Beyond Feynman Diagrams Lecture 2

Lance Dixon
 Academic Training Lectures CERN
 April 24-26, 2013

Modern methods for trees

1. Color organization (briefly)
2. Spinor variables
3. Simple examples
4. Factorization properties
5. BCFW (on-shell) recursion relations

How to organize gauge theory amplitudes

- Avoid tangled algebra of color and Lorentz indices generated by Feynman rules

- Take advantage of physical properties of amplitudes
- Basic tools:
- dual (trace-based) color decompositions
- spinor helicity formalism

norrr

Standard color factor for a QCD graph has lots of structure constants contracted in various orders; for example:

Write every n-gluon tree graph color factor as a sum of traces of matrices T^{a} in the fundamental (defining) representation of $\operatorname{SU}\left(N_{c}\right)$:
$\operatorname{Tr}\left(T^{a_{1}} T^{a_{2}} \cdots T^{a_{n}}\right)$ + all non-cyclic permutations
Use definition: $\quad\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c}$

+ normalization: $\operatorname{Tr}\left(T^{a} T^{b}\right)=\delta^{a b}$
$\rightarrow f^{a b c}=-i \operatorname{Tr}\left(\left[T^{a}, T^{b}\right] T^{c}\right)$

Double-line picture ('t Hooft)

- In limit of large number of colors N_{c}, a gluon is always a combination of a color and a different anti-color.
- Gluon tree amplitudes dressed by lines carrying color indices, 1,2,3,.., N_{c}.
- Leads to color ordering of the external gluons.
- Cross section, summed over colors of all external gluons
$=\Sigma$ |color-ordered amplitudes $\left.\right|^{2}$
- Can still use this picture at $\mathrm{N}_{\mathrm{c}}=3$.
- Color-ordered amplitudes are still the building blocks.
- Corrections to the color-summed cross section, can be handled exactly, but are suppressed by $1 / \mathrm{N}_{\mathrm{c}}{ }^{2}$

Trace-based (dual) color decomposition

For n-gluon tree amplitudes, the color decomposition is

- Because $A_{n}^{\text {tree }}\left(1^{h_{1}}, 2^{h_{2}}, \ldots, n^{h_{n}}\right)$ comes from planar diagrams with cyclic ordering of external legs fixed to $1,2, \ldots, n$, it only has singularities in cyclicly-adjacent channels $s_{i, i+1}, \ldots$

Similar decompositions for amplitudes with external quarks.

Far fewer factorization channels with color ordering

Color sums

Parton model says to sum/average over final/initial colors (as well as helicities):

Insert:

$$
d \sigma^{\text {tree }} \propto \sum_{a_{i}} \sum_{h_{i}}\left|\mathcal{A}_{n}^{\text {tree }}\left(\left\{k_{i}, a_{i}, h_{i}\right\}\right)\right|^{2}
$$

$$
\begin{aligned}
\mathcal{A}_{n}^{\text {tree }}\left(\left\{k_{i}, a_{i}, h_{i}\right\}\right)= & g_{s}^{n-2} \operatorname{Tr}\left(T^{a_{1}} T^{a_{2}} \ldots T^{a_{n}}\right) A_{n}^{\text {tree }}\left(1^{h_{1}}, 2^{h_{2}}, \ldots, n^{h_{n}}\right) \\
& + \text { non-cyclic permutations }
\end{aligned}
$$

and do color sums to get:
$d \sigma^{\text {tree }} \propto N_{c}^{n} \sum_{\sigma \in S_{n} / Z_{n}} \sum_{h_{i}}\left|A_{n}^{\text {tree }}\left(\sigma\left(1^{h_{1}}\right), \sigma\left(2^{h_{2}}\right), \ldots, \sigma\left(n^{h_{n}}\right)\right)\right|^{2}+\mathcal{O}\left(N_{c}^{-2}\right)$
\rightarrow Up to $1 / N_{c}{ }^{2}$ suppressed effects, squared subamplitudes have definite color flow - important for development of parton shower

Spinor helicity formalism

Scattering amplitudes for massless plane waves of definite momentum: Lorentz 4-vectors $k_{i}^{\mu} \quad k_{i}^{2}=0$

