TOTEM PHYSICS PROGRAMME, ANALYSIS AND RESULTS

CERN-LHC Seminar Main Auditorium, Tuesday, 29th of January 2013

Hubert Niewiadomski

CERN, on behalf of the the TOTEM collaboration

TOTEM Physics Overview

4 4.5 x (km)

Experimental Setup @ IP5

Roman Pots:

measure elastic & diffractive protons close to outgoing beam

CERN-LHC Seminar, 29 January 2012

Hubert Niewiadomski, TOTEM

TOTEM Trackers

(all with trigger capability)

LHC Optics

Lattice between IP5 and RP220 Q3 D1 Q5 Q2 RP14 RP2 TAS MQXA MQXB MQXADFBX MBXW MQML IP1 5.5 3.2156.37 0.766 8.475 22.83

- 6 quardupole magnets (Q1-Q5)
- Dipoles, correctors, drift spaces

Proton transport IP5 \rightarrow **Roman Pot**

$$\begin{array}{c} \text{Kinematics} \\ \text{measured in} \\ \text{Roman Pots} \end{array} \left[\left(\begin{array}{c} x \\ \Theta_x \\ y \\ \Theta_y \\ \Delta p/p \end{array} \right)_{\text{RP}} = \left(\begin{array}{c} v_x & L_x & 0 & 0 & D_x \\ v'_x & L'_x & 0 & 0 & D'_x \\ v'_x & L'_x & 0 & 0 & D'_x \\ 0 & 0 & v_y & L_y & 0 \\ 0 & 0 & v'_y & L'_y & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array} \right) \left(\begin{array}{c} x^* \\ \Theta_x^* \\ y^* \\ \Theta_y^* \\ \Delta p/p \end{array} \right)_{\text{IP5}} \end{array} \right]$$

Optics carefully optimised for TOTEM special runs Essential for TOTEM results

CERN-LHC Seminar, 29 January 2012

Optics systematic errors

• Optics is a product of lattice elements \mathbf{T}_i and imperfections $\Delta \mathbf{T}_i$

$$\mathbf{T}_{IP5 \to RP220} = \prod_{i=M}^{1} \left[\mathbf{T}_{i}(k_{i}) + \Delta \mathbf{T}_{i} \right] = \begin{pmatrix} v_{x} & L_{x} & re_{13} & re_{14} \\ \frac{dv_{x}}{ds} & \frac{dL_{x}}{ds} & re_{23} & re_{24} \\ re_{31} & re_{32} & v_{y} & L_{y} \\ re_{41} & re_{42} & \frac{dv_{y}}{ds} & \frac{dL_{y}}{ds} \end{pmatrix} \qquad \Delta \mathbf{T}_{i} - \text{magnet imperfections}$$

- Imperfections $\Delta \mathbf{T}_{i}$
 - Beam momentum offset ($\Delta p/p = 10^{-3}$)
 - Magnet transfer function error, $I \rightarrow B$, ($\Delta B/B = 10^{-3}$)
 - Magnet rotations and displacements ($\Delta \psi$ < 1mrad, Δx , Δy < 0.5mm, WISE database)
 - − Power converter errors, $k \rightarrow I$, ($\Delta I/I < 10^{-4}$)
 - Magnet harmonics ($\Delta B/B = O(10^{-4})$ @ R_{ref} = 17mm, WISE database)

Optics estimation

- Measured rations of certain $T_{IP5 \rightarrow RP220}$ elements constrain the others
- Elastic scattering correlates Beam 1 and Beam 2
- Optics estimation with
 - MADX-based numerical algorithms
 - Analytical solutions (+PCA)
- Intensive MC validation

Low β^* optics estimation

220 002 wachine instances 001 000 140 220 200 180 180 160 140 Imperfect Imperfect Ł machine machine Mean -0.97 % Mean 0.39 % RMS 1.6 % RMS 4.2 % 160 Reconstructed Reconstructed 140 140 optics optics Mean -0.13 % 0.083 % Mean 120 120 RMS 0.17 % RMS 0.16 % 100 100 80 80 60 60 40 40 20 20 0<u>k</u> 0_ -8 -2 -2 -6 0 2 4 6 -6 -4 0 2 4 6 $\frac{\delta dL_x/ds}{dL_y/ds}$ [%]

LHC estimated optics error

LHC optics spread (w.r.t. nominal) due to imperfections

Difficult direct optics measurements no longer critical!

