

Beyond Feynman Diagrams

Lance Dixon
Academic Training Lectures
CERN
April 24-26, 2013

Standard Model

- All elementary forces except gravity in same basic framework
- Matter made of spin ½ fermions
- Forces carried by spin 1 vector bosons: γ W⁺ W⁻ Z⁰
- If we add a spin 0 Higgs boson H
 to explain masses of W+ W- Z⁰
 - → finite, testable predictions for all quantities in principle

New Physics at LHC

- Many theories predict a host of new massive particles with masses similar to the W and Z bosons, within reach of the LHC, often including a dark matter candidate:
 - supersymmetry
 - new dimensions of space-time
 - new forces
 - etc.
- Most new massive particles decay rapidly to old,
- ~massless particles:
 - quarks, gluons, charged leptons, neutrinos, photons
- How to distinguish new physics from old (Standard Model)?
- From other types of new physics?

Signals vs. Backgrounds

electron-positron colliders– small backgrounds

hadron colliders

– large backgrounds

LHC Data Dominated by Jets

"New physics at the LHC is a riddle, wrapped in a mystery, inside an enigma; but perhaps there is a key." -W. Churchill

The Key of Asymptotic Freedom

Gross, Wilczek, Politzer (1973)

Quantum fluctuations of massless virtual particles polarize vacuum

QED: electrons screen charge (e larger at short distances)

$$\gamma \sim e^{2}(r) = \frac{e^{2}(r_{0})}{1 + \frac{2e^{2}(r_{0})}{3\pi} ln\frac{r}{r_{0}}}$$

QCD: gluons anti-screen charge (g_s smaller at short distances)

Gluon self-interactions make quarks almost free, and make QCD calculable at short distances (high energies): $\alpha_s \rightarrow 0$ asymptotically

Short-distance calculability

Running of α_s is *logarithmic*, *slow* at short distances (large Q)

L. Dixon Beyond Feynman Diagrams

Lecture 1 April 24, 2013

QCD Factorization & Parton Model

Academic Training Lectures by Aude Gehrmann-de Ridder: May 22-24

At short distances, quarks and gluons (partons) in proton are almost free. Sampled "one at a time"

Short-Distance Cross Section in Perturbation Theory

$$\hat{\sigma}(\alpha_s, \mu_F, \mu_R) = \left[\alpha_s(\mu_R)\right]^{n_\alpha} \begin{bmatrix} \hat{\sigma}^{(0)} + \frac{\alpha_s}{2\pi} \hat{\sigma}^{(1)}(\mu_F, \mu_R) + \left(\frac{\alpha_s}{2\pi}\right)^2 \hat{\sigma}^{(2)}(\mu_F, \mu_R) + \cdots \end{bmatrix}$$
LO NLO NNLO

Problem: Leading-order (LO) predictions only qualitative

due to poor convergence of expansion in $\alpha_s(\mu)$

Estimate "error" bands by varying $\mu_R = \mu_F = \mu$ ample: Z production at Tevatron function of rapidity Y colar angle) Example: **Z** production at Tevatron as function of rapidity Y (~polar angle)

50% shift, LO → NLO

by NNLO, a precision observable

Lecture 1

April 24, 2013

LO uncertainty increases with number of jets

Uncertainty brought under much better control with NLO corrections: ~50% or more → ~15-20%

NLO required for quantitative control of multi-jet final states

Why Care About Multi-Jet Final States? New Physics Example: Supersymmetry

- Symmetry between fermions (matter) and bosons (forces)
- Very elegant, also solves theoretical puzzles
- Lightest supersymmetric particle (LSP) can be dark matter
- For every elementary particle already seen, another one should show up (soon?!?) at LHC

Classic SUSY dark matter signature

Heavy colored particles decay rapidly to stable Weakly Interacting Massive Particle (WIMP = LSP) plus jets

Is LHC already making dark matter?

- 5 jets
- sum of jet transverse momenta H_T= 1132 GeV
- missing transverse energy H_{TMiss} = 693 GeV

No! Happens in Standard Model too

MET + 4 jets from

 $pp \rightarrow Z + 4 \text{ jets},$ $Z \rightarrow \text{neutrinos}$ Neutrinos escape detector.

Irreducible background.

State of art for Z+4 jets
was based on
Leading Order (LO)
approximation in QCD
→ normalization uncertain

Now available at

Next to Leading Order,

greatly reducing
theoretical uncertainties

LO = Trees

LO cross section uses only Feynman diagrams with no closed loops – tree diagrams.

Here's a very simple one:

Although there are many kinds of trees, some harder than others, "textbook" methods usually suffice

NLO = Loops

NLO cross section needs Feynman diagrams with exactly one closed loop

Where the fun really starts – textbook methods quickly fail, even with very powerful computers

- NLO also needs tree-level amplitudes with one more parton
- Both terms infinite(!) combine them to get a finite result

- One-loop amplitudes were the bottleneck for a long time
- focus today on this part of the problem

A Better Way to Compute?