Natural to use Lorentz-invariant products (invariant masses): $s_{i j}=2 k_{i} \cdot k_{j}=\left(k_{i}+k_{j}\right)^{2}$

But for elementary particles with spin (e.g. all except Higgs!) there is a better way:

Take "square root" of 4-vectors k_{t}^{μ} (spin 1) use Dirac (Weyl) spinors $u_{\alpha}\left(k_{i}\right) \quad$ (spin $1 / 2$)
right-handed: $\left(\lambda_{i}\right)_{\alpha}=u_{+}\left(k_{i}\right)$ left-handed: $\left(\widetilde{\lambda}_{i}\right)_{\dot{\alpha}}=u_{-}\left(k_{i}\right)$
q, g, γ, all have 2 helicity states, $\quad h= \pm$

Massless Dirac spinors

- Positive and negative energy solutions to the massless Dirac equation, $k u(k)=0, k v(k)=0$ are identical up to normalization.
- Chirality/helicity eigenstates are

$$
u_{ \pm}(k)=\frac{1}{2}\left(1 \pm \gamma_{5}\right) u(k), \quad v_{ \pm}(k)=\frac{1}{2}\left(1 \pm \gamma_{5}\right) v(k)
$$

- Explicitly, in the Dirac representation

$$
\begin{aligned}
& u_{+}(k)=v_{-}(k)=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
\sqrt{k^{+}} \\
\sqrt{k^{-}-e^{i \varphi_{k}}} \\
\sqrt{k^{-}} e^{i \varphi_{k}}
\end{array}\right], \quad u_{-}(k)=v_{+}(k)=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
\sqrt{k^{-}-i e^{-i \varphi_{k}}} \\
-\sqrt{k^{-}} \\
-\sqrt{k^{-}-i \varphi_{k}} \\
\sqrt{k^{+}}
\end{array}\right] \\
& e^{ \pm i \varphi_{k}} \equiv \frac{k^{1}+i k^{2}}{\sqrt{\left(k^{1}\right)^{2}+\left(k^{2}\right)^{2}}} \quad k^{ \pm}=k^{0} \pm k^{3}
\end{aligned}
$$

Spinor products

Instead of Lorentz products:

$$
s_{i j}=2 k_{i} \cdot k_{j}=\left(k_{i}+k_{j}\right)^{2}
$$

Use spinor products:

$$
\begin{aligned}
& \bar{u}_{-}\left(k_{i}\right) u_{+}\left(k_{j}\right)=\varepsilon^{\alpha \beta}\left(\lambda_{i}\right)_{\alpha}\left(\lambda_{j}\right)_{\beta}=\langle i j\rangle \\
& \bar{u}_{+}\left(k_{i}\right) u_{-}\left(k_{j}\right)=\varepsilon^{\dot{\alpha} \dot{\beta}}\left(\tilde{\lambda}_{i}\right)_{\dot{\alpha}}\left(\tilde{\lambda}_{j}\right)_{\dot{\beta}}=[i j]
\end{aligned}
$$

Identity

$$
k_{i}^{\mu}\left(\sigma_{\mu}\right)_{\alpha \dot{\alpha}}=\left(k_{i}\right)_{\alpha \dot{\alpha}}=u_{+}\left(k_{i}\right) \bar{u}_{+}\left(k_{i}\right)=\left(\lambda_{i}\right)_{\alpha}\left(\widetilde{\lambda}_{i}\right)_{\dot{\alpha}}
$$

\Rightarrow These are complex square roots of Lorentz products (for real k_{i}):

$$
\langle i j\rangle[j i]=\frac{1}{2} \operatorname{Tr}\left[k_{i} k_{j}\right]=2 k_{i} \cdot k_{j}=s_{i j}
$$

$$
\langle i j\rangle=\sqrt{s_{i j}} e^{i \phi_{i j}} \quad[j i]=\sqrt{s_{i j}} e^{-i \phi_{i j}}
$$

