KICKERS FOR CTF3

Michael Barnes CERN AB/BT

Also representing: Tony Fowler, Gianfranco Ravida \& Hiromitsu Nakajima

CTF3 Programme

CTF3 \& CLIC Stripline Kickers

	CTF3 CR Extraction	CLIC CR	Tail Clipper						
Beam energy	300	2500	200	MeV					
Total kick deflection angle ("B" \& "E" Fields)	7	2.5	1.2	mrad					
Stripline plate separation	40	20	40	mm					
Stripline length	1.7	3		m					
Available length (including transitions)			1.625	m					
Rise \& fall-times (0.25\% to 99.75\%)	≤ 70	≤ 30	$\leq 5!$	ns					
Pulse duration	200	50 to 60	Up to 140	ns					
Flat-top reproducibility	± 0.1	± 0.1	NA	$\%$					
Flat-top stability (including droop)	± 0.25	± 0.25	NA	$\%$					
Field homogeneity			± 15	$\%$					
Repetition rate	5		5	Hz					
Pulse voltage						50	150	50	Hz
Pulse current (into 50Ω load)						12.6	10.5	2.4 for 1 m	kV
Timing Jitter	252	210	48	A					
Nominal								$\leq 1 \mathrm{rms}$	ns

M.J. BARNES \& T. FOWLER
 Combiner Ring Extraction Kicker

For operation in 2008 the existing magnetic kicker, which only partially satisfies the specifications, will be replaced by a new stripline kicker designed and built by CIEMAT.
Tests were undertaken at INFN Frascati:

Vacuum achieved 2e-7 mbar with turbo pump and no bake out; HV pulse test at $16 \mathrm{kV}, 5 \mathrm{~ns}$ pulse width. HV DC test at 18 kV ;
RF measurements (0 to 1 GHz) compare well with HFSS simulations;

Conical transition pieces at the extremities are designed to reduce impedance discontinuities; Recently delivered to CERN.

Combiner Ring Extraction Kicker

Stripline kicker powering

- The electrodes must be pulsed with separate, opposing polarity power supplies. Physically located in Bât. 2002.
- These pulsed power supplies have been be obtained by modification of ex-EPA equipment and change of system impedance from 30Ω to 50Ω. They have been pulse tested up to $17.5 \mathrm{kV}, 200$ ns into dummy 30Ω loads.
- Positive pulse generator uses ex-EPA INJ GEN4. Electronics are in racks RA042 and RA043

- Negative pulse generator uses ex-EPA INJ GEN3. Electronics are in racks RA040 and RA041
- Controls will use existing DSC interface (DCTFPOW1, rack RA110) presently used for magnetic extraction kicker control.

Beam Pulse

The beam pulse extracted from the CR is 35 A and 140 ns. The tail-clipper must have a fast rise-time, of 5 ns or less, to minimize uncontrolled beam loss. The flatness of the kick pulse is not important as deflected beam is to be thrown away.

Schematic Of Tail Clipper

Each pulse generator is composed of a 50Ω Pulse Forming Network (PFN), a fast switch, 50Ω stripline plates and a matched terminating resistor.

- To make use of both the electrical and magnetic fields to deflect the beam, the striplines must be "charged" from the CLEX (beam exit) end;
- To provide 1.2 mrad deflection, with striplines terminated in 50Ω, requires 2.4 kV on 1 m long striplines;
- Electrical pulse propagation through 1 m striplines, at speed of light, takes 3.3 ns !
- Tail Clipper requires short field rise-time ($\leq 5 \mathrm{~ns}$) !.
- In order that stripline fill time does not significantly effect deflection rise-time, several sets of striplines, mechanically in series, will be used.

> For a trapezoidal current pulse:

$$
T=5 n s=T_{r}+\frac{2 L}{N c}
$$

$$
\begin{aligned}
& \text { Where: } \\
& T_{r} \text { is permissible pulse rise time; } \\
& L \text { is overall length of strip-lines; } \\
& N \text { is number of sections; } \\
& C=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \text { For: } \quad L=1 \mathrm{~m} \& N=2, T_{r}=1.7 \mathrm{~ns} \\
& \quad L=1 \mathrm{~m} \& N=3, T_{r}=2.8 \mathrm{~ns}
\end{aligned}
$$

M.J. Barnes

Kickers for CTF3

Tail Clipper: Semiconductor Switch

Tail Clipper: SMS Update

For an SMS device the relative timing of the turn-on of each MOSFET is critical: thus it is important that the trigger to each MOSFET is coherent in time. Sample Fibre Optic transceivers, the SLM-001-IS-PTN from DLightsys, have been extensively tested.

