Phase Coding System tests at Milano

I. Boscolo*, S. Cialdi, D. Cipriani

CTF3 Technical meeting CERN 20/1/2008

Operation of the Phase Coding System

Re-pattern a CW 1.5 GHz mode-locked laser beam into a laser beam made up of a succession of trains as shown in figure;

red groups = odd trains blu groups = even trains

The experimental tests carried out in Milano

- 1. fiber launch losses
- 2. Modulator losses
- 3. Fiber-fiber junction losses
- 4. Fiber beam-splitter losses
- 5. Entire system losses
- 6.RF-driver modulus test
- 7. Full system operation

input and output collimators are lossy about 15 %.

Indication: order in/out collimators tailored to our wavelength.

Note: the mechanical tool for the launch does not work properly, the screws do not govern correctly the movements

The ambient must be very clean

2-modulator losses

Pin mW	Pout mW	ε%
75	15	20
170	30	18
250	45	18

- •We fought a lot with the modulator,
- we still are not completely confident of these results

•The operation with Bias controller in automatic lowers of 10 % the output

•The initial output power decays with time of about 30%

3-Fiber-fiber junction losses

- •We mesured a loss of about 0.5 dB
- •The precise set of the junction requires expertise
- Suggestion:

sínce we have 4 of thís junctions in the system

Soldering of the fiber-fiber connetions to reduce the loss to 0.05 dB

4- fiber beam splitter losses				
A bit higher than 0.5 dB				
Losses in dB	CCLRC estimate	Measured		
1. fiber launch (exit)	1	1		
2. Modulator	4.5	7.3		
3. Fiber-fiber junction	0.3	0.5		
4. Fiber beam-splitter	0.3	>0.5		

Remark: there is a further 3 dB (50%) losses due to the pattern formation

Efficiency of the items: present possible

Total transmission 0.035 0.09

5- Full system losses

misure con fascio laser in continua (non mode-locked)

Pin=300mW expected: Pout = 10.5 mWVery difficult to setNeasured: Pout about 7 mWMeasured: Pout about 7 mW

6- test of RF-driver amplifier

The amplified signal has a ramp thus the the bias controller cannot work: sent to company for fixing it up

Test of the delay introduced by fibers

Generation of the 141 ns long sub-trains driving the modulator by 3.5 square wave

Rise and decay times are governed by monitor times

sub-trains of the right length are generated

7- full system operation

Interleaving of carriages is done

Power test of full system Pin = 300 mW Pout = 2 mW measured

Assuming the best launch and junctions

Pout expected $0.017 \times 300 = 5.2 \text{ mW}$

System with soldered junctions and tailored collimators Pout expected 0.045x320= 14.4 mW

Unless we can find a better performace with the modulator

Next

1) Jitter measurements depending on a) modulator b) RF - generator c) 1.5 GHz Laser

2) Amplitude stabilization: we would have an idea of a feedback system to be designed and tested THE END

A tentative jitter test