~ Simplest Feynman diagram of all

Useful to rewrite answer

Symmetries for all other helicity config's

$A_{4}=\frac{\langle 24\rangle^{2}}{\langle 12\rangle\langle 34\rangle}$

$$
P \quad \Downarrow\rangle \leftrightarrow[]
$$

$$
A_{4}=\frac{[24]^{2}}{[12][34]}
$$

$$
A_{4}=-\frac{[14]^{2}}{[12][34]}
$$

Unpolarized, helicity-summed cross sections

(the norm in QCD)

$$
\begin{aligned}
\frac{d \sigma\left(e^{+} e^{-} \rightarrow q \bar{q}\right)}{d \cos \theta} \propto \sum_{\text {hel. }}\left|A_{4}\right|^{2} & =2\left\{\left|\frac{\langle 24\rangle^{2}}{\langle 12\rangle\langle 34\rangle}\right|^{2}+\left|\frac{\langle 14\rangle^{2}}{\langle 12\rangle\langle 34\rangle}\right|^{2}\right\} \\
& =2 \frac{s_{24}^{2}+s_{14}^{2}}{s_{12}^{2}} \\
& =\frac{1}{2}\left[(1-\cos \theta)^{2}+(1+\cos \theta)^{2}\right] \\
& =1+\cos ^{2} \theta
\end{aligned}
$$

Helicity formalism for massless vectors

Berends, Kleiss, De Causmaecker, Gastmans, Wu (1981); De Causmaecker, Gastmans, Troost, Wu (1982); Xu, Zhang, Chang (1984); Kleiss, Stirling (1985); Gunion, Kunszt (1985)

$$
\begin{aligned}
&\left(\varepsilon_{i}^{+}\right)_{\mu}=\varepsilon_{\mu}^{+}\left(k_{i}, q\right) \\
&=\frac{\left\langle i^{+}\right| \gamma_{\mu}\left|q^{+}\right\rangle}{\sqrt{2}\langle i q\rangle} \\
&\left(\not{ }_{i}^{+}\right)_{\alpha \dot{\alpha}}=\not \dot{\alpha \dot{\alpha}}_{+}\left(k_{i}, q\right)=\frac{\sqrt{2} \tilde{\lambda}_{i}^{\dot{\alpha}} \lambda_{q}^{\alpha}}{\langle i q\rangle}
\end{aligned}
$$

reference vector q^{μ}
is null, $q^{2}=0$
$\not q\left|q^{ \pm}\right\rangle=0$
obeys $\quad \varepsilon_{i}^{+} \cdot k_{i}=0$
(required transversality)

$$
\varepsilon_{i}^{+} \cdot q=0 \quad \text { (bonus) }
$$

under azimuthal rotation about k_{i} axis, helicity $+1 / 2 \quad \tilde{\lambda}_{i}^{\dot{\alpha}} \rightarrow e^{i \phi / 2} \tilde{\lambda}_{i}^{\dot{\alpha}}$

$$
\text { helicity -1/2 } \lambda_{i}^{\alpha} \rightarrow e^{-i \phi / 2} \lambda_{i}^{\alpha}
$$

$$
\text { so } \quad \not \not_{i}^{+} \propto \frac{\tilde{\lambda}_{i}^{\dot{\alpha}}}{\lambda_{i}^{\alpha}} \rightarrow e^{i \phi} \not \not_{i}^{+} \quad \text { as required for helicity }+1
$$

Next most famous pair of Feynman diagrams

(to a higher-order QCD person)

$e^{+} e^{-} \rightarrow q g \bar{q} \quad$ (cont.)

$$
\begin{array}{rlr}
A_{5}= & \frac{\langle 25\rangle}{s_{12}} \frac{\left\langle 1^{+}\right|\left(k_{3}+\not k_{4}\right) \not \not_{4}^{+}\left|3^{-}\right\rangle}{\sqrt{2} s_{34}} \\
& +\frac{[13]}{s_{12}} \frac{\left\langle 2^{-}\right|\left(k_{4}+\not k_{5}\right) \not \vDash_{4}^{+}\left|5^{+}\right\rangle}{\sqrt{2} s_{45}} \\
= & \frac{\langle 25\rangle}{s_{12}} \frac{\left\langle 1^{+}\right|\left(k_{3}+\not k_{4}\right)\left|q^{+}\right\rangle[43]}{s_{34}\langle 45\rangle} & \\
& +\frac{[13]}{s_{12}} \frac{\left\langle 2^{-}\right|\left(k_{4}+\not k_{5}\right)\left|4^{-}\right\rangle\langle q 5\rangle}{s_{45}\langle 45\rangle} & \begin{array}{l}
\text { Choose } q=k_{5} \\
\text { to remove } 2^{\text {nd }} \text { graph }
\end{array}
\end{array}
$$

