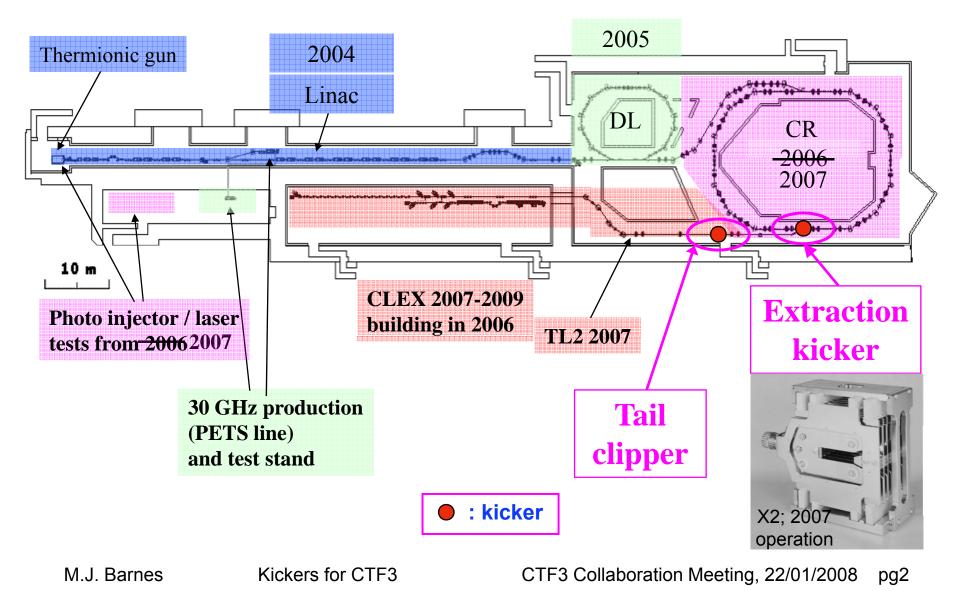
M.J. BARNES & T. FOWLER KICKERS FOR CTF3

Michael Barnes CERN AB/BT


Also representing: Tony Fowler, Gianfranco Ravida & Hiromitsu Nakajima

M.J. Barnes

Kickers for CTF3

CTF3 Programme

M.J. BARNES & T. FOWLER

CTF3 & CLIC Stripline Kickers

		CTF3 CR Extraction	CLIC CR	Tail Clipper	
Beam energy	300	2500	200	MeV	
Total kick deflection angle ("B" & "E" Fields)		7	2.5	1.2	mrad
Stripline plate separation		40	20	40	mm
Stripline length		1.7	3		m
Available length (including transitions)				1.625	m
Rise & fall-times (0.25% to 99.75%)		≤ 70	≤ 30	≤5!	ns
Pulse duration		200	50 to 60	Up to 140	ns
Flat-top reproducibility		± 0.1	± 0.1	NA	%
Flat-top stability (including droop)		± 0.25	± 0.25	NA	%
Field homogeneity				± 15	%
Depetition rate	Initial	5		5	Hz
Repetition rate	Nominal	50	150	50	Hz
Pulse voltage		12.6	10.5	2.4 for 1m	kV
Pulse current (into 50 Ω load)		252	210	48	Α
Timing Jitter				<mark>≤ 1 rms</mark>	ns

M.J. Barnes

Combiner Ring Extraction Kicker

For operation in **2008** the existing magnetic kicker, which only partially satisfies the specifications, will be replaced by a new stripline kicker designed and built by CIEMAT.

Tests were undertaken at INFN Frascati:

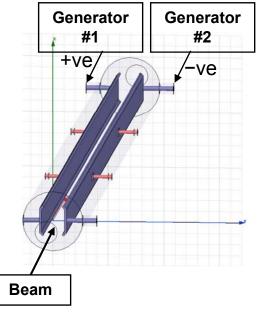
Vacuum achieved 2e-7 mbar with turbo pump and no bake out;

HV pulse test at 16 kV, 5 ns pulse width. HV DC test at 18 kV;

RF measurements (0 to 1 GHz) compare well with HFSS simulations;

