TBL Beam dynamics, instrumentation and measurements

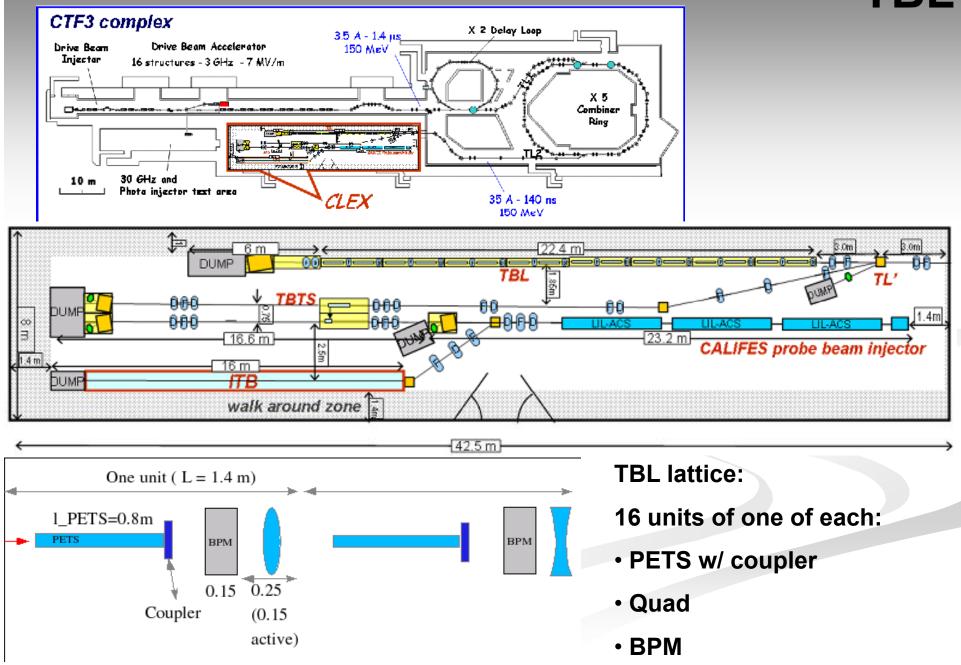
- OUTLOOKS -

Erik Adli, University of Oslo / CERN AB/ABP CTF3 Collaboration meeting, January 22, 2008

This work is supported by the Research Council of Norway

Contents

1) Beam dynamics of the TBL

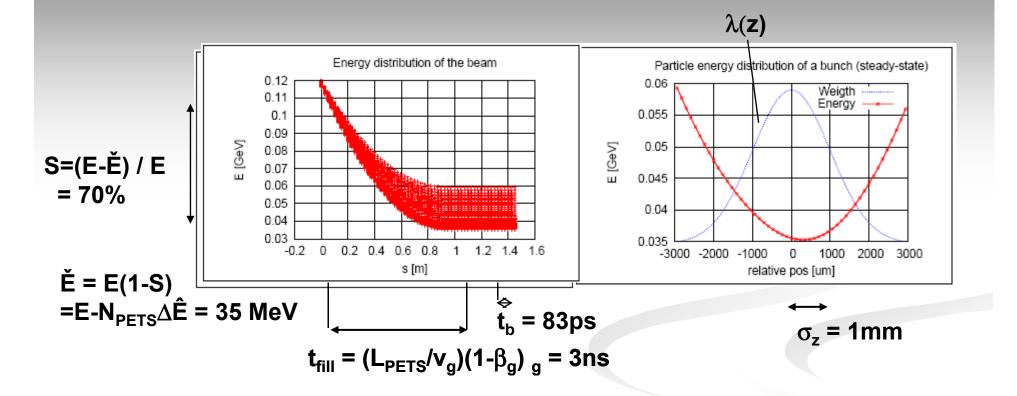

• Comparison with CLIC

2) Outlooks: TBL measurements and instrumentation

- What could we learn from TBL?
- How can we measure it?
- Short-term outlooks

Focus is **Beam Dynamics**: how the PETS and the TBL **affects the beam** (not how to beam produces RF)