H. Niewiadomski, *Roman Pots for beam diagnostic*, OMCM, CERN, 20-23.06.2011

H. Niewiadomski, F. Nemes, *LHC Optics Determination with Proton Tracks,* IPAC'12, Louisiana, USA, 20-25.05.2012

CERN-LHC Seminar, 29 January 2012

Hubert Niewiadomski, TOTEM

2011 Results

EP. 96 (201) (100)	August 2011		
Are 10.1208/0008-00%/98/41000			
Proton-proton elastic scattering at the LHC energy of	$\sqrt{s} = 7 \text{ TeV}$		
The DDTEM Containance of the second structure of the str	 μττ¹⁹, M. Bozzo^{66,6}, μττ², M. (Cookin^{16,1}) ¹⁰, A. Punteronga¹⁰, μταν μ. A. Kolman^{16,4}, α0^{6,6}, E. Furstan^{16,4} ^{100,6}, G. Morazu^{10,4}, ^{100,6}, E. Cookaus^{10,4}, ^{100,6}, E. Cookaus^{10,4}, ^{100,6}, E. Bostern^{16,4}, ^{100,6}, M. Suscen^{16,4}, 	_	. .
F. SPERLLA ¹⁶ , J. SZREAL ¹⁶ , C. TVICOP ¹⁶ , N. TURIN ¹⁶ , V. VICER ¹⁶ , M. VITER ¹⁶ , J. WELR ¹⁶ , and . ¹⁶ Institute of Physics of the Analory of Security of the Court Republic - Pusha, Court Republi ¹⁰ Circle Technical University - Pusha, Circle Republic, SIGPR - Yilling, Editoria, EX ¹⁰ Minimul Institute of Chernical Physics on Biophysics MICPB - Yilling, Editoria, EX ¹	1.	. Prot	
³⁴ Belanda Institute of Physics - Belands, Feidund, SC ³⁰ Department of Physics, University of Belands - Belands, Finland, EU ⁴ MTA FERI BURG - Induseri, Recogn., EC			
⁵⁴ IETF Socience & Bars, Bars, Day, EU ⁵⁶ Dipartments Intentions & Foices & Bari, Balg, EU ⁵⁶ Socience INTN & Generos, Courses, Balg, EU		P	nergv
⁴⁰ Discretible dogle Stade de Generon - Generon, Bulg, EU ⁴⁰ ESFN Sessive de Pasa - Pous, Italy, EU ⁴⁰ Discretible dogle Studi de Sorieu and Gereppe Collegate INFN de Siena - Siena, Italy, EU ⁴⁰ Discretible dogle Studi de Sorieu and Gereppe Collegate INFN de Siena - Siena, Italy, EU			10169
 CERD - Genery, Statistical ⁴ Cass Worker Bissers University, Deptertment of Physics - Chevdard, OR, USA Prov. State University, Department of Physics - University Pash, PA, USA 			
meetived 27 June 2011; accepted in final form 4 July 2011 published online 13 July 2013			
rates 13.40.46 - Total and inductor ense sortions (including deep inductic processes) Abstract - Protocopoten startic sourceing has been measured by the TOTEM experiment	at c		
the CERN Large Holeon Collider at $\sqrt{z} \approx 17$ Hy in dedicated runs with the Roman Par denset photon as done is were times the transverse beam size (r_{max}) from the satisfied person. At caneful sendy of the accelerator optics and the detector alignment, y_1 the square of low-moment	orb Ier max		
unindered in the robot scenario generation is been obviously of all a functionary of B_1 $\otimes 1.6 M^2 \sqrt{ U_1 }$. In this letter, first results of the differential conservation are generated coverage () engeneous $0.04 \approx 2.5 \text{ GeV}^3$. The differential conservation is the maps $0.04 \approx v < 0.17 \text{ GeV}$ described by a comparison of the solar non-mass $B = 200.04 \text{ GeV}$ in $D^{0.04} \approx 1.02 \text{ GeV}^3$.	n E. n 7 In and		
by a significant difference minimum in $ t = 10.55 \pm 0.01^{100} \pm 0.01^{100}) GeV^2$. For given larger than $\sim 1.5 GeV^2$, the consecution exhibits a power law behaviour with an observed $\sim 7.8 \times 0.3^{100}$ is 10^{100} . When compared to perform the distribution with the mole	un uf fa		
the data show a strong discriminative power despite the small range-covered.			
_			
Hommone form	0esare 2013		
Listen mark factors The state of the state o	Oraber 2011 over spiljournal.org		
treamptions recommendations first measurement of the total proton-proton cross-set the LHC encours of a disc Table	Online 2011 or optional og ction		
$\label{eq:construction} \label{eq:construction} \lab$	Disader 2011 or optional of Ction		
The constraints of the second	Doaler JHI mr 43-Jonais ag ction tion f 1: Doann ¹⁰ f 1: Doann ¹⁰	2.	. First
The second seco	Davier 2011 m atjoinnet atj ction 1 Photosoft 1 Photos	2.	. First
The description of the second	tooler 2011 en arjunalise citien The Argunation Citien Argunation	2.	. First roton
Expansion of the second secon	Толие 201 49. ефі)ниції од Ссібон 4. б. Станції 4. б. Ст	2. p	. First roton
The manufacture of the second probability o	-Busher 2011 ere orthomask regi ction ver P - S. Research B. G. Changes, S.	2. p	. First roton
bit is a constraint of the second	Forther PHI or approximation of controls the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control o	2. p =	. First roton 7TeV
	Database 2011 mer and pointed and citizen 2012 - Consequence A Database A	2. p =	. First roton 7TeV
The second section \mathbf{Y}_{i} is the second	Note: BU or or Jonation of Citizen Trans. A family of A December of A De	2. p =	. First roton 7TeV
The mean section of the m	1934 ж. 1017 49 лај Јанај (1934) страна на страна на страна 1935 ж. 1936 ж. 1936 ж. 1937 40 лај јана на страна на страна 1937 ж. 1936 ж. 1937 40 лај јана на страна на страна 1937 ж. 1938 ж. 1937 40 лај јана на страна на страна 1937 ж. 1938 ж. 1937 40 лај јана на страна на страна на страна 1937 ж. 1938 ж. 1938 ж. 1938 ж. 1938 ж. 1938 ж. 1938 1939 ж. 1938 ж	2. p = <u>E</u>	. First roton 7TeV <mark>PL 96</mark>

 Proton-proton elastic scattering at the LHC energy of sqrt s = 7 TeV , <u>EPL 95 (2011) 41001</u>

2. First measurements of the total protonproton cross section at the LHC energy of sqrt s
= 7TeV
EPL 96 (2011) 21002

2012 Results

3. Measurement of the forward charged particle pseudorapidity density in pp collisions at sqrt s = 7 TeV with the TOTEM experiment, <u>EPL 98 (2012) 31002</u>

4. Measurement of proton-proton <u>elastic scattering</u> and total crosssection at sqrt s = 7 TeV, <u>CERN-PH-EP-2012-239</u>, **accepted by EPL**

5. Measurement of proton-proton <u>inelastic scattering</u> cross-section at sqrt s = 7 TeV, <u>CERN-PH-EP-2012-352</u>, **accepted by EPL**

6. <u>Luminosity-independent</u> measurements of total, elastic and inelastic cross-sections at sqrt s = 7 TeV, <u>CERN-PH-EP-2012-353</u> accepted by EPL

7. A luminosity-independent measurement of the proton-proton total cross-section at sqrt s = 8 TeV, <u>CERN-PH-EP-2012-354</u>, **submitted to PRL**

ELASTIC SCATTERING

Large-t pp Elastic Scattering (80nb⁻¹) 100 Events : First statistically significant sample [LHCC Sep 2010]

