

R. Corsini - CERN

Will talk about:

- Drive Beam generation
- Accelerating structures
- PETS
- Deceleration

The CTR**3⁴putael**\$0alprogram WhatNeedsveilber9460vn GTEF7 for 2010 ?

Build a small-scale version of the CLIC RF power source, in order to demonstrate:

- ✓ full beam-loading accelerator operation
- electron beam pulse compression and frequency multiplication using RF deflectors

Provide the RF power to test the CLIC accelerating structures and components

Covered by CTF3

The CLIC Technology-related key issues as pointed out by ILC-TRC 2003

R1: Feasibility

- R1.1: Test of damped accelerating structure at design gradient and pulse length
- R1.2: Validation of drive beam generation scheme with fully loaded linac operation
- R1.3: Design and test of damped ON/OFF power extraction structure

R2: Design finalization

- R2.1: Developments of structures with hard-breaking materials (W, Mo...)
- R2.2: Validation of stability and losses of DB decelerator; Design of machine protection system
- R2.3: Test of relevant linac sub-unit with beam
- R2.4: Validation of drive beam 40 MW, 937 MHz Multi-Beam Klystron with long RF pulse
- R2.5: Effects of coherent synchrotron radiation in bunch compressors
- R2.6: Design of an extraction line for 3 TeV c.m.

R. Corsini, 23/01/08

CTF3 collaboration meeting

Drive beam generation

Achieved recombination:

- Linac current lower than nominal
- DL bypassed (no holes, missing factor 2)
- Losses during recombination (instability...)

CTF3 collaboration meeting

R. Corsini, 23/01/08

The CTF3 baseline program

R. Corsini, 23/01/08

The CTF3 baseline program

What is missing ?

ISSUE

GOAL

- Emittance conservation final $\varepsilon_N < 150 \pi$ mm mrad
- Longitudinal beam dynamics
- Phase & current stability along the pulse
- Pulse-to-pulse fluctuations
- Losses control
- Satellites

- final bunch length < 1 mm rms
- Ilse Flat-top in produced RF power < 1 % ?

below 1 % ?

Overall losses (from girder 4) < 10 % ?

RF gun option, or scheme to eliminate satellites at low energy in CLIC

• Others...

Isochronicity...

ISOCHRONOUS OPTICS AND RELATED MEASUREMENTS IN EPA

R. Corsini, J.P. Potier, L. Rinolfi, T. Risselada, CERN, Geneva, Switzerland

CERN/PS 2000-033 (AE) CLIC-Note 440

What has been

shown already ?

Figure 6: Streak camera images and time profiles for different settings of the QFL quadrupole family.

Figure 7: Bunch-to-bunch spacing as a function of the number of turns for the normal (squares) and the isochronous optics (circles).

...Not 2nd order, but less important at 12 GHz, 1 mm σ_z

R. Corsini, 23/01/08

Bunch combination at low charge (including phasing)

Streak camera images of the beam, showing the bunch combination process in the CTF3 preliminary phase

Full beam loading acceleration in TW sections

The CTF3 baseline program

Full beam loading acceleration stability - efficiency

Fast phase switch from SHB system phase coding

3 TW Sub-harmonic bunchers, each fed by a wide-band TWT

CTF3 collaboration meeting

Streak camera image

The CTF3 baseline program

R. Corsini, 23/01/08

Performance vs reliability

Reliability

stability rep rate

Learning in CTF3: procedures, measurements etc..

CTF3 collaboration meeting

CTF3 is a test facility, we assume its main goal is to provide a convincing demonstration of the CLIC technology, BUT possibly *even more important* is use it to

- When CTF3 was designed & decided, it was the only possible high-power RF source for structure development at the CLIC frequency & pulse length.
- Since the frequency change from 30 GHz to 12 GHz, CTF3 is no more unique.
- However it should be noted that the change in frequency was mainly motivated by CTF3 results (combined with SLAC tests & previous experience).

CTF3 High-gradient test results – 30 GHz

- Breakdown-rate slope for Mo (and W) in general less steep than Cu
- Mo slope & conditioning limit not consistent in different tests...

CTF3 + SLAC High-gradient test results – 30 & 11.4 GHz

- Structures with scaled geometries at different frequencies have same performance
- Scaling introduced in a parametric model (taking into account RF structure & beam dynamics constraint), used to study optimum cost & efficiency

- When CTF3 was designed & decided, it was the only possible high-power RF source for structure development at the CLIC frequency & pulse length.
- Since the frequency change from 30 GHz to 12 GHz, CTF3 is no more unique.
- However it should be noted that the change in frequency was mainly motivated by CTF3 results (combined with SLAC tests & previous experience).
- Many structure tests (most of them ?) will be done at SLAC & KEK.
- The standalone power source @ 12 GHz will be however well integrated in the CTF3 environment, which is important in many respects (see later discussions).
- CTF3 will stay however the (only ?) place to test structures with beam (more about it later).

