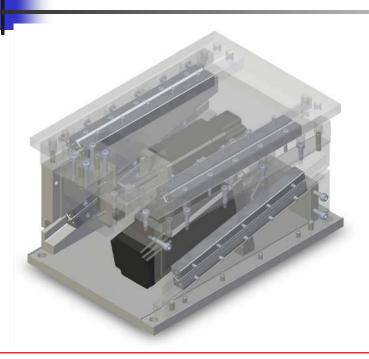
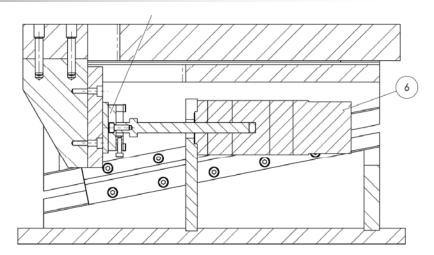

TBL quadrupole mover prototype development

J. Calero, J.L. Gutiérrez, E. Rodríguez, <u>F. Toral</u>, CIEMAT N. Chritin, S. Doebert, J. A. Rodríguez, CERN CERN, 22/01/2008

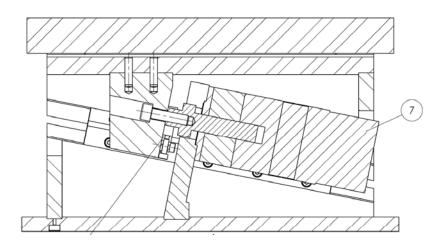

- ✓ Technical specifications
- ✓ Layout
- ✓ Fabrication and assembly
- ✓ Tests
- ✓ Future work
- ✓ Conclusions

Technical specifications

Length	<200	mm
Stroke	+/- 4	mm
Position resolution	1	micron
Position reproducibility	+/- 5	micron
Movement speed	>0.5	mm/s
Distance from driver to motor	up to 50	m
Mass to move	~50	kg
Number of units	16	


Challenges:

- ✓ Compact design
- ✓ High accuracy
- ✓ Moderate price for series production

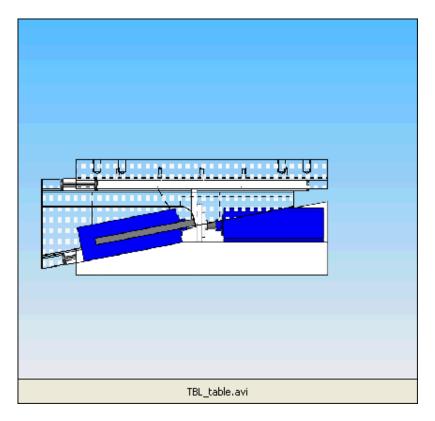


Layout (I)

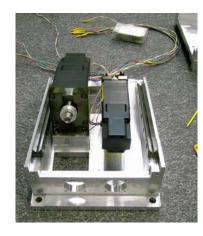
- Actuators based on 5-phase step motors with integrated screws and electromagnetic brakes.
- Precision linear guides.
- Mechanical micro-switches: home position and end-of-movement detectors.

Horizontal actuator

Vertical actuator


Layout (II)

Vertical actuator


 ✓ The inclination of the wedge enhances the vertical force, allowing a smaller motor to lift a given weight, and improving position resolution.

✓ There is a vertical linear guide, which leans on the horizontal actuator, and so makes vertical and horizontal movements independent.

✓ Drawback: the required overall length of the screw for the requested vertical stroke increases.

Fabrication and assembly

Tests at CIEMAT (I)

✓ Drivers can properly power the motors 50 m away.

✓ No problems to achieve the requested speed for the nominal mass.

✓ Preload is critical to minimize the backlash: spring for the horizontal movement; the own magnet weight for the vertical one.

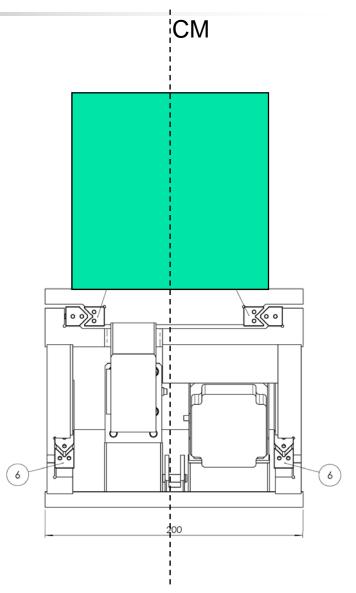
 ✓ Reproducibility achieved for horizontal movement.

 ✓ However, first tests showed that left side movement was not accurate during vertical movement.

 \checkmark We checked the micrometers accuracy.

✓ We found no clues for the problem when moving short distances: random errors.

 \checkmark However, errors showed saturation for long distances.


	LEFT HAND SIDE				RIGHT HAND SIDE				
	FORWARD	RWARD BACKWARD		FORWARD		BACKWARD			
n	186		198		203	3		194	
	184		195		204	ŀ		198	
	187		192		208	3		198	
fan	182		196		203	3		197	
for	193		194		202	2		194	
	189		189		202	2		200	
	187		189		202	2		202	
	190		185		197	'		202	
	195		187		195	5		203	
	197		193		194			203	
	193		177		195	5		202	
	193		181		196	5		205	
	193		185		194	-		204	
	197		185		195	5		205	
	198		187		200			208	
	194		180		195	5		207	
	194		185		195	5		205	
	199		175		197	'		207	
		P				ľ			
AVERAGE	191.72		187.39		198.72		20)1.89	

Tests at CIEMAT (III)

✓ **SOLUTION**: the center of mass was out of the symmetry axis, due to the position of the micrometers.

 ✓ We are concerned about the reproducibility of few-micron movements (<10 micron). We cannot measure them with enough accuracy.

✓ We have found some problems with the reliability of the end-ofmovement switches. They have a metallic sheet to detect the position of the mover which does not seem repetitive.

Tests at CERN

✓ CERN control system is successfully powering the mover.
It is based on a PLC.

- ✓ No problems in the horizontal movement: 1 micron reproducibility!
- ✓ About 10 micron errors and backlash in the vertical movement: more measurements are necessary.
- ✓ End-of-movement sensor stiffness must be improved.
- ✓ Tests are still on-going.

✓ End-of-movement sensors improvements.

✓ Tests should be performed also with a dummy quadrupole. Resonances due to the water cooling vibrations are possible.

 \checkmark The mover support on the girder is still being designed.

✓ The mover design will be updated with the detected mistakes before starting series production (15 units more). The aim is to finish by the end of 2008. The assembly will be likely done at CIEMAT.

✓ TBL quadrupole mover has been successfully designed, fabricated and tested at CIEMAT.

✓ The actuators are based on stepping motors with integrated linear screws.

✓ It is at CERN for acceptance. Some minor problems detected with the end-of-movement sensors and the vertical movement reproducibility.

 \checkmark The design must be updated to start with the series production, which should be delivered by the end of 2008.