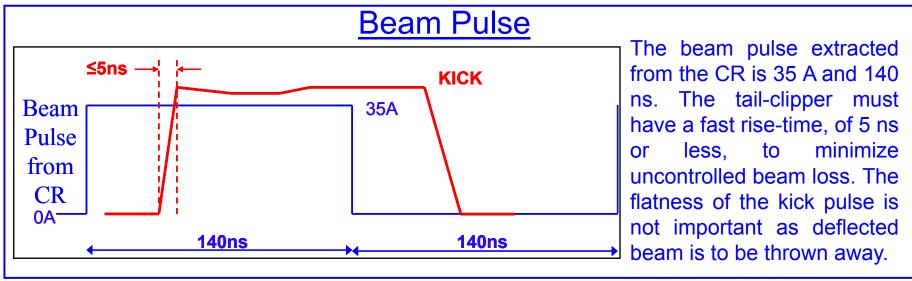
Conical transition pieces at the extremities are designed to reduce impedance discontinuities;

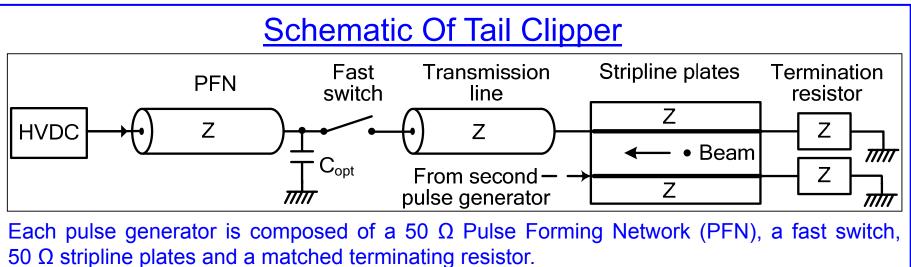
Recently delivered to CERN.



