

Existing Hardware Machine components

Frank Tecker - AB/OP for the CTF3 Team

- Review of various hardware
 - gun, RF, ...
- Software / Controls
- Conclusion

Preface

- CTF3 in steady evolution since 2003
 - Machine extending every year
 - Work concentrated on commissioning of new components
 - Increased complexity
 - Higher demand for availability of components
- Full recombination (DL + CR) to be demonstrated
 - Operation becomes more demanding in terms of stability
 - Review the performance and identify bottlenecks

Gun

- the source of a lot of down-time and problems this year
 - Heater power supply
 - Bias power supply
 - Bad contacts
 - Gun pulser
 - Cathode
 - Dark current
 - 2 vacuum leaks after solenoids on Oct 9 and Nov 20, caused by gun dark current, 6 and 5 days downtime
 - Stability and jitter

Gun – Current stability

 Current stability crucial because of full beam-loading in the linac

$$\frac{dV/V}{dI_{beam}/I_{beam}} = -\frac{I_{beam}}{I_{opt}}$$

1% current variation = 1% energy variation

 Also for other effects changing current (SHB phase switch, bunching variations)

Table 1: Parameters for the CTF3 gun for the nominal working point

•	Specification:
	For the nominal working
	point (6 A), the possibility
	of a \pm 5% current modulation
	signal with bandwidth of up
	to 20 MHz is required.

Parameters	Unit	Initial and Nominal
Voltage (Running)	kV	140
Voltage (Conditioning)	kV	160
Pulse flat-top	ns	200 - 1600
Gun current	A	6
Max mean current	mA	0.5
Rise/ Fall time	ns	≤ 20
Charge flatness on flat top	%	≤ 0.1
Voltage stability ΔV/V for 200 to 1600 ns (flat-top)	%	≤ 0.1
Repetition rate	Hz	5

Gun current variation

Γĥu Jun -7 11:31:38

CL.CTF3-GUN => Time=Fct(AQN3)

CL.SVBPM0402S-C => Time=Fct(AQN2)

- We observed current variations caused by HV change
 - Small HV variations not obvious since acquisition is noisy

00:20:50

- Could be fixed by increasing the threshold for switching
- But the problem reappeared ...

the HV to limit the current

Energy variations and jitter

- Correlation between energy (hor position in dispersive region) and SHB02 loaded signal
- Stable SHB phases measured
- Gun current stable
- => other variation from gun, HV?
 but we miss proper diagnostics

- Periods of better or worse jitter, not understood why
- Jitter variations bigger than tuning variations
- Beam very difficult to set up
- Lower variations without 1.5 GHz SHBs => used 3 GHz beam

Dark current

• 2 Oct: high dark current after cathode change

• 9 Oct: vacuum leak after solenoid exit (CL.0405)

• 15 Oct: restarting, almost 10 mA dark current, try to fix

• 23 Oct: restarting commissioning

20 Nov: new leak at same location

• 25 Nov: restart, temperature probe installed

- Conclusions: Vacuum activity and local temperature at the leak
 - NOT correlated to
 - beam pulsing or not
 - RF on or off
 - BUT are correlated to
 - gun average current readings
- Dark current (cw) from gun responsible for leaks

Gun pulse shape

Current pulse shape shows variations, ringing needs to be optimized

Gun - improvements

- With the present gun performance
 - It is extremely difficult to set up combination
 - It will be even more difficult with DL+CR and beam for CLEX!
- We certainly need a consolidation of the gun!
 - Review different power supplies
 - Add proper measurement signals to allow better diagnostic
 - Review the voltage regulation
 - Implement feedbacks as an upgrade?
 - Activate current modulation feature (in design) to compensate current modulation during SHB phase switch

Sub-harmonic bunchers (SHB)

- three 1.5 GHz SHBs fed by Traveling Wave Tubes (TWT)
- Required for DL operation
- 1 tube broke in May
- We have 1 spare tube but no spare amplifier

Other point: no remote indication of status
 we had periods of faults, not immediately obvious to operation

Frank Tecker

Klystrons + RF

- Need all 11 klystrons available reliably for proper operation
- Klystron trip consequence:
 - Direct down time
 - Recuperation time (for RF pulse compression)
 - temperature change in LIPS/BOC cavities
 - phase adjustment

- Important: proper conditioning at the beginning
- Plan in sufficient time in the schedule
- Remark: small team of specialists, very efficient but limited

