM bits interleaved to avoid intra-frame MBUs

Configuration Frame Interleaving

CRAM bits interleaved to avoid intra-frame MBUs

⁻rame #0

⁻rame #1

Physical

MBU is spilt between two frames: FrameECC still operates

Example MBU: -two "intra-frame" upsets -four "inter-frame" upsets

CRAM MBU Testing Results

Intra-Frame MBUs		Inter-Frame MBUs		
Upsets/ event	Frequency	Upsets/ event	Frequency	
1	90.1%	1	65.0%	
2	7.5%	2	26.8%	
3	1.4%	3	2.9%	
4	.60%	4	3.5%	
5	.26%	5	.61%	
6+	.16%	6+	1.3%	

*results based on 2012 LANSCE neutron test

- 9.9% of events cause multiple upsets within a frame
 - Estimated CRAM MBU rate: 1.02E-11
 - 7K325 rate : 1515 seconds (~25 min)

Configuration Scrubbing

- Configuration Scrubbing Constraints
 - Must repair single and multiple-bit upsets quickly
 - Accumulation of upsets will break mitigation (such as TMR)
 - Accumulation of upsets will increase static power
 - Minimize external circuitry (avoid radiation hardened scrubbing HW)
- Kintex7 FPGA contains internal "Frame" Scrubber
 - Continuously monitors state of configuration memory (FrameECC)
 - Automatically repairs single-bit errors within a frame
 - Identifies multi-bit errors and configuration CRC failures
- Additional scrubber support needed to repair MBUs
 - JTAG connection to host controller (slow, limited hardware)
 - Configuration controller and on-board memory (fast, complex hardware)
- Several Configuration Scrubbing approaches currently being validated

TID and SEFI

- Total Ionizing Dose (TID): two FPGAs tested
 - High energy protons (180 MeV)
 - Two FPGAs tested for TID
 - FPGA #1: 340 kRad (cause of FPGA failure not yet determined)
 - FPGA #2: 446 kRad (FPGA still operational at end of test)
 - Initial results are very positive
 - More TID testing needed for sufficient statistics (TID is expensive: parts, beam)
- Single-Event Functional Interrupt (SEFI)
 - No SEFIs observed during neutron testing
 - 3 likely SEFIs observed during proton testing
 - Loss of configuration (Power On Reset?)
 - Limited capability to identify and characterize SEFI (scrubber needed)
 - SEFI cross section appears very small
 - Additional SEFI cross section testing needed (better SEFI characterization)

Future Testing Plans

SEFI testing

- Obtain more SEFI events to improve statistics
- Observe more SEFI event types
- Understand how to characterize/respond to SEFIs
- TID testing
 - Obtain more data on TID failure (more FPGAs, much more beam time)
- Mitigation
 - Test TMR for larger circuits and more data
 - High flux / scrub ratio needed to break TMR
 - Test BRAM ECC
- High-Speed Serial I/O (GTX)
 - Understand failure mechanisms of serializer
 - Test serial I/O mitigation methods (AuroraFT)
 - Estimate bit-error rate, availability, and overall throughput

Summary

- Significant radiation testing completed on Kintex7
 - Static cross-section well understood (CRAM, BRAM)
 - Multi-bit upset behavior identified
- Upset estimates completed for ATLAS LAr environment
- CRAM Scrubber approaches developed and currently being tested
 - Inner Kintex7 self-scrubber (Single-bit upsets)
 - Outer low-resource JTAG scrubber (Multi-bit upsets)

All results suggest that, with proper SEU mitigation, the Kintex7 may be used within the ATLAS Liquid Argon Calorimeter

"Earworm of the day"

- The best place to test an FPGA is actually inside the detector itself, near the place your electronics will be located. Therefore having a test board that is accessible remotely could be the best development platform for mitigation techniques.
- Collaborative work could speed up development of mitigation techniques. Could start with a workshop.

Contact Information

- Mike Wirthlin <u>wirthlin@byu.edu</u>
- Helio Takai <u>takai@bnl.gov</u>

CERN TimePix detector