Structures R & D – what has to be shown ?

- Gradient 100 MV/m @ 10⁻⁶-10⁻⁷ BDR, average, loaded
- Pulse length at present 240 ns could evolve again before 2010
- Damping wake-field at the second bunch $W_{t,2} < 10 \text{ V/pC/mm/m} \cdot 4x10^9 / \text{ N}$
 - Pulse length, damping and bunch charge (dependent from a/ λ) determine efficiency
 - Present efficiency 28 % what is the minimum acceptable ?
 - NB: fatigue resistance to RF pulse surface heating must be shown as well !

Recent SLAC High-gradient test results – 11.4 GHz

T53vg3 (shortened) would give ≥ 5% efficiency at 100 MV/m loaded, 10⁻⁶ BDR but undamped !

Efficiency milestones in structure testing

More details in presentations to the 2nd CLIC Advisory Committee (CLIC-ACE): http://indico.cern.ch/conferenceDisplay.py?confld=24998

CTF3 collaboration meeting

R. Corsini, 23/01/08

The Two-Beam Test Stand

- drive and probe beam parallel along ~ 10 m
- unique test possibilities
 - PETS
 - accelerating structures
 - direct measurement of gradient
 - two-beam operation
 - beam loading energy spread compensation
 - breakdown rate with beam
 - RF breakdown transverse kick

PETS test program overview				I. Syratchev
PETS target is to generate reliably 136 MW x 240 ns RF pulses		Test areas		
		X-band klystron test stand at SLAC	Two beam test stand CLEX, CERN	TBL CLEX, CERN
		Access to the high power and full pulse length: 240 ns x 300 MW. High rep. rate. RF source driven.	Access to the high power (~ 200 MW) Pulse length limited to <u>140 ns</u> , for maximum beam current. Low rep. rate. Beam driven.	
Objectives	The ultimate PETS high RF power performance			
	RF power generation from the drive beam			
	Demonstration of the ON/OFF capability			
	Study/benchmarking of the beam dynamic in decelerator			
	Testing of the special RF components			
PETS design specifics		Scaled (12->11.424) CLIC PETS. Active length 0.23 m Two couplers.	CLIC PETS. Active length 1.0m . Two couplers	CLIC PETS. Active length 0.8 m . One coupler
Origin and availability		CERN, spring 2008.	CERN, summer 2008.	CIEMAT, autumn 2008.

PETS with recirculation

CLEX 2BTS: Drive beam: 12GHz, 140ns, 30 A (max) CLIC PETS, active length 1.0 m, 135 MW will be produced with 20.8 A beam. Access to 270 MW (30 A)

Number of tests:

#1. PETS/ no damping material

- #2. PETS/ with damping material
- #3. PETS with recirculation (access to full pulse length)

#3b. PETS with priming (access to full pulse length)

#4. On/Off demonstration (slow)

The CTF3 baseline program

The CTF3 baseline program

Fast ON/OFF mechanical prototype study

The objective is to demonstrate the fast – 20 ms and accurate movement (OFF) of the detuning wedges in a vacuum environment.

Petsonov

The CTF3 baseline program

R. Corsini, 23/01/08

The CLIC Module

Straightforward continuation of the CTF3 baseline program

R. Corsini, 23/01/08

TBL goals

- 'Realistic' show case of a CLIC decelerator
- High energy spread beam transport, low losses (Bench mark simulations)
- RF Power Production, Stability (End Energy <50%, 2.4 GW of RF power)
- Alignment (Test procedures for BBA) 100 microns alignment for PETS, test of CLIC alignment equipment
- Drive Beam Stability, Wake fields direct measurement of the wake fields)
- Industrialization of complicated RF components

CONCLUSIONS

- A full, challenging and complete experimental program, which can keep all of us busy until 2010 and beyond
- A lot to learn and study invaluable towards the completion of a CLIC design report first and a technical report later
- A lot of tests are relevant to determine the feasibility of the CLIC technology, however:

I don't know which one represents CTF3 better, but definitely the test facility is not exactly like

CLIC

... and we will need a real quantum leap in order to reach the CLIC scale

CC-ITAL COMPANY AND A