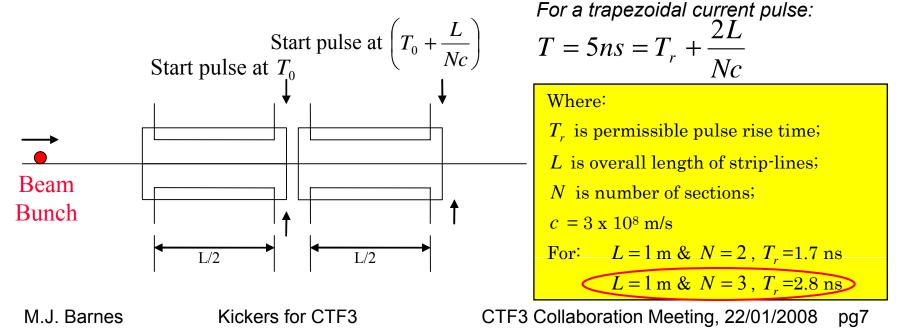
Kickers for CTF3

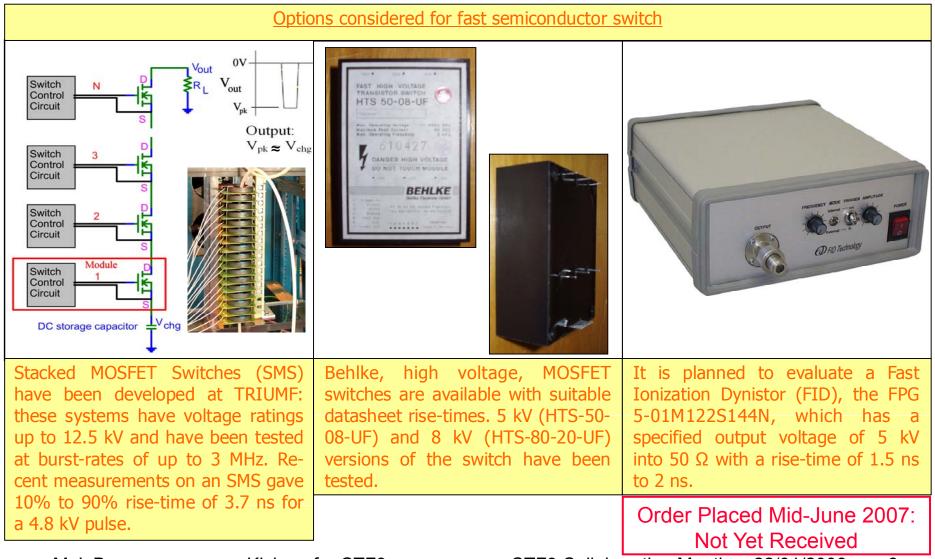
Combiner Ring Extraction Kicker


Stripline kicker powering


- The electrodes must be pulsed with separate, opposing polarity power supplies. Physically located in Bât. 2002.
- These pulsed power supplies have been be obtained by modification of ex-EPA equipment and change of system impedance from 30 Ω to 50 Ω. They have been pulse tested up to 17.5kV, 200ns into dummy 30 Ω loads.
- Positive pulse generator uses ex-EPA INJ GEN4. Electronics are in racks RA042 and RA043
- Negative pulse generator uses ex-EPA INJ GEN3. Electronics are in racks RA040 and RA041
- Controls will use existing DSC interface (DCTFPOW1, rack RA110) presently used for magnetic extraction kicker control.

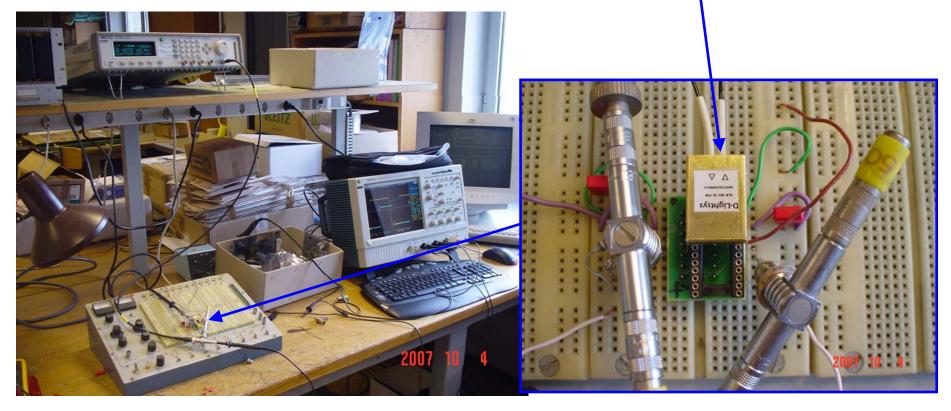
Tail Clipper: Overview




Tail Clipper: Rise Time

- To make use of both the electrical and magnetic fields to deflect the beam, the striplines must be "charged" from the CLEX (beam exit) end;
- To provide 1.2 mrad deflection, with striplines terminated in 50 Ω , requires 2.4kV on 1 m long striplines;
- Electrical pulse propagation through 1 m striplines, at speed of light, takes 3.3 ns!
- Tail Clipper requires short field rise-time (≤ 5 ns) !.
- In order that stripline fill time does not significantly effect deflection rise-time, several sets of striplines, mechanically in series, will be used.

Tail Clipper: Semiconductor Switch



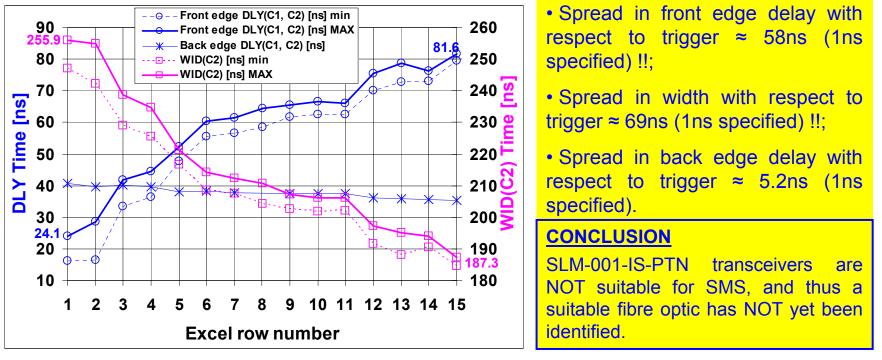
M.J. Barnes

Tail Clipper: SMS Update

For an SMS device the relative timing of the turn-on of each MOSFET is critical: thus it is important that the trigger to each MOSFET is coherent in time. Sample Fibre Optic transceivers, the **SLM-001-IS-PTN** from D-Lightsys, have been extensively tested.