Properties of $\mathcal{A}_{5}\left(e^{+} e^{-} \rightarrow q g \bar{q}\right)$

1. Soft gluon behavior $\quad k_{4} \rightarrow 0$

$$
\begin{aligned}
A_{5} & =\frac{\langle 25\rangle^{2}}{\langle 12\rangle\langle 34\rangle\langle 45\rangle}=\frac{\langle 35\rangle}{\langle 34\rangle\langle 45\rangle} \times \frac{\langle 25\rangle^{2}}{\langle 12\rangle\langle 35\rangle} \\
& \rightarrow \mathcal{S}\left(3,4^{+}, 5\right) \times A_{4}\left(1^{+}, 2^{-}, 3^{+}, 5^{-}\right)
\end{aligned}
$$

Universal "eikonal" factors for emission of soft gluon s between two hard partons a and b

$$
\begin{aligned}
& \mathcal{S}\left(a, s^{+}, b\right)=\frac{\langle a b\rangle}{\langle a s\rangle\langle s b\rangle} \\
& \mathcal{S}\left(a, s^{-}, b\right)=-\frac{[a b]}{[a s][s b]}
\end{aligned}
$$

Soft emission is from the classical chromoelectric current: independent of parton type (q vs. g) and helicity

- only depends on momenta of a, b, and color charge:

$$
\frac{\varepsilon_{s}^{+}(q) \cdot k_{a}}{k_{a} \cdot k_{s}}-\frac{\varepsilon_{s}^{+}(q) \cdot k_{b}}{k_{b} \cdot k_{s}} \propto \frac{\langle a q\rangle}{\langle s q\rangle\langle a s\rangle}-\frac{\langle b q\rangle}{\langle s q\rangle\langle b s\rangle}=\frac{\langle a b\rangle}{\langle a s\rangle\langle s b\rangle}
$$

Properties of $\mathcal{A}_{5}\left(e^{+} e^{-} \rightarrow q g \bar{q}\right) \quad$ (cont.)

2. Collinear behavior $k_{3} \| k_{4}: \quad k_{3}=z k_{P}, \quad k_{4}=(1-z) k_{P}$ $k_{P} \equiv k_{3}+k_{4}, \quad k_{P}^{2} \rightarrow 0$ $\lambda_{3} \approx \sqrt{z} \lambda_{P}, \quad \lambda_{4} \approx \sqrt{1-z} \lambda_{P}, \quad$ etc.
$A_{5}=\frac{\langle 25\rangle^{2}}{\langle 12\rangle\langle 34\rangle\langle 45\rangle} \approx \frac{1}{\sqrt{1-z}\langle 34\rangle} \times \frac{\langle 25\rangle^{2}}{\langle 12\rangle\langle P 5\rangle}$ \rightarrow Split_ $\left(3_{q}^{+}, 4_{g}^{+}\right) \times A_{4}\left(1^{+}, 2^{-}, P^{+}, 5^{-}\right)$

Square root of Altarelli-Parisi splitting probablility

Universal collinear factors, or splitting amplitudes
Split $_{-h_{P}}\left(a^{h_{a}}, b^{h_{b}}\right)$ depend on parton type and helicity h

Simplest pure-gluonic amplitudes

Note: helicity label assumes particle is outgoing; reverse if it's incoming
Strikingly, many vanish:

$$
A_{n}^{\text {tree }}\left(1^{ \pm}, 2^{+}, \ldots, n^{+}\right)=
$$

Maximally helicity-violating (MHV) amplitudes:

$$
\begin{aligned}
& A_{n}^{i j, \mathrm{MHV}}=A_{n}^{\text {tree }}\left(1^{+}, 2^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots, n^{+}\right) \\
& =+{ }_{+\infty}^{-\infty} \int_{0}^{1}: 6^{+}
\end{aligned}
$$