 \sqrt{s} = 7 TeV β^* = 3.5 m

11

2010 Data from Runs with RPs at 20 σ (total 185nb⁻¹)

Proton reconstruction

Both angle projections reconstructed: Θ_x^* and Θ_y^*

- Θ_x^* from $\Theta_x @$ RP220 (through dL_x/ds) $\Theta_{x,RP} \approx dL_x/ds \Theta_x^*$
- Θ_{y}^{*} from y @ RP220 (through L_y)

→ Alignment

– Alignment between pots with overlapping tracks ($\sim 1 \mu m$)

 $y_{RP} \approx L_v \Theta_v^*$

- Alignment with respect to the beam collimator like scraping exercise (~20µm)
- Mechanical constraints between top and bottom pots (~10µm)

Track based alignment

Optics errors

- Depend on LHC imperfections and LHC configuration
- Optics estimation with elastic scattering
 - $\Theta_{\text{left}}^* = \Theta_{\text{right}}^*$ (proton pair collinearity)
 - Proton position \leftrightarrow angle correlations (+Liouville's theorem)
 - L_x=0 determination, coupling estimation

A difficult measurement, data driven analysis

CERN-LHC Seminar, 29 January 2012

Hubert Niewiadomski, TOTEM

Elastic scattering: difficult precise measurement

1. Kinematics reconstruction

- proton tracks in RPs \rightarrow proton kinematics at IP

2. Elastic tagging

- Topology : diagonals
- Proton co-linearity : compare left and right reconstructed angles
- No forward momentum loss : remove protons shifted due to dispersion

3. Acceptance corrections

- Finite size of RP sensors, LHC apertures
- Azimuthal symmetry of el. scattering \rightarrow geometrical corrections
- Beam divergence \rightarrow correction for missing protons at RP edges

4. Unfolding of resolution effects

- Numerical, kernel function based and completely analytical unfolding

5. Inefficiency corrections

- RP inefficiencies
- pile-up related inefficiencies : elastic event + another track in a RP

6. Luminosity

- from CMS (if available, uncertainty 4%)
- TOTEM luminosity measurement

Elastic tagging : topology

Elastic tagging : collinearity cuts

Data outside the 3 σ cuts used for background estimation

t_v-acceptance corrections

ϕ -acceptance correction

Total φ -acceptance correction

CERN-LHC Seminar, 29 January 2012

Hubert Niewiadomski, TOTEM

Elastic scattering – from ISR to Tevatron

Diffractive minimum: analogous to Fraunhofer diffraction:

- minimum moves to lower |t| with increasing s \rightarrow interaction region grows (as also seen from σ_{tot})
- depth of minimum changes
 - \rightarrow shape of proton profile changes
 - depth of minimum differs between pp, p⁻p
 different mix of processor
 - \rightarrow different mix of processes

TOTEM first $d\sigma/dt$ result

CERN-LHC Seminar, 29 January 2012

0.5

10⁻⁶

TOTEM

Hubert Niewiadomski, TOTEM

1

1.5

2

2.5

-t [GeV²]

[EPL 95 (2011) 41001]

m. Sourceman. a Reserve University, Dept. of Physics, Cleveland, OH, USA University Dept. of Physics, University Park, PA, USA.

di Fisica di Bar

or INFN, Genore, Itali

Proton-proton elastic scattering at the LHC energy of $\sqrt{s} = 7 \text{ TeV}$

shastic scattering at the LHC energy of $\sqrt{s} = 7 \text{ TeV}$

TOTEM Result + some models

TOTAL, ELASTIC, INELASTIC CROSS-SECTIONS @ √s = 7 TeV

Cross-Section Formulae

1st TOTEM low-t measurement

1st pp Total Cross-Section

Elastic exponential slope:

$$B|_{t=0} = (20.1 \pm 0.2^{(stat)} \pm 0.3^{(syst)}) \text{ GeV}^{-2}$$

Elastic diff. cross-section at optical point:

$$\frac{dS_{el}}{dt}\Big|_{t=0} = (503.7 \pm 1.5^{(stat)} \pm 26.7^{(syst)}) \text{ mb / GeV}^2$$
Optical Theorem, $\rho = 0.14^{+0.01}_{-0.08}$

$$S_T = \begin{pmatrix} 98.3 \pm 0.2^{(\text{stat})} \pm 2.7^{(\text{syst})} & \text{id}^{+0.8} \\ \text{id}^{-0.2} & \text{id}^{-0.2} \end{pmatrix} \text{ mb}$$

1st pp Inelastic Cross-Section

$$\sigma_{\rm el} = \left(24.8 \pm 0.2^{(\rm stat)} \pm 1.2^{(\rm syst)}\right) \,\mathrm{mb} \qquad S_T = \left(98.3 \pm 0.2^{(\rm stat)} \pm 2.7^{(\rm syst)} \,\left(\begin{array}{c} 6 + 0.8 \\ -0.2 \end{array} \right)^{(\rm syst from } r \right) \,\mathrm{mb}$$

Inelastic Cross-Section

$$\sigma_{inel} = \sigma_{tot} - \sigma_{el} = \left(73.5 \pm 0.6^{(\text{stat})} \begin{bmatrix} +1.8\\ -1.3 \end{bmatrix}^{(\text{syst})}\right) \text{ mb}$$

$$\begin{split} \sigma_{\text{inel}} (\text{CMS}) &= (68.0 \pm 2.0^{(\text{syst})} \pm 2.4^{(\text{lumi})} \pm 4.0^{(\text{extrap})}) \text{ mb} \\ \sigma_{\text{inel}} (\text{ATLAS}) &= (69.4 \pm 2.4^{(\text{exp})} \pm 6.9^{(\text{extrap})}) \text{ mb} \\ \sigma_{\text{inel}} (\text{ALICE}) &= (73.2^{+2.0}_{-4.6} \text{(mod)} \pm 2.6^{(\text{lumi})}) \text{ mb} \end{split}$$

1st Total, Elastic, Inelastic Cross-Section

Subsequent pp Cross-Sections measurements (& Luminosity calibration)

2. High luminosity (CMS) + Elastic + Optical T.

- checks the CMS luminosity for high-L vs. low-L bunches
- 3. High luminosity (CMS) + Elastic + Inelastic
 - \bullet minimizes dependence on elastic efficiencies and no dependence on ρ
- 4. Luminosity-indep.: + Elastic + Inelastic + Optical T.
 - eliminates dependence on luminosity