Tail Clipper: SMS Update 2

CERN Specifications for Fibre-Optics:

- The fibre-optic receiver is required to output a signal which can vary in duration from DC to a pulse train consisting of 50 ns wide pulses with a 50% duty-cycle (i.e. 10 million pulses per second for CLIC Combiner Ring Extraction Kicker). Within these lower and upper frequency bands the pulse train can have an arbitrary duty-cycle which is defined by the input signal;
- The timing of an edge on the output of any receiver should be within 1 ns of the timing of the same edge from any other fiber optic transmitter-receiver pair.

Measurements on SLM-001-IS-PTN (5pps, Vcc=5.5V):

- Spread in front edge delay with respect to trigger $\approx 58 \mathrm{~ns}$ (1ns specified) !!;
- Spread in width with respect to trigger $\approx 69 \mathrm{~ns}$ (1 ns specified) !!;
- Spread in back edge delay with respect to trigger $\approx 5.2 \mathrm{~ns}$ (1ns specified).

CONCLUSION
 SLM-001-IS-PTN transceivers are NOT suitable for SMS, and thus a suitable fibre optic has NOT yet been identified.

M.J. Barnes

Kickers for CTF3

Tail Clipper: Behlke Switch Update

Tail Clipper: Behlke Switch Measured Current

Switch: Behlke HTS-80-12-UF (S/N 745136) with $2 \times 10 \mathrm{pF}\left(\mathrm{C}_{\text {opt }}\right)$; -5.7 kV PFN

 voltage; 50 Hz operation.
FAST (3ns rise) trigger input.

Results:

- 200 ns flattop;
- -59 A load current (48A required);
- 2.352 ns Max fall (10\% to 90%) [7.6x10 ${ }^{6}$ pulses];
- Time-jitter of load current with respect to trigger:
$\sigma=36.41 \mathrm{ps}$;
- Max fall $+3 \sigma=2.46$ ns (permissible: 2.8 ns for 3 section stripline!).

Note: RT818A load resistor (2W) temporarily reduced from $\sim 50 \Omega$ to $\sim 44 \Omega$ due to temperature rise.

Tail Clipper:"Behlke Switch Summary of Measurements

Summary of Test Results for Behlke Switch Type HTS-80-20-UF

Permissible value of current Rise/Fall $\Rightarrow \sim 2.80$ ns for a $1 \mathrm{~m}, 3$ section stripline

Behlke Switch S/N	Behlke Connector	Pulse Generator $10 \% \rightarrow 90 \%$ rise (ns)	PFN Voltage (V)	$\begin{aligned} & \text { Rise/Fall } \\ & \text { (10\% to } \\ & 90 \%) \text { (ns) } \end{aligned}$	Timejitter [σ] (ps)	$\begin{aligned} & \hline 3 \sigma \\ & \text { (ns) } \end{aligned}$	Number of "Statistic" Pulses
640242	Push-Pin	3	+5700	$2233 \checkmark$	114.7	$0.34 \checkmark$	1.96×10^{6}
640242	Push-Pin	3	+6050	$2.285 \checkmark$	232.5	$0.70 \checkmark$	7.91×10^{6}
640243	Push-Pin	3	+6050	$2.257 \checkmark$	115.4	$0.35 \checkmark$	4.22×10^{6}
745136	Screws	3	-5700	$2.352 \checkmark$	34.61	$0.10 \checkmark$	7.60×10^{6}
745136	Screws	3	+5700	$2.378 \checkmark$	66.73	$0.20 \checkmark$	0.44×10^{6}
745136	Screws	31	- 5700	$2.401 \checkmark$	131.9	$0.40 \checkmark$	0.99×10^{3}
Load solder joint deteriorating (sparking)							

To achieve fast rise/fall of field and low time-jitter:

- Integrity of connections is very important;
- Low-loss coaxial cables are required;
- A "fast" (e.g. 3 ns rise-time) trigger pulse, with low time and amplitude jitter is required.