MHV amplitudes with massless quarks

Helicity conservation on fermion line $\rightarrow \quad A_{n}^{\text {tree }}\left(1_{\bar{q}}^{ \pm}, 2_{q}^{ \pm}, 3^{h_{3}}, \ldots, n^{h_{n}}\right) \equiv 0$
more vanishing ones:

$$
A_{n}^{\text {tree }}\left(1_{\bar{q}}^{-}, 2_{q}^{+}, 3^{+}, \ldots, n^{+}\right)=
$$

the MHV amplitudes:

Related to pure-gluon MHV amplitudes by a secret supersymmetry: after stripping off color factors, massless quarks ~ gluinos

Grisaru, Pendleton, van Nieuwenhuizen (1977);
Parke, Taylor (1985); Kunszt (1986); Nair (1988)

properties of MMEATituoes

1. Soft limit

$$
k_{s} \rightarrow 0
$$

$$
\begin{aligned}
\frac{\langle i j\rangle^{4}}{\langle 12\rangle \cdots\langle a s\rangle\langle s b\rangle \cdots\langle n 1\rangle} & =\frac{\langle a b\rangle}{\langle a s\rangle\langle s b\rangle} \frac{\langle i j\rangle^{4}}{\langle 12\rangle \cdots\langle a b\rangle \cdots\langle n 1\rangle} \\
& \rightarrow \operatorname{Soft}\left(a, s^{+}, b\right) \times A_{n-1}^{i j, \mathrm{MHV}}
\end{aligned}
$$

2. Gluonic collinear limits:

$$
k_{a} \| k_{b} \quad(b=a+1)
$$

$$
\begin{aligned}
\frac{\langle i j\rangle^{4}}{\langle 12\rangle \cdots\langle a-1, a\rangle\langle a b\rangle\langle b, b+1\rangle \cdots\langle n 1\rangle} & =\frac{1}{\sqrt{z(1-z)}\langle a b\rangle} \frac{\langle i j\rangle^{4}}{\langle 12\rangle \cdots\langle a-1, P\rangle\langle P, b+1\rangle \cdots\langle n 1\rangle} \\
& \rightarrow \text { Split_ }_{-}\left(a^{+}, b^{+}\right) \times A_{n-1}^{i j,} \mathrm{MHV}
\end{aligned}
$$

So

$$
\text { Split }_{-}\left(a^{+}, b^{+}\right)=\frac{1}{\sqrt{z(1-z)}\langle a b\rangle}
$$

and Split $_{+}\left(a^{-}, b^{+}\right)=\frac{z^{2}}{\sqrt{z(1-z)}\langle a b\rangle}$
plus parity conjugates

$$
\text { Split }_{+}\left(a^{+}, b^{-}\right)=\frac{(1-z)^{2}}{\sqrt{z(1-z)}\langle a b\rangle}
$$

Spinor Magic

Spinor products precisely capture square-root + phase behavior in collinear limit. Excellent variables for helicity amplitudes
scalars

gauge theory
angular momentum mismatch

Utility of Complex Momenta

- Makes sense of most basic process: all 3 particles massless

$$
s_{i j}=2 k_{i} \cdot k_{j}=\left(k_{i}+k_{j}\right)^{2}=0 \quad \forall i, j \quad\langle i j\rangle[j i]=s_{i j}
$$

real (singular)

$$
\langle i j\rangle=[i j]=s_{i j}=0 \quad \forall i, j
$$

complex (nonsingular)

$$
\tilde{\lambda}_{i} \propto \tilde{\lambda}_{j} \propto \tilde{\lambda}_{k}
$$

$$
\begin{aligned}
{[i j]=0 } & \text { but }\langle i j\rangle \neq 0 \\
& \begin{array}{|c}
\frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \\
\text { makes sense }
\end{array}
\end{aligned}
$$

use conjugate kinematics for (++-): $\lambda_{i} \propto \lambda_{j} \propto \lambda_{k}$	$\langle i j\rangle=0,[i j] \neq 0$	
Beyond Feynman Diagrams	Lecture 2	April 25,2013