2. October'11 data : RP 6.5/5.5/4.8σ ; L: bunches 7·10¹⁰ p

 $|\mathbf{t}_{min}| \approx 5 \cdot 10^{-3} \text{ GeV}^2 \rightarrow 91\%$ of cross-section measured (9% extrapolated) ; B = 19.9 ± 0.3 GeV⁻²

Inelastic Cross Section direct T1 and T2 measurement

Inelastic events in T2: classification

tracks in both hemispheres

non-diffractive minimum bias double diffraction

tracks in a single hemisphere mainly single diffraction $M_{x} > 3.4 \text{ GeV/}c^{2}$

Corrections to the T2 visible events

- Trigger Efficiency: 2.3 % (measured from zero bias data with respect to track multiplicity)
- Track reconstruction efficiency: (based on MC tuned with data)
- Beam-gas background: 0.6% (measured with non colliding bunch data)
- Pile-up (μ =0.03): 1.5 %

(contribution measured from zero bias data)

= 69.7 ± 0.1 ^{stat} ± 0.7 ^{syst} ± 2.8 ^{lumi} mb σ_{inelastic}, T2 visible

1%

Inelastic Cross Section

0.0 % ± 0.35 % ^{syst}

4.2 % ± 2.1 % ^{syst}

Missing inelastic cross-section

- Events visible in T1 but not in T2: 1.6 % (estimated from zero bias data)
- Rapidity gap in T2 : 0.35 %
 (estimated from T1 gap probability transferred to T2)
- Central Diffraction: T1 & T2 empty :

(based on MC, correction max ~0.25 $\times \sigma_{CD}$, quoted in systematic error)

• Low Mass Diffraction :

(Several models studied, correction based on **QGSJET-II-4**, imposing observed 2hemisphere/1hemisphere event ratio and the effect of 'secondaries')

Invisible Low Mass Diffraction constrained by Total cross-section measurement : upper limit = 6.3 mb at 95% C.L. for $\eta \ge 6.5$, i.e. $M_{SD} \le 3.4$ GeV

To be measured precisely with Roman Pots: single arm trigger, large β^* and clean beams

$\sigma_{\text{inelastic}} = 73.7 \pm 0.1^{\text{stat}} \pm 1.7^{\text{syst}} \pm 2.9^{\text{lumi}} \text{ mb}$

pp Total Cross-Sections @ Vs=7TeV

Published EPL96
1.
$$\sigma_{TOT} = 98.3 \text{ mb} \pm 2.8 \text{ mb}$$
 $\sigma_{TOT}^2 = \frac{16\pi (\hbar c)^2}{1 + \rho^2} \cdot \frac{d\sigma_{EL}}{dt}\Big|_{t=0}$

2. σ_{TOT} = 98.6 mb ± 2.2 mb

$$\sigma_{TOT}^{2} = \frac{16\pi(\hbar c)^{2}}{1+\rho^{2}} \cdot \frac{d\sigma_{EL}}{dt}\Big|_{t=0}$$

accepted EPL ρ -independent **3.** $\sigma_{TOT} = 99.1 \text{ mb} \pm 4.3 \text{ mb}$ $\sigma_{TOT} = \sigma_{EL} + \sigma_{INEL}$

accepted EPL *L*-independent **4.** $\sigma_{TOT} = 98.0 \text{ mb} \pm 2.5 \text{ mb}$ $\sigma_{TOT} = \frac{16\pi (\hbar c)^2}{1+\rho^2} \cdot \frac{\frac{dN_{EL}}{dt}\Big|_{t=0}}{N_{EL}+N_{INEL}}$

LUMINOSITY INDEPENDENT CROSS-SECTIONS @ vs = 8 TeV

July 2012 Vs = 8 TeV β^* = 90m

Two data samples triggered by TOTEM RPs pp coincidences

Luminosity-independent Elastic, Inelastic, Total Cross-Sections:

DS	$\sigma_{\rm tot}$ (mb)	$\sigma_{\rm el}$ (mb)	$\sigma_{\rm inel}$ (mb)
2	102 ± 2.8	27.1 ± 1.3	74.9 ± 1.6
3	101 ± 2.8	26.9 ± 1.3	74.2 ± 1.6

Submitted to PRL CERN preprint: <u>CERN-PH-EP-2012-354</u>

CERN-LHC Seminar, 29 January 2012

Hubert Niewiadomski, TOTEM

First Coulomb interference region measurement sqrt s = 8 TeV, β^* = 1000m

Luminosity calibration with luminosity independent total cross-section @ $\beta^*=90m$, integration region: 0.01 GeV² < |t| < 0.3 GeV² $L_{int} = 5.73 + 14.45 \ \mu b^{-1} = 20.18 \ \mu b^{-1}$ t_{min} = 6 ×10⁻⁴ GeV² 10^{3} 10^{3} $d\sigma_{\rm el}/dt$ (mb/GeV²) $\mathrm{d}\sigma_{\mathrm{el}}/\mathrm{d}t$ (mb/GeV²) 45 bot – 56 top, DS2b 45 top – 56 bot, DS2b $\beta^* = 1000 \text{ m}$ $\beta^* = 1000 \text{ m}$ $\beta^* = 90 \text{ m}$ $\beta^* = 90 \text{ m}$ 10^{2} 10^{2} 10^{1} 10^{1} **TOTEM Preliminary TOTEM** Preliminary 10^{0} 10^{0} 0.15 0.2 0.15 0.25 0.05 0.1 0.25 0.3 0.05 0.1 0.2 0.3 0 0 (GeV^2) (GeV^2) |t||t|

First Coulomb interference region measurement sqrt s = 8 TeV, $β^*$ = 1000m

CERN-LHC Seminar, 29 January 2012
FORWARD AND DIFFRACTIVE PHYSICS

pp Interactions

GOAL: understand the QCD nature of the diffractive exchange

CERN-LHC Seminar, 29 January 2012

Inelastic and Diffractive Processes ($\eta = -\ln \tan \theta/2$)

In case of hard interactions there should be jets, which fall in the same rapidity intervals All the drawings show soft interactions.