TBL

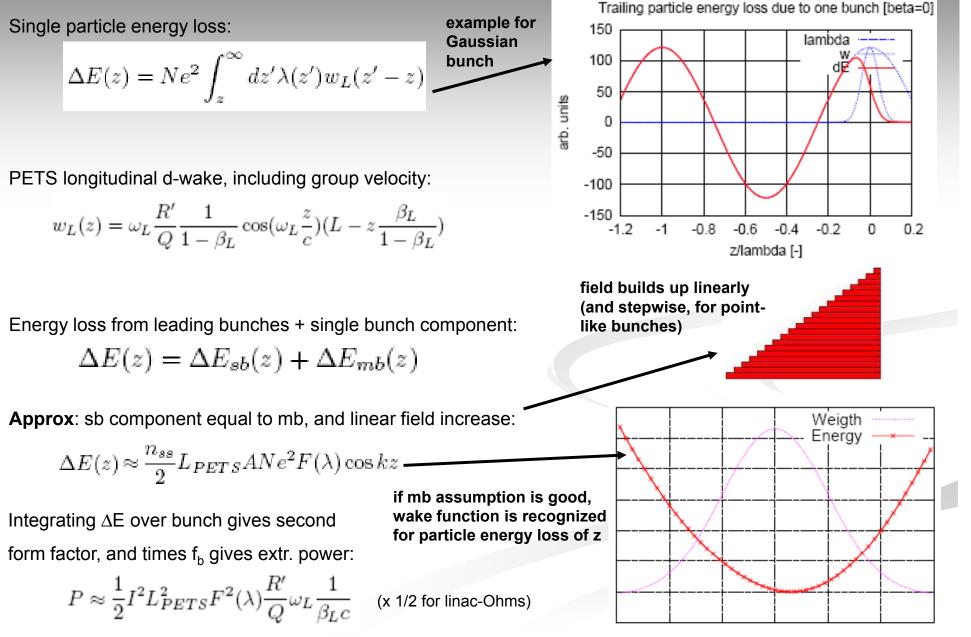


Part 1

Beam dynamics of the TBL

(focusing on items that need to be taken into consideration in the 2nd part)

The effect of deceleration – in one slide


Power extracted from beam (ss)

 $P \approx (1/4) I^2 L_{pets}^2 F(\sigma)^2 (R'/Q) \omega_b / v_g = 139 MW$

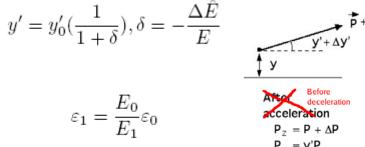
Power extraction efficiency (ss)

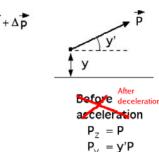
 $\eta = E_{in}/E_{ext} = PN_{PETS} / IE/e = 67\%$

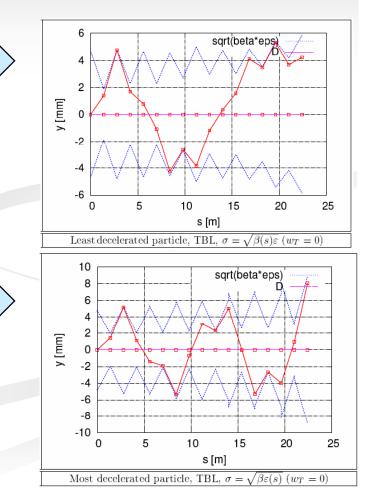
PETS energy extraction

Single particle dynamics

FODO focusing

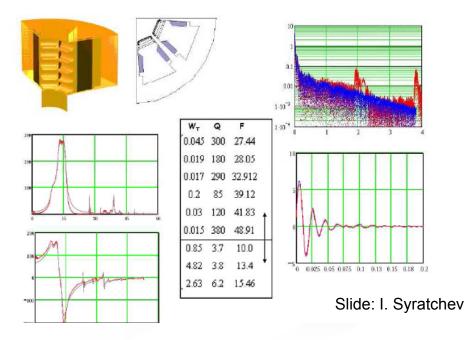

- Constant FODO phase-advance for the most decelerated particles (linearly decreasing T/m)
- Least decelerated particles will have a larger phase-advance, and beta (but still be focused)


$$\sin \phi/2 = L/2f \Rightarrow \sin \phi/2 \propto 1/p$$


$$\Rightarrow \frac{\sin 90/2}{\sin \tilde{\phi}/2} = \frac{2.4}{0.24} \Rightarrow \sin \phi/2 = \frac{1}{10} (\frac{1}{2}\sqrt{2}) \Rightarrow \check{\phi} = 8^{\circ}$$