 Backgrounds (and many signals) at NLO require one-loop scattering amplitudes for many ultra-relativistic ("massless") particles

 especially quarks and gluons of QCD

Long ago,
 Feynman told
 us how to do this
 in principle

+ 256,264 more

- Feynman diagrams, while very general and powerful, are not optimized for these processes
- There are much more efficient methods

Just one QCD loop can be a challenge

 $q\overline{q} \rightarrow W + n$ gluons

Quantifying the one-loop QCD challenge

 $pp \rightarrow W + n$ jets (amplitudes with most gluons) # of jets # 1-loop Feynman diagrams 11 110 Current limit with Feynman diagrams 3 1,253 16,648 **Current limit with** 5 256,265 on-shell methods

What can replace Feynman Diagrams?

"One of the most remarkable discoveries in elementary particle physics has been

that of the existence of the

complex plane."

Anonymous(quoted by J. Schwinger)

1960's Analytic S-Matrix

•

Strong interactions: No QCD, no Lagrangian or Feynman rules

Bootstrap program: Reconstruct scattering amplitudes directly from analytic properties: "on-shell" information

Poles

Branch cuts

Landau; Cutkosky; Chew, Mandelstam, Frautschi; Eden, Landshoff, Olive, Polkinghorne; Veneziano; Virasoro, Shapiro; ... (1960s)

Analyticity fell out of favor in 1970s with the rise of QCD & Feynman rules

Now resurrected for computing amplitudes in perturbative QCD – as alternative to Feynman diagrams!

Perturbative information now assists analyticity.

Granularity vs. Fluidity

Helicity Formalism Exposes Tree-Level Simplicity in QCD

Many tree-level helicity amplitudes either vanish or are very short

right-handed
$$h = +1$$
 left-handed $h = -1$ \longrightarrow

Analyticity
makes it possible
to recycle this
simplicity into
loop amplitudes

For Efficient Computation

Reduce

the number of "diagrams"

Reuse

building blocks over & over

Recycle

lower-point (1-loop) & lower-loop (tree) on-shell amplitudes

Recurse

Recycling "Plastic" Amplitudes

Amplitudes fall apart into simpler ones in special limits

pole information

Picture leads directly to BCFW (on-shell) recursion relations

Britto, Cachazo, Feng, Witten, hep-th/0501052

Trees recycled into trees

L. Dixon

All Gluon Tree Amplitudes Built From:

$$3^{+} \cos \frac{\langle 1 2 \rangle^{4}}{\langle 1 2 \rangle \langle 2 3 \rangle \langle 3 1 \rangle}$$

In contrast to Feynman vertices, it's on-shell, completely physical

- On-shell recursion → very compact analytic formulae, fast numerical implementation.
- Can do same sort of thing at loop level.

Branch cut information → Generalized Unitarity (One-loop Plasticity)

Ordinary unitarity:

put 2 particles on shell

Generalized unitarity:

put 3 or 4 particles on shell

Bottom Line:

Trees recycled into loops!

In simpler theories can go to many loops

Ic theory

 6 loop 4 gluon amplitude in N=4 super-Yang-Mills theory (QCD cousin) in the limit of a large number of colors:

Striking patterns emerge

 Including remarkable relations between gauge theory and gravity

- N=8 supergravity exceptionally well-behaved for a point-like theory of quantum gravity:
- Finite through at least 4 loops, probably until 7 loops. No worse behaved through 4 loops than N=4 super-Yang-Mills (a finite theory).

Back to QCD for LHC: Need to Automate. Many Automated On-Shell One Loop Programs

Blackhat: Berger, Bern, LD, Diana, Febres Cordero, Forde, Gleisberg, Höche, Ita, Kosower, Maître, Ozeren, 0803.4180, 0808.0941, 0907.1984, 1004.1659, 1009.2338... + Sherpa \rightarrow NLO W,Z+3,4,5 jets pure QCD 4 jets CutTools: Ossola, Papadopolous, Pittau, 0711.3596 NLO WWW, WWZ, ... Binoth+OPP, 0804.0350 NLO $t\bar{t}b\bar{b}$, $t\bar{t} + 2$ jets,... Bevilacqua, Czakon, Papadopoulos, Pittau, Worek, 0907.4723; 1002.4009 MadLoop: Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau 1103.0621 **HELAC-NLO:** Bevilacqua et al, 1110.1499 Rocket: Giele, Zanderighi, 0805.2152 Ellis, Giele, Kunszt, Melnikov, Zanderighi, 0810.2762 NLO W + 3 jets Ellis, Melnikov, Zanderighi, 0901.4101, 0906.1445 $W^+W^{\pm} + 2$ jets Melia, Melnikov, Rontsch, Zanderighi, 1007.5313, 1104.2327 **SAMURAI:** Mastrolia, Ossola, Reiter, Tramontano, 1006.0710 **NGluon:** Badger, Biedermann, Uwer, 1011.2900,1209.0098 **Open Loops:** Cascioli, Maierhofer, Pozzorini, 1111.5206

As a result...