A hard scale + hadrons which remain intact in the scattering process Diffractive scattering is a unique laboratory of confinement & QCD:

Measure σ (M,ξ,t)

$dN_{ch}/d\eta$ measured in T2, sqrt s = 7 TeV

$dN_{ch}/d\eta$ combined with other LHC exp.

First common CMS-TOTEM analysis dN_{ch}/dη @ 8 TeV

 $dN/d\eta$ only primary selection

Error estimation Primary track selection efficiencies and errors Correction factors: high multiplicity events, trigger, pileup

Diffractive forward protons @ RPs

$$y(s) = v_y(s) \cdot y^* + L_y(s) \cdot \Theta_y^*$$
 $\xi = \Delta p/p$ Dispersion shifts diffractive protons in
 $x(s) = v_x(s) \cdot x^* + L_x(s) \cdot \Theta_x^* + \xi \cdot D(s)$ the horizontal direction
Generally $v_{x,y'} L_{x,y}$ and D_x are functions of $\xi \rightarrow$ reconstruction is a non-linear problem

• <u>vertex from CMS improves ξ-resolution</u>

Single diffraction low $\boldsymbol{\xi}$

Correlation between leading proton and forward detector T2

TOTEM

Single diffraction large $\boldsymbol{\xi}$

correlation between leading proton and forward detector T2

Soft SD cross-section

Data sample: β^* =90m, October 2011, RP @ 4.8, 5.5 and 6.5 σ

Rapidity gap based ξ -classification (T1, T2)

CERN-LHC Seminar, 29 January 2012

Soft SD cross-section, $d\sigma/dt$

Data sample: β^* =90m, October 2011, RP @ 4.8, 5.5 and 6.5 σ

t-distributions, rapidity gap based ξ -classification

Double Pomeron Exchange (DPE) (or Central Diffraction)

LHC as a Pomeron-Pomeron (gluon–gluon) collider

CERN-LHC Seminar, 29 January 2012

Double Pomeron Exchange (DPE)

correlation between leading protons and forward detector T2

Soft Double Pomeron Exchange

TOTEM alone, 20.10.2011 data

$\beta^* = 90m$ optics runs:

- $y < 11\sigma$ removed : protection against pile-up beam halo × beam halo beam halo × elastic proton
- DPE protons of -t > 0.02GeV² detected by RP
- nearly complete ξ-acceptance

$$\sigma_{DPE} = \int_{0}^{\infty} dt_{1} \int_{0}^{\infty} dt_{2} \frac{d^{2} \sigma_{DPE}}{dt_{1} dt_{2}} \approx 1 \text{mb}$$

TOTEM + CMS :

Diffractive physics DPE, SD, di-jets...

TOTEM + CMS common data taking

- July 2012 first pp common data taking, ~11h, β^* =90m, 43nb⁻¹ 2 years before expected
- Important:
 - <u>2-arm proton reconstruction</u>, $\xi_{1,2}=\Delta p_{1,2}/p_{1,2}$ (never before)
 - Prediction of mass to be seen in CMS from reconstructed protons: $M^2 = s \cdot \xi_1 \xi_2$
 - <u>Initial vs. final state comparison</u>: M_{TOTEM} =? M_{CMS} (never before)
 - Prediction of central particle flow topology from leading protons (rapidity gaps) : $\Delta \eta_{1,2}$ = -ln $\xi_{1,2}$
 - Large η-coverage:
 - CMS: -5.5<η<5.5
 - T1: $3.1 < |\eta| < 4.7$
 - T2: 5.3 < |η| < 6.5
 - FSC: $6 < |\eta| < 8$

- Sqrt s = 8 TeV \rightarrow up to M_x=1.8 TeV with pp survival (never before)

More data welcome !!

TOTEM + CMS : SOFT DPE

Soft DPE in CMS-TOTEM runs

- 11.5h, β^* =90m, ~7×10¹⁰ protons per bunch ullet
- RP45×RP56 trigger: <u>8'759'611</u> events (2–3 bx) ullet
 - int. lumi. $\approx 0.8 \text{ nb}^{-1}$
 - inealistic proton pair tagging: <u>327'116 DPE candidates</u>
 - inelastic + well defined CMS vertex: 47'730
 - elastic candidates: 7'127'722 (elastic topology + no top-bot pile-up)
- $RP_{inelastic trigger}/T2_{trigger} = 0.5\% \approx \sigma_{DPE}/\sigma_{Min.Bias}$ (as predicted) ۲

0^L

1

2

5

number of vertices

Differential DPE distributions (uncorrected)

RP reconstruction alone

Soft DPE Pile-up

- N=0.7×10¹¹, β^* =90m, ϵ_N =3.5µm, L/bx≈6.0×10²⁷, bx=(2)3, R/bx=5.3×10⁻⁴/mb
- Int. lumin $\approx 0.75 \text{ nb}^{-1}$, low pile-up $\sim 3-4\%$

Soft diffraction pile-up estimation

Events & Pile-up	Accept.	Rate/bx	Expected events # in 327k (RP inelastic data)	Fraction
1×Soft SD (~14mb)	50%	0.37 %	5.3 M	removed (trig)
Elastic	33%	0.78 %	7.4 M	removed
DPE (~1mb)	35%	0.022 %	263k	80 %
Soft SD \times Soft SD		6.9 ×10 ⁻⁶	9 k	3 %
SD imes DPE	25%	4.9×10 ⁻⁷	600	0.2 %
SD imes beam halo		1.9×10 ⁻⁵	5k – 25k	1.5% - 8%
beam halo $ imes$ beam halo		2.5×10 ⁻⁵	7k – 34k	2% - 10%
DPE + QCD			10k	3%

Protection against pile-up

CUTS:

- 0 or 1 vertex in CMS
- RP near edge area removed (1 elastic p. + beam halo or SD)
- top RP 45 + top RP 56 or bot RP 45 + bot RP 56 topology (no remnants of elastic scattering)
- $-\xi > 1.5$ % (far enough from resolution effects)
- Forward Shower Counters (FSC) empty : QCD background protection