Adiabatic undamping

 Most decelerated particles will be have emittance growth due to adiabatic undamping



PLACET input: dipole wake function

- A discrete set of significant dipole wake modes are included in the simulations
 - PETS are modelled with GdfidL (I. Syratchev)
 - For a given PETS structure, the transverse $\delta\text{-wake}$ / impedance is calculated

Effect of PETS and quadrupole misalignments

9

8

7

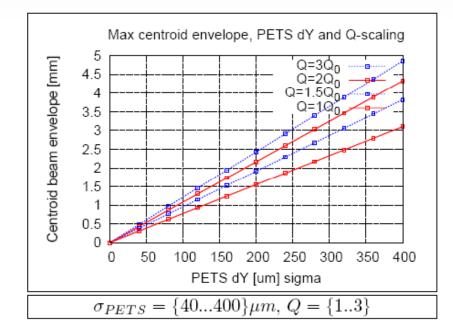
6

5

4

3

2


0

0

20

Centroid beam envelope [mm]

Lattice element misalignment might drive beamsize \rightarrow requirements for pre-alignment.

 $\rightarrow \sigma_{\text{PETS}}$ pre-alignment ~ 100 μ m

(parameters not up to date)

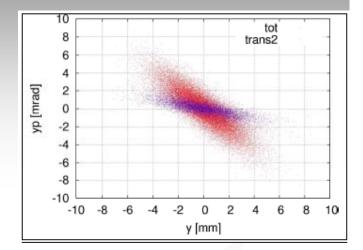
→ Quads: need for **Beam-Based**Alignment

40

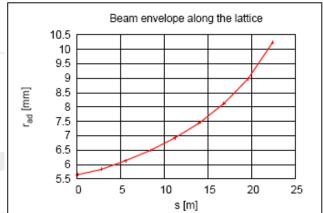
 $\sigma_a = \{0...100\} \mu m$

Quad dY [um] sigma

60


80

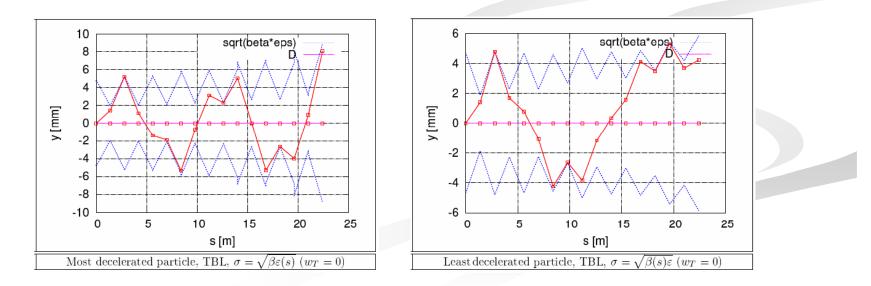
100


Max centroid envelope as function of Quad dY

Emittance and beam envelope

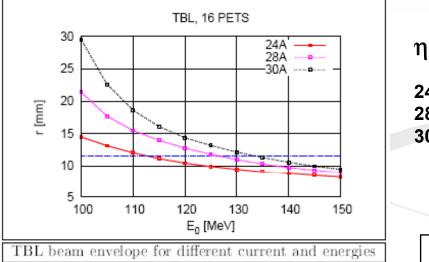
- Sources of emittance growth in the TBL
 - PETS
 - Adiabatic undamping (also normalized emittance grows due to chromaticity)
 - Beam transverse offsets
 - PETS misalignments
 - PETS RF-kicks (small)
 - Quadrupole misalignment: $\alpha \sigma^2_{quad}$

Phase-space after deceleration (short-train)



Effect of adiabatic undamping alone (perfect-machine)

- As simulation metric, we usually use the **beam envelope**, driven be the "worst" particle (3σ)
 - Rationale: need to avoid losses