Tree-level "plasticity" \rightarrow BCFW recursion relations

- BCFW consider a family of on-shell amplitudes $A_{n}(z)$ depending on a complex parameter z which shifts the momenta to complex values
- For example, the $[n, 1\rangle$ shift:

$$
\begin{aligned}
& \lambda_{1} \rightarrow \hat{\lambda}_{1}=\lambda_{1}+z \lambda_{n} \quad \tilde{\lambda}_{1} \rightarrow \tilde{\lambda}_{1} \\
& \lambda_{n} \rightarrow \lambda_{n} \quad \tilde{\lambda}_{n} \rightarrow \tilde{\lambda}_{n}=\tilde{\lambda}_{n}-z \tilde{\lambda}_{1}
\end{aligned}
$$

- On-shell condition: $\left(\hat{k}_{1}\right)^{\mu}\left(\hat{k}_{1}\right)_{\mu}=\left(\widehat{k}_{1}\right)^{\alpha \dot{\alpha}}\left(\hat{k}_{1}\right)_{\dot{\alpha} \alpha}$

$$
=\left\langle\left(\lambda_{1}+z \lambda_{n}\right)\left(\lambda_{1}+z \lambda_{n}\right)\right\rangle[11]=0
$$

similarly, $\hat{k}_{n}^{2}=0$

- Momentum conservation:

$$
\hat{k}_{1}+\hat{k}_{n}=\left(\lambda_{1}+z \lambda_{n}\right) \tilde{\lambda}_{1}+\lambda_{n}\left(\tilde{\lambda}_{n}-z \tilde{\lambda}_{1}\right)=k_{1}+k_{n}
$$

Analyticity \rightarrow recursion relations

$\hat{\lambda}_{1}=\lambda_{1}+z \lambda_{n} \quad \hat{\lambda}_{1}=\tilde{\lambda}_{1} \quad \Rightarrow \quad A(0) \rightarrow A(z)$
$\hat{\lambda}_{n}=\lambda_{n} \quad \hat{\bar{\lambda}}_{n}=\tilde{\lambda}_{n}-z \tilde{\lambda}_{1}$

Cauchy: If $A(\infty)=0$ then
$0=\frac{1}{2 \pi i} \oint d z \frac{A(z)}{z}=A(0)+\left.\sum_{k} \operatorname{Res}\left[\frac{A(z)}{z}\right]\right|_{z=z_{k}}$
Where are the poles? Require on-shell intermediate state,
meromorphic function, each pole corresponds to one factorization

Beyond Feynman Diagrams

Final formula

Britto, Cachazo, Feng, hep-th/0412308

$$
\begin{aligned}
& A_{n}(1,2, \ldots, n)= \sum_{h= \pm} \sum_{k=2}^{n-2} A_{k+1}\left(\widehat{1}, 2, \ldots, k,-\widehat{K}_{1, k}^{-h}\right) \\
& \times \frac{i}{K_{1, k}^{2}} A_{n-k+1}\left(\widehat{K}_{1, k}^{h}, k+1, \ldots, n-1, \widehat{n}\right)
\end{aligned}
$$

A_{k+1} and A_{n-k+1} are on-shell color-ordered tree amplitudes with fewer legs, evaluated with 2 momenta shifted by a complex amount

To finish proof, show $A(\infty)=0$

Britto, Cachazo, Feng, Witten, hep-th/0501052

Propagators:

$\frac{1}{\widehat{K}_{1, k}^{2}(z)}=\frac{1}{K_{1, k}^{2}+z \lambda_{n}^{a}\left(K_{1, k}\right)_{a \dot{a}} \tilde{\lambda}_{1}^{\dot{a}}} \sim \frac{1}{z}$
3-point vertices: $\propto \widehat{k}^{\mu}(z) \propto z$
Polarization vectors:
$\not \ell_{1}^{+} \propto \frac{\tilde{\lambda}_{1} \lambda_{q}}{\left\langle\lambda_{1} \lambda_{q}\right\rangle} \propto \frac{1}{z} \quad \not \AA_{n}^{-} \propto \frac{\lambda_{n} \tilde{\lambda}_{q}}{\left\langle\tilde{\lambda}_{n} \tilde{\lambda}_{q}\right\rangle} \propto \frac{1}{z}$
Total:

$$
\frac{1}{z} \times\left(z \frac{1}{z}\right)^{r} z \times \frac{1}{z}=\frac{1}{z}
$$

MHV example

- Apply the $[n, 1\rangle$ BCFW formula to the MHV amplitude

$$
A_{n}^{j n, \mathrm{MHV}}=A_{n}\left(1^{+}, 2^{+}, \ldots, j^{-}, \ldots, n^{-}\right)=\frac{\langle j n\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}
$$

- The generic diagram vanishes because $2+2=4>3$
- So one of the two tree amplitudes is always zero
- The one exception is $k=2$, which is different because

$$
A_{3}\left(1^{+}, 2^{+}, 3^{-}\right) \neq 0
$$

MHV example (cont.)