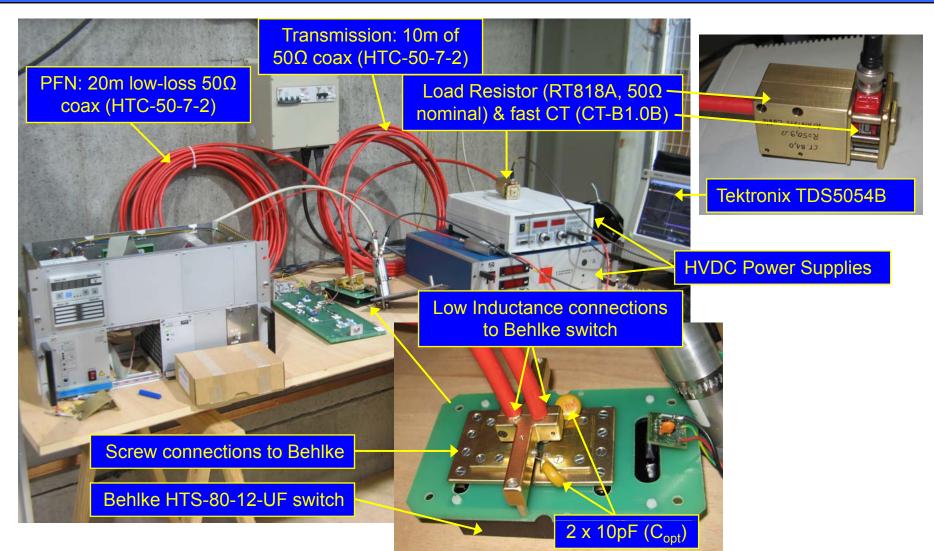
M.J. Barnes

Tail Clipper: SMS Update 2



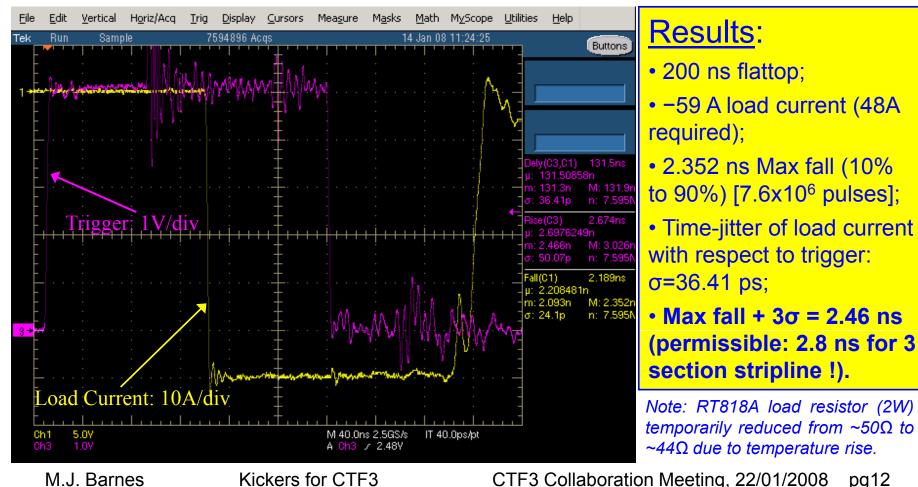
CERN Specifications for Fibre-Optics:

• The fibre-optic receiver is required to output a signal which can vary in duration from DC to a pulse train consisting of 50 ns wide pulses with a 50% duty-cycle (i.e. 10 million pulses per second for CLIC Combiner Ring Extraction Kicker). Within these lower and upper frequency bands the pulse train can have an arbitrary duty-cycle which is defined by the input signal;


• The timing of an edge on the output of any receiver should be within 1 ns of the timing of the same edge from any other fiber optic transmitter-receiver pair.