Dramatic increase recently in rate of NLO QCD predictions for new processes!

Top Quark Pairs + Jets

- Like (W,Z) + jets, very important bkgd
- Cross sections large
- no electroweak couplings
- Jets boost tt system, increase MET, provide jets to pass various signal cuts.
- State of art [Feynman diagrams, new methods]:
- **NLO** *tt* + 1 jet: Dittmaier, Uwer, Weinzierl, hep-ph/0703120,...
- + top decays: Melnikov, Schulze, 1004.3284
- + NLO parton shower: Kardos, Papadopoulos, Trócsányi, 1101.2672
- **NLO** *tt* + *bb*: Bredenstein, Denner, Dittmaier, Pozzorini, 0905.0110, 1001.4006; Bevilacqua, Czakon, Papadopoulos, Pittau, Worek, 0907.4723
- **NLO** *tt* + 2 jets: Bevilacqua, Czakon, Papadopoulos, Worek, 1002.4009

NLO $pp \rightarrow t\bar{t}b\bar{b}$ at LHC

Background to $t \bar{t} + Higgs$, $H \rightarrow b\bar{b}$ at LHC (for λ_t)

First done using Feynman diagrams

Recomputed using unitarity (CutTools)

Bredenstein et al., 0807.1248, 0905.0110

Bevilacqua et al., 0907.4723

shape changes in *bb* distributions from LO to NLO (K=NLO/LO)

Beyond Feynman Diagrams

L. Dixon

Lecture 1 April 24, 2013

$pp \to t\bar{t}jj$

Like $pp \to t\bar{t}b\bar{b}$, a background to $pp \to t\bar{t}H$, $H \to b\bar{b}$

Only computed via unitarity (CutTools)

Bevilacqua, Czakon, Papadopoulos, Worek, 1002.4009

Again large reduction in scale dependence from LO → NLO

NLO $pp \rightarrow Z+1,2,3,4$ jets vs. ATLAS 2011 data

NLO Z+4: Ita et al., 1108.2229

April 24, 2013 Lecture 1

Pure QCD: $pp \rightarrow 4$ jets vs. ATLAS data

4 jet events might hide pair production of 2 colored particles, each decaying to a pair of jets

Detailed study of multi-jet QCD dynamics may help understand other channels

Fixed order vs. Monte Carlo

 Previous plots NLO but fixed-order, few partons: no model of long-distance effects included; cannot pass through a detector simulation

 Methods available for matching NLO parton-level results to parton showers, with NLO accuracy:

- MC@NLO Frixione, Webber (2002);
 ...; SHERPA implementation
- POWHEG Nason (2004);
 Frixione, Nason, Oleari (2007)
- Recently implemented for increasingly complex final states, e.g.

W + 1,2,3 jets Höche et al, 1201.5882

Fixed order vs. Monte Carlo (cont.)

- Most recently, several groups have produced methods for matching/merging NLO and parton showers with the NLO accuracy maintained for events in the sample with more than the minimum number of jets.
- i.e., a NLO version of ALPGEN/Pythia or SHERPA

```
Lavesson, Lönnblad, 0811.2912;
Höche, Krauss, Schönherr, Siegert, 1207.5030;
Gehrmann, Höche, Krauss, Schönherr, Siegert, 1207.5031;
Frederix, Frixione, 1209.6125;
Lönnblad, Prestel, 1211.4827. 1211.7278; Platzer, 1211.5467;
Alioli et al, 1211.7049; Hamilton, Nason, Oleari, Zanderighi, 1212.4504;
Hartging, Laenen, Skands, 1303.4974
```

One indicator of NLO progress

$pp \rightarrow W + 0 jet$	1978	Altarelli, Ellis, Martinelli
$pp \rightarrow W + 1 jet$	1989	Arnold, Ellis, Reno
$pp \rightarrow W + 2 jets$	2002	Campbell, Ellis
$pp \rightarrow W + 3 jets$	2009	BH+Sherpa
		Ellis, Melnikov, Zanderighi
$pp \rightarrow W + 4 jets$	2010	BH+Sherpa
$pp \rightarrow W + 5 jets$	2013	BH+Sherpa

Next Two Lectures

- Understand in more detail how the new methods work
- First at tree level, then at one loop

Further Reading

- Bern, LD, Kosower, 0704.2798 [hep-ph]
- Ossola, Papadopoulos, Pittau, hep-ph/0609007
- Ellis, Kunszt, Melnikov, Zanderighi, 1105.4319
- Special volume of J.Phys. A44 (2011)
 - LD, 1105.0771
 - Britto, 1012.4493
 - Bern, Huang, 1103.1869
 - Brandhuber, Spence, Travaglini, 1103.3477
 - Ita, 1109.6527

Extra Slides

MET + jets search at CMS (circa 2011)

Reducing Background Systematics Improves SUSY Search Sensitivity

Significance for 4j0l, flat priors