- For $k=2$, we compute the value of z :

$$
z_{2}=-\frac{s_{12}}{\left\langle n^{-}\right|(1+2)\left|1^{-}\right\rangle}=-\frac{\langle 12\rangle[21]}{\langle n 2\rangle[21]}=-\frac{\langle 12\rangle}{\langle n 2\rangle}
$$

- Kinematics are complex collinear

$$
\begin{aligned}
\langle\hat{1} 2\rangle & =\langle 12\rangle+z_{2}\langle n 2\rangle=0 \quad[\hat{1} 2]=[12] \neq 0 \\
s_{\hat{1} 2} & =\langle\hat{1} 2\rangle[2 \hat{1}]=0
\end{aligned}
$$

- The only term in the BCFW formula is:

$$
\begin{aligned}
& A_{n-1}\left(\hat{P}_{12}^{+}, 3^{+}, \ldots, j^{-}, \ldots, n^{-}\right) \frac{1}{s_{12}} A_{3}\left(\hat{\mathrm{I}}^{+}, 2^{+},-\hat{P}_{12}^{-}\right) \\
& =\frac{\langle j \hat{j}\rangle^{4}}{\langle\hat{P} 3\rangle\langle 34\rangle \cdots\langle n-1, \hat{n}\rangle\langle\hat{n} \widehat{P}\rangle \frac{1}{s_{12}} \frac{[\hat{1} 2]^{3}}{[2 \hat{P}][\hat{P} 1]}} \\
& =\frac{\langle j n\rangle^{4}}{\left.\langle\hat{P} 3\rangle\langle 34\rangle \cdots\langle n-1, n\rangle\langle n \hat{P}\rangle s_{12}[2 \hat{P}]\right]^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { note } \\
& A_{3}(+,+,+)=0
\end{aligned}
$$

MHV example (cont.)

- Using $\langle n \widehat{P}\rangle[\hat{P} 2]=\left\langle n^{-}\right|(1+2)\left|2^{-}\right\rangle+z\langle n n\rangle[12]=\langle n 1\rangle[12]$

$$
\langle 3 \hat{P}\rangle[\widehat{P} 1]=\left\langle 3^{-}\right|(1+2)\left|1^{-}\right\rangle+z\langle 3 n\rangle[11]=\langle 32\rangle[21]
$$

one confirms

$$
\begin{aligned}
& \frac{\langle j n\rangle^{4}}{\langle\hat{P} 3\rangle\langle 34\rangle \cdots\langle n-1, n\rangle\langle n \widehat{P}\rangle} \frac{1}{s_{12}} \frac{[12]^{3}}{[2 \widehat{P}][\hat{P} 1]} \\
= & \frac{\langle j n\rangle^{4}[12]^{3}}{(\langle 12\rangle[21])([12]\langle 23\rangle)(\langle n 1\rangle[12])\langle 34\rangle \cdots\langle n-1, n\rangle} \\
= & \frac{\langle j n\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n-1, n\rangle\langle n 1\rangle} \\
= & A_{n}^{j n, \mathrm{MHV}}
\end{aligned}
$$

- This proves the Parke-Taylor formula by induction on n.