Klystron - Spares

- Two klystrons failed due to charging power supply failures
 - MKS15 End Oct
 - MKS11 27 Nov
- No spares available
- Could continue operation but needed a completely new setup of the machine
 several days time lost each time
- We need spares for these power supplies
- We also need spares for klystron tubes
- => Gerry's talk
- Option: install structures on girder 14 to increase linac energy we need another modulator for this

Water station for LIPS/BOC

- Temperature control for RF pulse compression cavities
- Tuning very crucial
- Filter for one device got blocked twice
 - -> flow rate reduced, cavity detuned

- Regular maintenance + cleaning needed
- Regulation for some devices slower than others
 - => needs regulation, evtl. change of feedback to include power dependance

RF pulse compression

 We had frequent problems with the waveform generators on one front-end computer

Finally fixed by CPU card exchange

- Setting up improved by Hamed's software
- Slow drifts in compressed pulse shape
- Should invest time into automatic feedback to keep power constant
- A basic version for this exists but needs testing

Need to review phase sag, eventually lower compression ration

1.5 GHz RF deflector (DL)

- Problem with reflected RF limiting power
- Difficult to diagnose
- Leak in the water load, no spare, had to wait for 1 month

- Driver amplifier for MKL02 was unstable at some time
- Could be regulated but there was no spare

 Pulse shape of pulse forming network of klystron MKL02 needs to be regulated

Quad scans + spectrometers

- Quad scans essential for optics studies and machine setup
- on girder 10 (for linac matching) during 2nd run
 - Al screen was damaged
 - Carbon screen did not give sufficient light
- Got repaired => widely used for linac matching
- Screen control + analysis software not optimum

New segmented dump foreseen (=> Thibaut)

BPMs and WCMs

- We have different types of current / Beam Position Monitors (different chamber geometry) with different electronics
- BPE: electrostatic, in solenoids charge up during pulse, bias test not successful
- BPM: circular, working very well since the beginning
- BPR: RF BPM working well, one phase-shifter needs proper remote control
- WCM (Wall Current Monitor): working well, basically unused foreseen beam loss system

BPIs

• BPI: racetrack, similar to BPM, different electronics

First version had a signal droop due to different low frequency

cut-off

 CR BPMs overcompensated for droop during 1st run 2007

- Finally, also working very well (see next slide)
- But we had only ~2/3 of all BPIs in the CR until last period

BPI signal droop corrected

- Adjustment of electronics solved droop for current signal
- Still small droop for position signals left

BPM alignment

- DL and CR vacuum chamber has sparse bellows
- Difficult to align
- BPM offsets up to
 15mm measured
- Taken into account in software but still questionable
- Will be realigned during shut-down

BPM calibration

- We had quite some problems/confusion with the different type of BPIs concerning calibration
 - Different calibration windings
 - Different gain
 - Different signal treatment
- Doubts about position calibration
 - BPMs in CR show smaller position variation than BPI
 - Measurement data to be analyzed ...
- BPMs and BPIs used for many important optics studies
 - Dispersion
 - Corrector kick measurements

Slits + Stepping motors

- We use stepping motors for collimating slits and RF equipment
- Most have been upgraded to PLC control
- CK.MKS14-PHAS / -ATTN are not working remotely (still on old system, extremely slow – locally OK new system does not yet support this motor)
- Will be upgraded

Slit calibration needs to be added

Magnets / Power supplies

- In general OK
- Startup after power cut / lock-out lengthy (1/2 1) day
- Several power supplies without remote reading (after CPU card change – new EPROM version?) need to be verified
- Stability usually not verified (instability from gun dominant)

- We had some problems with polarities / calibration / control
- A complete field verification might be useful

Controls issues

Operation console

- extremely slow, significantly slower than the old one
- often unreliable, the values are not updated, inconsistencies
- => we use the old one whenever possible
- Major upgrade improvement foreseen for 2008
- Front-end crates
 - Frequent reboots
 - Overloaded

- CPU cards will be upgraded
- Some other (little) things to be fixed (too detailed for here)
- Recent meeting with controls group to address this

Conclusion

- Operation becoming more and more complex
- We suffered from a lot of down-time and problems
- For smooth commissioning, we need
 - Higher availability of the components, SPARES are vital !!!
 - Higher reliability of the equipments
- Gun
 - Jitter problem not completely understood
 - Review / consolidation required
- RF
 - Assure availability => sufficient spare parts
 - Proper conditioning
- Then we should manage the combination DL + CR
- We are only now starting to address performance
- Automatic measurement + analysis programs very helpful