Tail Clipper: Behlke"Switch Predicted Field Rise-Time

- For an overall stripline length of 1 m , a current of $\sim 48 \mathrm{~A}$ provides the specified kick of 1.2 mrad ;
- Measured current used to predict field in (ideal) striplines $\Rightarrow 3$ series 0.33 m plates meets 5 ns rise-time;
- Predicted field rise, 0% to 100%, can be reduced from $\sim 4.8 \mathrm{~ns}$ to $\sim 4.0 \mathrm{~ns}$ by using 4 series 0.33 m plates (however 1625 mm overall length must be respected);
- A $4^{\text {th }}$ set of striplines also provides redundancy;
- "Over-driving" striplines also reduces field rise-time.
M.J. Barnes

Kickers for CTF3

Tail Clipper: Behlke Switch Summary

- For an overall stripline length of 1 m , a current of $\sim 48 \mathrm{~A}$ is required to achieve the specified kick of 1.2 mrad.
- The on-state resistance of the HTS-80-20-UF Behlke switch, when conducting ~60A of load current, is approximately 9Ω.
- With a 50Ω PFN and 50Ω load, a PFN voltage of 5.25 kV is required to achieve 48A of load current. The HTS-80-20-UF has been tested at up to 6.05 kV PFN voltage at 50 Hz : however, for long-term reliability, it is desirable to operate at < 70\% of 8 kV switch rating (5.6 kV).
- A load current rise-time of < $2.4 \mathrm{~ns}, 10 \%$ to 90%, is consistently achieved with the HTS-80-20-UF Behlke switch and low-loss transmission line.
- Predicted field rise-time, 0% to 100%, can be reduced from $\sim 4.8 \mathrm{~ns}$ to $\sim 4.0 \mathrm{~ns}$ by using 4 series 0.33 m striplines instead of 3 series 0.33 m (however 1625 mm overall length must be respected). The $4^{\text {th }}$ set of striplines also provides redundancy allowing operation with nominal kick with increased rise-time.
- Length of each set of striplines will be chosen:
- to use 4 series striplines;
- to maximize overall length of striplines (to optimize deflection versus switch stress).

Tail Clipper:"Behlke Switch Proposed Installation

SKETCH OF CTF3 TRANSFER LINE WITH KICKER BEHIND WALL

- Behlke switch, control electronics and load are all outside high radiation environment;
- Low-loss coaxial cable (HTC-50-7-2) will be used for PFN (~16 m), transmission cable from switch to striplines ($\sim 10 \mathrm{~m}$) and for transmission cable from striplines to load ($\sim 10 \mathrm{~m}$).
- CIEMAT have designed, constructed and tested 50Ω striplines for extraction from the CTF3 CR. Initial RF tests show good agreement with design simulations. The device is now awaiting vacuum tests before installation in the machine.

Tail-Clipper

- SLM-001-IS-PTN transceivers (D-Lightsys) are NOT suitable for a SMS system; the spread in delays is excessive. Thus a suitable fibre optic has NOT yet been identified. Therefore SMS technology is not being pursued for tail-clipper. But for CLIC CR......
- For a 1 m stripline length, subdivided into 3 sections, the predicted 0% to 100% field rise-time, with current measured for a Behlke HTS-80-20-UF switch, is $\sim 4.8 \mathrm{~ns}$.
- Predicted field rise-time, 0% to 100%, with the Behlke HTS-80-20-UF, can be reduced from $\sim 4.8 \mathrm{~ns}$ to $\sim 4.0 \mathrm{~ns}$ by using 4 series 0.33 m striplines. The 4 th set of striplines also provides redundancy allowing operation with nominal kick but with the increased rise-time.
- The Behlke HTS-80-20-UF switch provides adequate performance and therefore an order for the required tail-clipper switches will be placed shortly (long delivery time).
- A Fast Ionization Dynistor, the FPG5-01M122S144N, has not yet been received; this FID will be tested but will not be used for the tail-clipper.

[^0]
Behlke HTS-80-20-UFw. Measured

 Current

Striplines: Angular Deflection Due To Magnetic and Electric Fields

$$
\theta_{E}=\arctan \left(\frac{V^{*} l * c}{d^{*}\left(p^{*} 10^{9}\right) * \beta^{*} c}\right)
$$

$$
\theta_{B}=\left(\frac{0.3}{p}\right) *\left[\frac{V}{\left(\frac{d}{2}\right) *_{C}}\right] * l
$$

These equations show that the deflection due to the magnetic field is independent of the impedance of the striplines.

Agilent HFBR-2528:Fíber Optic: Receiver Delay

Delay of Edges through HFBR-2528 Receiver (various pulse widths, positive, TTL input pulse) with a Reference HFBR-1528 Transmitter

HFBR-1528 Fiber Optic Transmitter Delay

HFBR-1528 Transmitter Delay, measured data sorted on back edge delay, with a "Reference" HFBR-2528 Receiver

Arbritary Number

[^0]: M.J. Barnes

 Kickers for CTF3
 CTF3 Collaboration Meeting, 22/01/2008
 pg17