- $M_{\text{CMS}}(\text{Particle Flow} + \text{missing momentum}) \le M_{\text{TOTEM}}(\text{pp})$

• CMS and TOTEM consistent (within resolution)

 $M_{CMS}(Particle Flow) = M_{TOTEM}(pp)$

 $p_{CMS}(Particle Flow) = p_{TOTEM}(pp)$

• Standard protection against pile-up

Best events:

M _{cms}	M _{TOTEM}	Pz _{cMS}	Pz _{totem}	Xi _{left}	Xi _{right}	#T2 _{right}	#T2 _{left}	#FSC _{right}	#FSC _{left}
366.841	335.869	86.7358	95.3509	-0.0317239	-0.0555616	20	14	Ŭ	0
185.614	164.599	43.2926	13.2545	-0.0189846	-0.0222982	0	0	0	0
164.504	162.526	-8.82434	6.42943	-0.0195279	-0.0211353	0	0	0	0
157.137	172.303	6.62721	30.5829	-0.0180517	-0.0256974	0	0	0	0
82.3631	129.867	4.29839	6.84464	-0.0154003	-0.0171115	0	0	0	0
550.082	556.323	-188.57	-146.68	-0.0902519	-0.0535818	5	16	0	0
252.606	272.868	115.791	150.129	-0.0201641	-0.0576963	3	0	0	0
90.3626	138.743	2.06612	-0.259705	-0.0173754	-0.0173105	0	0	0	0

- M_{CMS} (Particle Flow + missing momentum) $\leq M_{TOTEM}$ (pp)
- Additional momentum undetected by CMS
- Additional tracks indeed observed in forward detectors where allowed by xi-predicted gaps
- Additional tracks not observed where forbidden by xi-predicted gaps
 no tracks observed

• Majority of 300k events

- Look for <u>secondaries</u> (decay products) which might <u>violate the</u> <u>xi-predicted rapidity gaps</u>
- Standard pile-up protection
- $M_{CMS}(Particle Flow + missing momentum) \le M_{TOTEM}(pp)$
- Normally <u>discarded</u> because of <u>presence of tracks in</u> <u>forbidden gaps</u>

Indeed found events of this type

- Check escaping-mass candidates
- Standard pile-up protection
- p_{CMS}(Particle Flow) ≠ p_{TOTEM}(pp)
 M_{CMS}(Particle Flow + missing momentum) ≤ M_{TOTEM}(pp)
 → existence of tracks undetected by CMS
- No tracks observed in forward detectors 'allowed' by rapidity gaps
- More forward regions excluded by rapidity gaps → 'allowed' = 'required' ?

This depends on amount of missing energy

 $3\% < \xi_{1,2} < 10\%$ T2 allowed by rapidity gaps more forward than T2 forbidden

selected events

ΔM	M _{CMS}	M _{TOTEM}	Pz _{cms}	Pz _{totem}	Xi _{left}	Xi _{right}	#T2 _{right}	#T2 _{left}	#FSC _{right}	#FSC _{left}
301.383	178.86	480.243	-113.033	-16.1065	-0.0620774	-0.0580508	0	0	0	0
338.2276	69.2494	407.477	-20.7135	-6.27609	-0.0517251	-0.0501561	0	0	0	0
346.8	136.96	483.76	-44.4907	31.3176	-0.0566819	-0.0645113	0	0	0	0
352.8003	75.8707	428.671	-101.837	-10.1703	-0.0548702	-0.0523276	0	0	0	0
390.801	122.051	512.852	55.5703	88.2933	-0.0540129	-0.0760862	0	0	0	0
428.189	140.775	568.964	-186.701	-6.75768	-0.0719702	-0.0702807	0	0	0	0
446.1199	34.7091	480.829	-11.7553	52.5331	-0.0538947	-0.0670279	0	0	0	0
455.4364	42.1396	497.576	-28.1272	94.9103	-0.0514546	-0.0751822	0	0	0	0
459.56784	9.82716	469.395	-5.50888	10.275	-0.0574041	-0.0599728	0	0	0	0
462.4347	48.3963	510.831	74.0196	-71.6533	-0.0734356	-0.0555223	0	0	0	0
508.3268	24.0222	532.349	-6.02981	58.9093	-0.0595862	-0.0743135	0	0	0	0
515.088	13.228	528.316	-18.6829	-25.1323	-0.0692557	-0.0629726	0	0	0	0

DPE candidates in Roman Pots + CMS, T1, T2 empty

• Same selection as Logic-3 (escaping-mass candidate search) $p_{CMS}(Particle Flow) \neq p_{TOTEM}(pp)$ $M_{CMS}(Particle Flow + missing momentum) \leq M_{TOTEM}(pp)$

 \rightarrow existence of tracks undetected by CMS

- <u>additional tracks</u> would be required to appear in forbidden rapidity regions
- those tracks not observed in the detectors.

• Skipped, not possible to eliminate pile-up

Soft DPE: Largest mass events

M _{CMS}	M _{TOTEM}	Pz _{cms}	Pz _{totem}	Xi _{left}	Xi _{right}	#T1 _{right}	#T1 _{left}	#T2 _{right}	#T2 _{left}	#FSC _{right}	#FSC _{left}
495.574	1830.91	-62.073	-91.5223	-0.240589	-0.217709	33	17	2	12	Ũ	0
116.262	1792.09	7.8118	-147.443	-0.243199	-0.206338	0	0	23	10	0	0
57.7559	1719.7	-65.8128	220.329	-0.189179	-0.244261	0	0	1	8	0	0
74.7342	1718.48	-82.6207	-17.6895	-0.217033	-0.212611	0	0	1	1	0	0
41.8044	1716.62	-75.0976	-103.546	-0.227911	-0.202024	0	0	0	3	0	0
148.818	1691.48	71.9651	-39.4706	-0.216427	-0.206559	2	5	158	16	0	0
181.299	1690.63	13.3104	57.4586	-0.204268	-0.218633	0	1	4	8	0	0
217.43	1689.17	259.099	121.802	-0.19647	-0.22692	1	2	14	9	0	0
171.385	1680.12	51.4771	232.609	-0.182942	-0.241094	3	0	61	2	0	0
93.2098	1678.36	16.9669	-133.847	-0.227192	-0.193731	0	0	7	3	0	0