Initial data

A 6-gluon example

220 Feynman diagrams for gggggg

> Helicity + color + MHV results + symmetries
> \Rightarrow only $A_{6}\left(1^{+}, 2^{+}, 3^{+}, 4^{-}, 5^{-}, 6^{-}\right), A_{6}\left(1^{+}, 2^{+}, 3^{-}, 4^{+}, 5^{-}, 6^{-}\right)$

3 BCF diagrams

$\rightarrow 2$
$\rightarrow 1$

The one $A_{6}\left(1^{+}, 2^{+}, 3^{+}, 4^{-}, 5^{-}, 6^{-}\right)$diagram

$$
\hat{K}=k_{1}+k_{2}-\frac{\langle 12\rangle}{\langle 62\rangle}|6\rangle[1 \mid
$$

$$
\underbrace{3_{-}^{+}}_{K_{1,2}}=-\frac{i}{s_{12}^{-}} \frac{[\hat{1} 2]^{3}}{[2 \hat{K}][\hat{K} \hat{1}]} \frac{[\hat{K} 3]^{3}}{[34][45][5 \hat{\sigma}][\hat{6} \hat{K}]}
$$

$$
=-\frac{i}{s_{12}} \frac{[12]^{3}}{([2 \hat{K}]\langle\hat{K} 6\rangle)(\langle 6 \hat{K}\rangle[\hat{K} 1])} \frac{(\langle 6 \hat{K}\rangle[\hat{K} 3])^{3}}{[34][45][5 \hat{6}]([\hat{K}]]\langle\hat{K} 6\rangle)}
$$

$$
=i \frac{\left\langle 6^{-}\right|(1+2)\left|3^{-}\right\rangle^{3}}{\langle 61\rangle\langle 12\rangle[34][45] s_{612}\left\langle 2^{-\mid}\right|(6+1)\left|5^{-}\right\rangle}
$$

$$
\begin{aligned}
\hline\langle\hat{K}\rangle[\hat{K} a] & =\langle 61\rangle[1 a]+\langle 62\rangle[2 a] \\
& =\left\langle 6^{-}\right|(1+2)\left|a^{-}\right\rangle \\
{[5 \hat{\sigma}] } & =[56]+\frac{\langle 12\rangle[51]}{\langle 62\rangle}=\frac{\left\langle 5^{+}\right|(6+1)\left|2^{+}\right\rangle}{\langle 62\rangle} \\
{[\hat{\sigma} \hat{K}]\langle\hat{K} 6\rangle } & =\left\langle 6^{+}\right|(1+2)\left|6^{+}\right\rangle+s_{12}=s_{612}
\end{aligned}
$$

Simple final form

$$
\begin{aligned}
-i A_{6}\left(1^{+}, 2^{+}, 3^{+}, 4^{-}, 5^{-}, 6^{-}\right)= & \frac{\left\langle 6^{-}\right|(1+2)\left|3^{-}\right\rangle^{3}}{\langle 61\rangle\langle 12\rangle[34][45] s_{612}\left\langle 2^{-}\right|(6+1)\left|5^{-}\right\rangle} \\
& +\frac{\left\langle 4^{-}\right|(5+6)\left|1^{-}\right\rangle^{3}}{\langle 23\rangle\langle 34\rangle[56][61] s_{561}\left\langle 2^{-}\right|(6+1)\left|5^{-}\right\rangle}
\end{aligned}
$$

Simpler than form found in 1980s Mangano, Parke, Xu (1988) despite (because of?) spurious singularities $\left\langle 2^{-}\right|(6+1)\left|5^{-}\right\rangle$

$$
\begin{aligned}
-i A_{6}\left(1^{+}, 2^{+}, 3^{+}, 4^{-}, 5^{-}, 6^{-}\right)= & \frac{\left([12]\langle 45\rangle\left\langle 6^{-}\right|(1+2)\left|3^{-}\right\rangle\right)^{2}}{s_{61} s_{12} s_{34} s_{45} s_{612}} \\
& +\frac{\left([23]\langle 56\rangle\left\langle 4^{-}\right|(2+3)\left|1^{-}\right\rangle\right)^{2}}{s_{23} s_{34} s_{56} s_{61} s_{561}} \\
& +\frac{s_{123}[12][23]\langle 45\rangle\langle 56\rangle\left\langle 6^{-}\right|(1+2)\left|3^{-}\right\rangle\left\langle 4^{-}\right|(2+3)\left|1^{-}\right\rangle}{s_{12} s_{23} s_{34} s_{45} s_{56} s_{61}}
\end{aligned}
$$

Relative simplicity much more striking for $n>6$