Measurements on SLM-001-IS-PTN (5pps, Vcc=5.5V):

Tail Clipper: Behlke Switch Update


M.J. Barnes

Kickers for CTF3

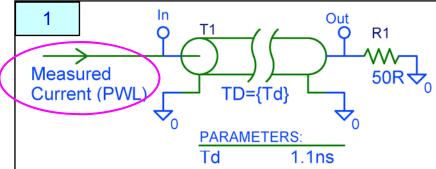
Tail Clipper: Behlke Switch Measured Current

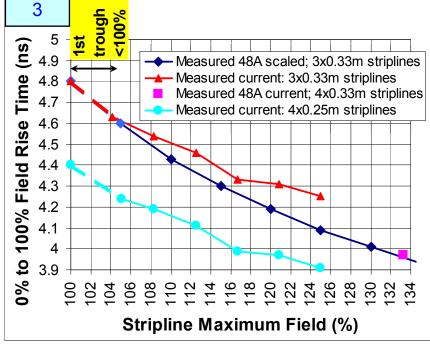
Switch: Behlke HTS-80-12-UF (S/N 745136) with 2 x 10pF (C_{opt}); -5.7kV PFN voltage; 50Hz operation. FAST (3ns rise) trigger input.

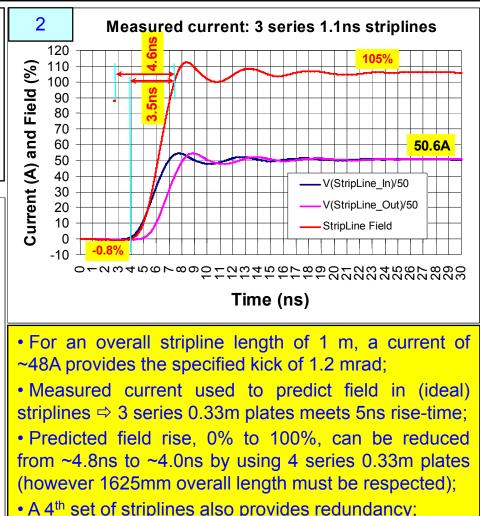
Tail Clipper: BehalterSwitch Summary of Measurements

Summary of Test Results for Behlke Switch Type HTS-80-20-UF

Permissible value of current Rise/Fall ⇔ ~2.80 ns for a 1 m, 3 section stripline


	Behlke Switch S/N	Behlke Connector	Pulse Generator 10%→90% rise (ns)	PFN Voltage (V)	Rise/Fall (10% to 90%) (ns)	Time- jitter [σ] (ps)	3 σ (ns)	Number of "Statistic" Pulses		
	640242	Push-Pin	3	+5700	2.233 🗸	114.7	0.34 🗸	1.96x10 ⁶	ľ	
<	640242	Push-Pin	3	+6050	2.285 🗸	232.5	0.70 🗸	7.91x10 ⁶	Þ	
	640243	Push-Pin	3	+6050	2.257 🗸	115.4	0.35 🗸	4.22x10 ⁶		
	745136	Screws	3	-5700	2.352 🗸	34.61	0.10 🗸	7.60x10 ⁶		
	745136	Screws	3	+5700	2.378 🗸	66.73	0.20 🗸	0.44x10 ⁶		
	745136	Screws	31	- 5700	2.401 🗸	131.9	0.40 🗸	0.99x10 ³		


Load solder joint deteriorating (sparking)


To achieve fast rise/fall of field and low time-jitter:

- Integrity of connections is very important;
- Low-loss coaxial cables are required;
- A "fast" (e.g. 3 ns rise-time) trigger pulse, with low time and amplitude jitter is required.

Tail Clipper: Behlke Switch – Predicted Field Rise-Time

• "Over-driving" striplines also reduces field rise-time.

M.J. Barnes

Tail Clipper: Behike Switch Summary

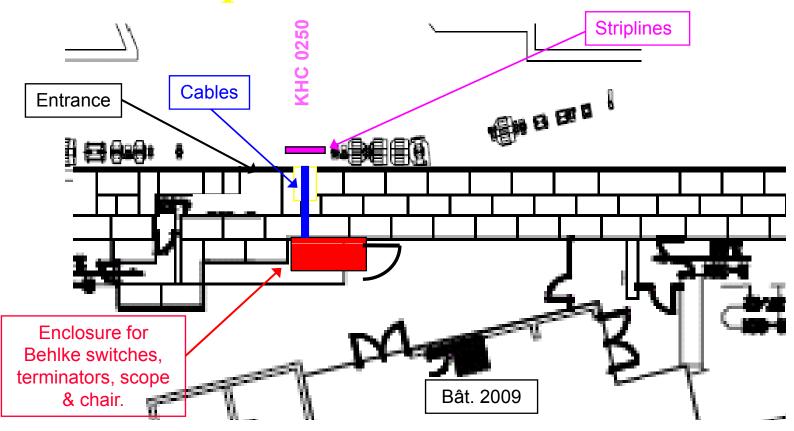
• For an overall stripline length of 1 m, a current of ~48 A is required to achieve the specified kick of 1.2 mrad.