M_x=1.8 TeV with pp survival (never before)

TOTEM + CMS : HARD DPE

Hard DPE sample

- 11.5h, β^* =90m, ~7×10¹⁰ protons per bunch
- Approx. int. luminosity: 43nb⁻¹ (112 bx)
- CMS di-jet triggers: 2'513'072
 - vertex selection according to CMS: 2'192'405
 - + 2 protons inelastic: 1243
 - + 2 protons inelastic (1 or more valid vertices): 1228
 - + 2 protons inelastic (1-valid vertex): 860
- Obvious pile-up
 - + 2 protons elastic (1-valid vertex): 19188
 - + 2 protons elastic: 21908

Vertices number, di-jets, 2 inelastic protons in RPs

Hard DPE Pile-up

- N \approx 0.7×10¹¹, β^* =90m, $\epsilon_N \approx$ 3.5µm, L/bx \approx 9.3×10²⁷, bx=112, R/bx = 8.25 ×10⁻⁴
- Int. lumin ≈ 43 nb⁻¹

Hard diffraction pile-up estimation

Pile-up case	Accept.	Rate/bx	Events in 2.5M (CMS dijet triggers)	Fraction of accepted hard DPE canditates' (1243)
2×Soft SD (+QCD JJ)	25%	1.7×10⁻⁵ (· 4.9×10⁻⁵)	42.5	3.4 %
Soft DPE (+QCD JJ)	35%	2.9 ×10⁻⁴ (· 4.9×10⁻⁵)	721	58 %
Elastic (+ QCD JJ)	33%	8.3 ×10⁻³ (· 4.9×10⁻⁵)	20.6 k	~0
Hard SD + Soft SD (as Hard DPE)		7.2×10 ⁻¹⁰ - 7.2×10 ⁻⁹	37-370	3 % – 30 %
Hard DPE + SD		3.5×10 ⁻¹¹ 3.5×10 ⁻¹⁰	2 – 20	0.1 % - 1.5%
Beam pile-up				~1%

Pessimistically #true events ~5% corresponding to ~60 events

• CMS and TOTEM consistent (within resolution): ~3-5 events

 M_{CMS} (Particle Flow) = M_{TOTEM} (pp)

 $p_{CMS}(Particle Flow) = p_{TOTEM}(pp)$

- No exclusive $pp \rightarrow jj+pp$ events observed
- Constraints and checks applied:
 - Not pile-up
 - Selection criteria (kinematics, rapidity gaps...)
 - Single, well defined CMS vertex
 - Jets resolutions and detector thresholds (checked with elastic scattering)

Selected events :

M _{TOTEM}	M _{CMS}	M _{dijet}	Pz _{totem}	Pz _{CMS}	Xi _{left}	Xi _{right}	рТ _{смs}	рТ _{тотем}		
204.673	179.616	81.0462	-364.838	-295.344	-0.0979	-0.00669	3.50267	4.94E-01	only 1 additional track in T2	
243.97	219.344	138.422	-343.07	-254.548	-0.0955054	-0.00973	3.3627	5.64E-01		
Common CMS-TOTEM										

visualisation coming soon

- M_{CMS} (Particle Flow + missing momentum) $\leq M_{TOTEM}$ (pp)
- Additional momentum undetected by CMS
- Additional tracks indeed observed in forward detectors where allowed by xi-predicted gaps
- Additional tracks not observed where forbidden by xi-predicted gaps

46 events observed

Best events in terms of CMS-TOTEM mass agreement:

 M_{CMS} (Particle Flow + missing momentum) $\approx M_{TOTEM}$ (pp)

M _{ij}	M _{CMS}	M _{CMS+missing p}	M _{TOTEM}	Pz _{CMS}	Pz _{totem}	Xi _{left}	Xi _{right}
107.171	266.948	297.845	301.281	254.787	331.096	-0.0145699	-0.0973439
138.422	219.344	250.076	243.97	-254.548	-343.07	-0.0955054	-0.00973789
93.3026	254.456	341.96	335.624	319.223	612.358	-0.010743	-0.163832
81.0462	179.616	198.14	204.673	-295.344	-364.838	-0.0978957	-0.0066862
123.347	188.163	251.145	234.579	-140.216	-286.387	-0.0820728	-0.0104761
61.3357	162.727	215.088	198.103	-359.435	-639.511	-0.163625	-0.0037476

Tracks indeed observed in TOTEM forward detectors according to xi-predictions

- Look for <u>secondaries</u> (decay products) which might <u>violate the</u> <u>xi-predicted rapidity gaps</u>
- Standard pile-up protection
- $M_{CMS}(Particle Flow + missing momentum) \le M_{TOTEM}(pp)$
- Normally discarded because of presence of tracks in forbidden gaps

Hard DPE: Logic-3

- Check <u>escaping-mass candidates</u>
- $p_{CMS}(Particle Flow) \neq p_{TOTEM}(pp)$ $M_{CMS}(Particle Flow + missing momentum) \leq M_{TOTEM}(pp)$

→ existence of tracks undetected by CMS

- No tracks observed in forward detectors 'allowed' by rapidity gaps
- More forward regions excluded by rapidity gaps → 'allowed' = 'required' ?

- neutral particle now in 12 (under s
 real according onergy?
- real escaping energy?

This depends on amount of missing energy

Hard DPE: Logic-3

Interesting event:

M _{ii}	M _{CMS}	M _{TOTEM}	Pz _{cms}	Pz _{totem}	Xi _{left}	Xi _{right}	#T2 _{right}	#T2 _{left}	#T1 _{right}	#T1 _{left}	#FSC _{right}	#FSC _{left}
68.5	500.4	894.9	202.7	62.7	-0.104	-0.120	0	0	0	0	0	0

- Significant mass discrepancy:
 - RP predicted mass $M(\xi_1 \xi_2) \approx 900 \text{ GeV}$
 - CMS visible mass M(CMS) \approx 500 GeV
- More forward η than T2 forbidden
 - ξ_1 and ξ_2 forbid $\eta > 6.7$ and 6.9 respectively
- Gap definition tolerances applied
 - − resolutions, secondaries, pseudorapidity ↔ rapidity conversion ...
- No tracks observed in T2
 - But tracks are allowed (required) in ~T2 on both sides

~400 GeV missing mass?