Length of the TBL

- Currently planned 16 PETS, or 8 FODO cells
- Relevant scale for wake studies: # of betatron oscillations
 - 16 PETS: with μ_{FODO}≈90° E=Ě particles will undergo ~2 betatron oscillations, while E=E₀ particles will undergo < 1.5
- This scale: important for study of effects of transverse wakes
- Gives indication that we are in the right area (but difficult to say precisely whether e.g. 14 PETS would be much worse or 18 is much better)

Some similarities and differences TBL and CLIC

- Current of ~28A should produce requested PETS power (P >135MW)
- Initial energy, E, will determine extraction efficiency, η, and beam size r (losses)
 - For current CTF3-options, efficiency will be lower than CLIC, beam size larger

 $\eta \propto 1/E$, $r_{ad} \propto 1/sqrt(E)$ 24A: P = 102 MW 28A: P = 139 MW 30A: P = 160 MW

■ Wake-amplification ∝ E

- TBL: O.M. less rigid than CLIC
- Average beam-size
 - TBL: close to aperture -> HOMs!
- Length
 - TBL: O.M. shorter than CLIC

Apart from the shorter length: all parameters indicates getting the beam fully through the TBL will be more demanding than for CLIC!

TBL simulation reference set-up

Reference case: E=120 MeV, I=28A

Beam:

- $\epsilon_{N,x,y} = 150 \ \mu m, \ \Delta p/p = 1\%$
- centroid jitter: 0.5 * sigma ≈ 1 mm, distributed over PETS transverse mode frequencies
- (equiv. to) τ_{train} = 140 ns
- Power and efficiency:
 - P=139MW, η=67%, Ě = 35 MeV
- Lattice:
 - PETS misaligned with $\sigma_{PETS,x,y}$ = 200 µm
 - Quadrupole misaligned with $\sigma_{quad,x,y} = 20 \ \mu m$
 - (NB: value corresponds to AFTER correction)
 - PETS (energy extr. and ad. undamping, transverse modes and edge-kicks)
- Simulation tool: PLACET (D. Schulte)

Part 2

TBL measurements and instrumentation (Outlooks)

Requirements TBL

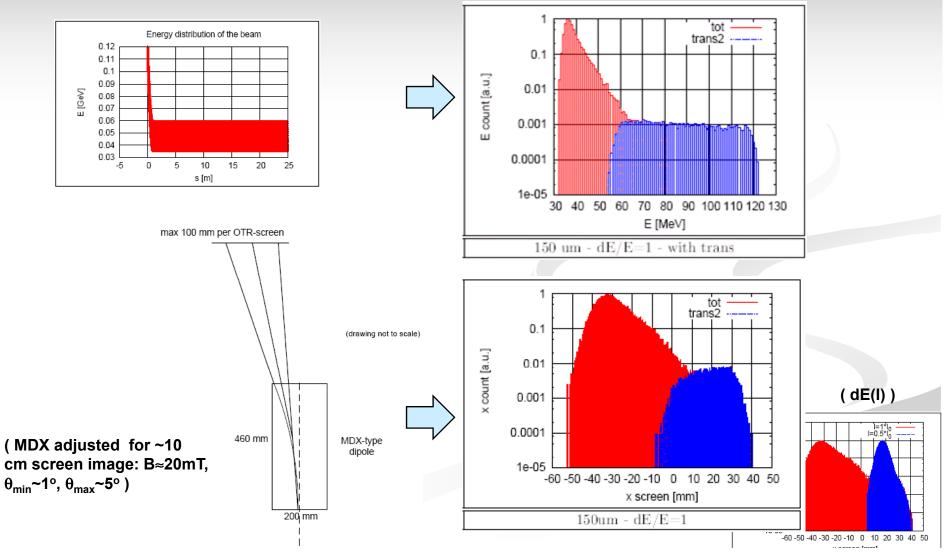
Driver: requirements for the CLIC decelerator

Producing the **correct power for accelerating structures**, **timely and uniformly** along the decelerator, while achieving a **high extraction efficiency**

Uniform power production implies that the beam must be transported to the end with **very small losses**