• The on-state resistance of the HTS-80-20-UF Behlke switch, when conducting ~60A of load current, is approximately 9 Ω .

• With a 50 Ω PFN and 50 Ω load, a PFN voltage of 5.25 kV is required to achieve 48A of load current. The HTS-80-20-UF has been tested at up to 6.05 kV PFN voltage at 50 Hz: however, for long-term reliability, it is desirable to operate at < 70% of 8 kV switch rating (5.6 kV).

• A load current rise-time of < 2.4 ns, 10% to 90%, is consistently achieved with the HTS-80-20-UF Behlke switch and low-loss transmission line.

• Predicted field rise-time, 0% to 100%, can be reduced from ~4.8ns to ~4.0ns by using 4 series 0.33m striplines instead of 3 series 0.33m (however 1625mm overall length must be respected). The 4th set of striplines also provides redundancy allowing operation with nominal kick with increased rise-time.


• Length of each set of striplines will be chosen:

• to use 4 series striplines;

• to maximize overall length of striplines (to optimize deflection versus switch stress).

Tail Clipper: BestalkeesSwitch Proposed Installation

SKETCH OF CTF3 TRANSFER LINE WITH KICKER BEHIND WALL

• Behlke switch, control electronics and load are all outside high radiation environment;

• Low-loss coaxial cable (HTC-50-7-2) will be used for PFN (~16 m), transmission cable from switch to striplines (~10 m) and for transmission cable from striplines to load (~10 m).

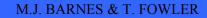
M.J. Barnes Kickers for CTF3

M.J. BARNES & T. FOWLER

• CIEMAT have designed, constructed and tested 50 Ω striplines for extraction from the CTF3 CR. Initial RF tests show good agreement with design simulations. The device is now awaiting vacuum tests before installation in the machine.

Tail-Clipper

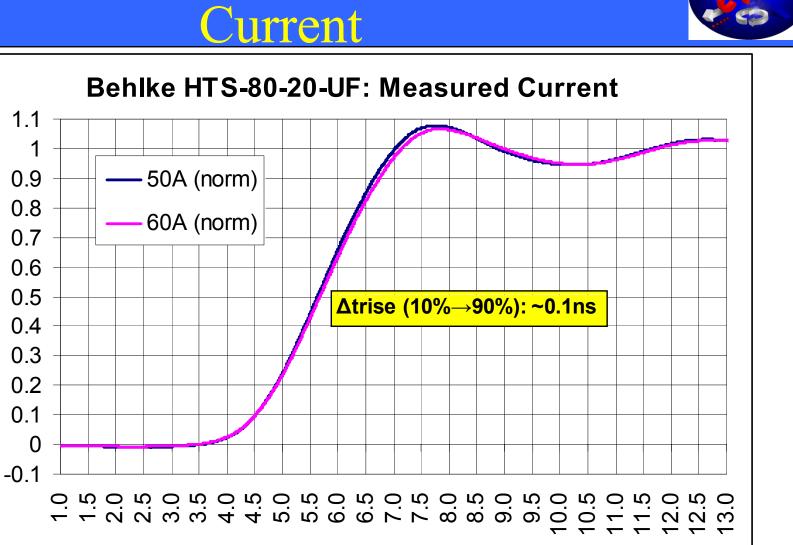
• SLM-001-IS-PTN transceivers (D-Lightsys) are NOT suitable for a SMS system; the spread in delays is excessive. Thus a suitable fibre optic has NOT yet been identified. Therefore SMS technology is not being pursued for tail-clipper. But for CLIC CR.....


• For a 1 m stripline length, subdivided into 3 sections, the predicted 0% to 100% field rise-time, with current measured for a Behlke HTS-80-20-UF switch, is ~4.8ns.

• Predicted field rise-time, 0% to 100%, with the Behlke HTS-80-20-UF, can be reduced from ~4.8ns to ~4.0ns by using 4 series 0.33m striplines. The 4th set of striplines also provides redundancy allowing operation with nominal kick but with the increased rise-time.