- Translation into requirements for the TBL :
 - show correct power production and extraction, uniform in time and space, high η
 - strive towards, and show, minimal losses in TBL
- In addition: potential benchmarking of PETS model and simulations :
 - uniform drain-out of single monopole mode
 - discrete sets of dipole modes
 - higher order modes negligible
- Other requirements
 - Requirements from Beam-Based alignment

Possible TBL observables

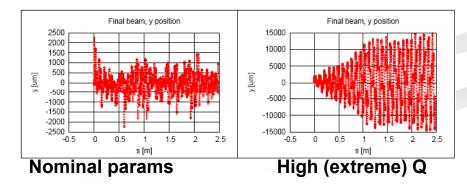

- a) RF (not discussed further here)
- **b**) energy extraction and transient, σ_z , F(λ)
- c) current / losses
- d) transverse beam size, emittance and halo
- e) others

Important to keep in mind for all the above: The CTF3 beam might be far from Gaussian when entering the TBL

 \rightarrow Measurement after the TBL should, to the extent possible, be compared with measurement before the TBL (in TL2')

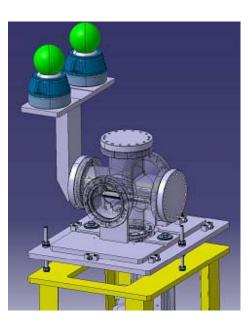
b) Energy extraction

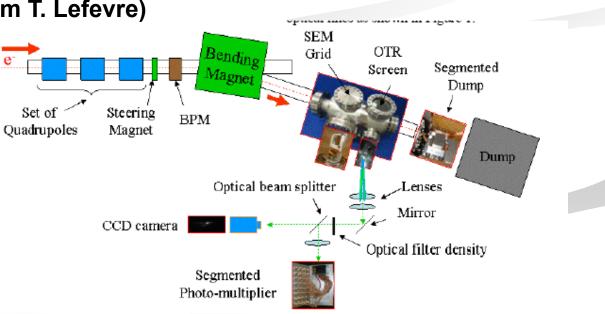
 Objectives: precision measurements, compare with analytical predictions, compare with RF power, check parameter dependence


Transient

Objective: verify size (in charge) and length (in time) of transient

- will give indications of drain-out dynamics and group velocity
- In order to distinguish transient in time,
- a time resolution of <= 1 ns would be needed


Objective: verify time-resolved steady-state part


- show whether we really have reached a good beam steady state condition
- if not, how and where are the perturbations? (e.g. beam growth? losses due to unknown weakly damped modes?)

Spectrometer line: potential solutions

- Spectrometer line, time-resolved OTR (seg dump or multi-anode photo-multiplier?)
 - **REQ:** Spatial resolution (200 μ m) \rightarrow adequate
 - **REQ:** Dynamic range must be > 3 OM \rightarrow should be feasible
 - REQ: Time resolution of ≤ 1 ns \rightarrow should be feasible (however, resolving intra-bunch profile: need <= 1ps resolution)

(From T. Lefevre)

Objective: verify bunch charge profile/ f.f.

- * Streak-camera (triggered)
- Available with current equipment: 2-3 ps resolution ~ $\sigma_z \rightarrow$ not adequate
- REQ: <= 1 ps \leftrightarrow 1/3 σ_z already much better
- * RF-deflectors?
- Available: 1.5/3GHz
- But nominal bunch spacing is 12 GHz \rightarrow still aq. res.? (T. Lefevre)
- Objective: verify bunch energy profile
 - * RF-deflector combined with spectrometer?

Under study!

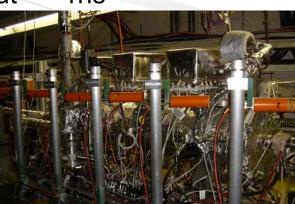
Bunch-length / form-factor

Power extraction depends on current and form factor :

 $P \approx (1/4) I^2 L_{pets}^2 F(\sigma)^2 (R'/Q) \omega_b / v_g$

- Objective: Form factor
 - Given by eventual time-resolved charge-distribution (prev.slide)
 - As complement, continuous monitoring of form-factor, or at least bunch length:
 - RF-pickup w/ length measurement?
- Objective: current
 - BPM should be of types that provides continuous current measurement