• The Behlke HTS-80-20-UF switch provides adequate performance and therefore an order for the required tail-clipper switches will be placed shortly (long delivery time).

• A Fast Ionization Dynistor, the FPG5-01M122S144N, has not yet been received; this FID will be tested but will not be used for the tail-clipper.


M.J. Barnes Kickers for CTF3 CTF3 CTF3 Collaboration Meeting, 22/01/2008 pg17

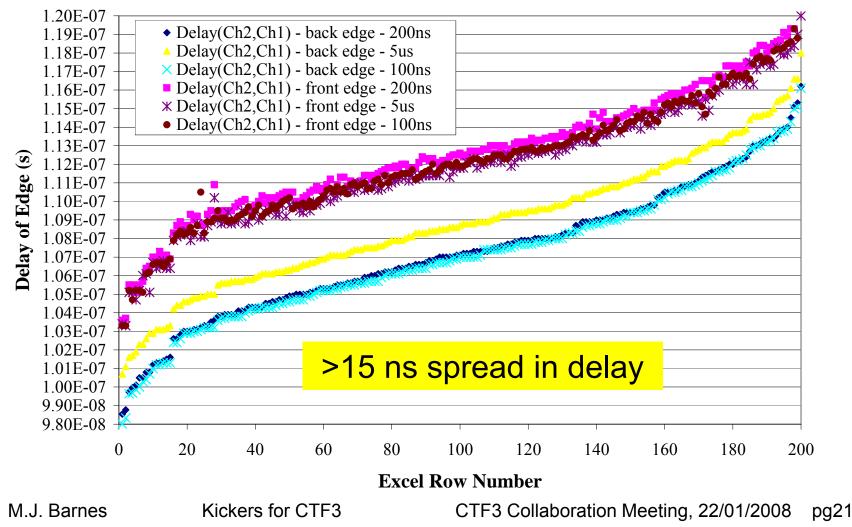
Behlke HTS-80-260 Struce Measured Current

Time (ns)

Normalized Current

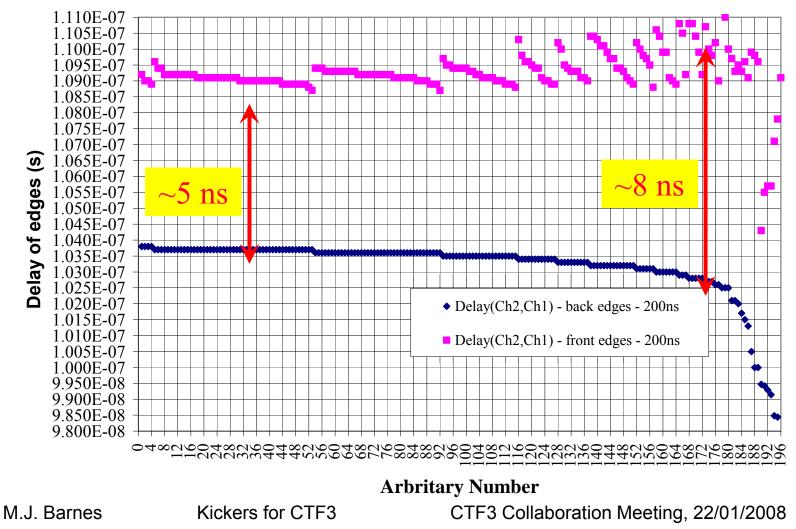
Striplines: Angular Deflection Due To Magnetic and Electric Fields

$$\theta_E = \arctan\left(\frac{V^*l^*c}{d^*(p^*10^9)^*\beta^*c}\right)$$


$$\theta_{B} = \left(\frac{0.3}{p}\right) * \left[\frac{V}{\left(\frac{d}{2}\right) * c}\right] * l$$

These equations show that the deflection due to the magnetic field is independent of the impedance of the striplines.

Agilent HFBR-2528*Fiber Optic: Receiver Delay



Delay of Edges through HFBR-2528 Receiver (various pulse widths, positive, TTL input pulse) with a Reference HFBR-1528 Transmitter

M.J. BARNES & T. FOWLER HFBR-1528 Fiber Optic Transmitter Delay

HFBR-1528 Transmitter Delay, measured data sorted on back edge delay, with a "Reference" HFBR-2528 Receiver

pg22