(A. Dabrowski)


c) loss measurement

Objective: track losses

- the CLIC decelerator beam will traverse 1400 PETS over ~1km distance without significant losses. To show feasibility it would help if we are able to traverse the TBL with negligible losses
- Possible show-stopper: quality of beam coming into CLEX
 - Collimation before TBL might be considered
- If we have losses it is of interest to know location of the losses
 - in space: where along the TBL? (e.g. is focusing strategy working well?)
 - in time: in transient, or in steady-state part?
- Loss monitors along the whole TBL should

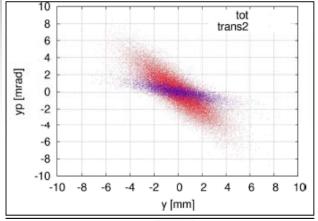
be considered, preferably with time-resolved output <= 1ns

(e.g. Cherenkov type?)

(from T. Lefevre)

d) emittance, beam size and beam halo

Objective:transverse profiles and emittance

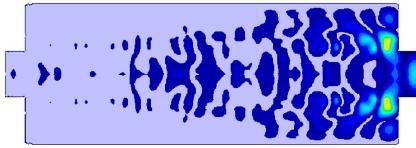

quad scan

 gives, in principle, phase-space and beam-size, however energy spread leads to some problems

 $\sigma = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{R}, \text{ but } \mathbf{X}=\mathbf{X}(\mathbf{p}) \quad (\mathbf{M}_{12}=\mathbf{M}_{12}(\mathbf{p}))$

 \rightarrow leads to wrong estimate of emittance ~10% wrt. to perfect measurement (prelim. est.)

- still useful (and advantage of being a "standard CTF3-technique")
- core profile
- transverse tails
- halo measurement
 - collimator, possibly movable, might be needed for halo-measurement
 - Needed in order to prove eventual transport of the whole beam (>99.9%)



d) Other suggestions

Objective: further study of PETS transverse modes

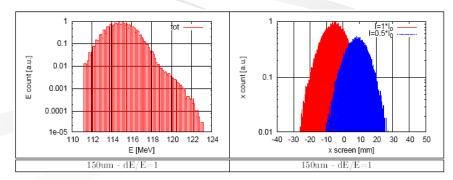
- 1) Study of jitter amplification?
 - Possibility: to induce jitter at specified frequencies (drive PETS transverse modes), and measure amplification
 - Modes lie at ~10 GHz
 - Implementation: no concrete suggestions

2) Direct probe of PETS RF-field?

(From I. Syratchev)

Under study

BPMs


TBL will also be used as test-bed for beam-based alignment. This gives some additional requirement on the BPMs :

- One BPM per quadrupole
- BPM resolution requirement derived from dispersion-free steering: <= 10 um</p>
- Beam envelope might reach close to PETS aperture limit of 11.5 mm
 - Centroid signal / range of BPM: few millimeters
 - But signal from halo-particles must be taken into account
- Time resolution of ~10ns (resolve parts of the beam)
- Available length for BPMs: < 15 cm</p>

 $(\rightarrow$ Consistent with the design from IFIC / UPC)

Short-term: effect of 1 PETS

- In order to prepare for TBL we should measure as much as possible already 1 PETS
 - Where? Dedicated instrumentation after TBL 1 PETS? TBTS?
- Examples of 1 PETS beam dynamics measurements:
 - 1) measure dipole mode, scanning of offset beam
 - verify with simulations
 - steer to constant offset [0-5 mm]
 - in order to give an indication of amplitude of transverse modes (dipole modes + higher order modes) (1 mm gives ~0.1mrad IF models are right)
 - 2) measure extraction dependence of parameters
 - Should be possible to resolve even for 1 PETS (and $\Delta E/E=1\%$)
 - 3) phase-space
 - Verify simulations

Preliminary conclusions

- Many interesting beam observables in the TBL, and it seems feasible to measure most of them
- If we can prove stable TBL operation, without significant losses, it will be a good indication that the CLIC decelerator will work
- Specification of final TBL instrumentation is an ongoing work, to be completed this year
- Soon available information from TL2' and 1-PETStests should be used to finalize to the TBL specifications
 - Important to get a fully realistic prediction of TBL measurement possibilites

Many thanks to T. Lefevre and D. Schulte for a lot of useful input