Weaker requirement – tracks not observed at least in one T2 arm:

M _{ii}	M _{cms}	M _{TOTEM}	Pz _{cms}	Pz _{totem}	Xi _{left}	Xi _{right}	#T2 _{right}	#T2 _{left}	#T1 _{right}	#T1 _{left}	#FSC _{right}	#FSC _{left}
171.482	298.486	678.547	-85.3117	-15.2752	-0.0867	-0.0829	2	0	0	0	0	0

Hard DPE: Logic-4

- Same selection as Logic-3 (escaping-mass candidate search)
 p_{CMS}(Particle Flow) ≠ p_{TOTEM}(pp)
 M_{CMS}(Particle Flow + missing momentum) < M_{TOTEM}(pp)
 - \rightarrow existence of tracks undetected by CMS
- <u>additional tracks</u> would be required to appear in forbidden rapidity regions
- those tracks not observed in the detectors.

• No events observed

Hard DPE: Large-masses

- $pp \rightarrow jj + X + pp$
- M_{TOTEM} > 1 TeV
- pile-up removed

M _{TOTEM}	run	event_id	lumi_sect
1037.73	198902	6939048	366
1051.18	198902	7304277	385
1072.09	198902	220206	20
1073.21	198902	12489009	676
1074.81	198903	6933634	333
1115.18	198902	16707008	922
1117.01	198902	1830833	100
1153.79	198902	18564152	1033
1189.46	198902	13251940	720
1196.07	198902	2589805	138
1210.66	198902	4985608	262
1223.96	198903	6816731	327
1282.46	198903	13852945	677
1391.98	198903	13077469	638
1402.31	198903	13219371	645
1432.62	198903	11123205	540
1436.38	198903	4523333	216
1453.09	198903	11851377	576

Largest M_{jj}/M_{CMS}

M _{ii} /M _{cms}	M _{ii}	M _{CMS}	M _{TOTEM}	Pz _{CMS}	Pz _{totem}	Xi _{left}	Xi _{right}
0.717437648	397.454	553.991	1223.96	218.031	-123.799	-0.16925	-0.1383
0.655532703	123.347	188.163	234.579	-140.216	-286.387	-0.0820728	-0.0104761
0.633250532	146.329	231.076	558.98	152.203	439.008	-0.0339696	-0.143722
0.631072653	138.422	219.344	243.97	-254.548	-343.07	-0.0955054	-0.00973789
0.602023414	558.461	927.64	1391.98	31.9048	15.981	-0.172011	-0.176006

Largest M_{jj}/M_{TOTEM}

M _{ii} /M _{TOTEM}	M _{ii}	M _{CMS}	M _{TOTEM}	Pz _{cms}	Pz _{totem}	Xi _{left}	Xi _{right}
0.567373038	138.422	219.344	243.97	-254.548	-343.07	-0.0955054	-0.00973789
0.525822857	123.347	188.163	234.579	-140.216	-286.387	-0.0820728	-0.0104761
0.401199011	558.461	927.64	1391.98	31.9048	15.981	-0.172011	-0.176006
0.395978952	81.0462	179.616	204.673	-295.344	-364.838	-0.0978957	-0.0066862

No exclusive jj events observed

CERN-LHC Seminar, 29 January 2012

Next steps

- Lots of potential studies and measurements ahead
- TOTEM alone: soft SD, DPE, Double Diffraction
- CMS + TOTEM data :
 - Homework: beam halo pile-up, optics, resolutions, acceptance, reconstruction ...
 - Soft and Hard DPE (differential) cross-sections
 - Further studies of particular events (common visualisation soon)
- Upgrade of TOTEM Roman Pot detectors to profit from low- β^{\ast} optics after LHC shut-down
- Data taking : 1000 bunches + x-angles @ β^* =90m
- More data welcome, especialy with Castor and ZDC

Thank you !

Runs & Data Statistics 2010-2011

Date	Detector configuration	β* [m]	$\int L dt$ [nb ⁻¹]	Analysis			
Oct 2010	RP at 7o; T2 in readout	3.5	6.8	Elastic so	cattering 0.36 <	ring 0.36 < $ t $ < 2.5 GeV ²		
Sep/Oct 2010	RP at 18σ	3.5	2300	D Elastic so (in progress	Elastic scattering - large t (in progress)			
May 2011	RP at 5σ; T1, T2 in readou	ut 1.5	0.72	2 Alignmer	t of 220m pots	t of 220m pots		
June 2011	RP at 10σ; T1, T2 in reado	out 90	0.001	7 Total cro 0.02 < t	s section + elastic scattering < 0.33 GeV ²			
Aug/Sep 2011	RP at 5σ; T1, T2 in readou	ut 90	beam I	ost Alignmer	t of RPs			
18. Oct 2011	RP at 5σ; T1, T2 in readou	ut 90		Several h	ours of data tak	ing;		
RP position (V) [sigma]	trigger schema	trigger on	bunch	Run time [min]	Events	Integ. Lumi [ub⁻¹]		
6.5	$RP_all_OR + T2 + BX$	1950,200 2100, 220	0,2050 0, 2300	64.9	2.4E+6	1.6		
6.5	$RP_V_and + T2 + BX$	all		13.4	5.8E+5	5.2		
6.5	$RP_all_and + T2 + BX$	all		217.5	9.3E+6	77		
5.5	$RP_all_and + T2 + BX$	all		50.7	1.9E+6	16		
4.8	$RP_all_and + T2 + BX$	all		16.4	6.2E+5	4.9		
		sun	n	363	1.5E+7	104		
				1	I Contraction of the second	1		

CERN-LHC Seminar, 29 January 2012

Runs & Data 2012

- Joint data-taking TOTEM-CMS @ vs = 8 TeV
 - -~25 M events, ~43nb⁻¹
 - Special optics β^* 90m (July 2012) : ~100 bunches
 - Bi-directional exchange of triggers (via new TOTEM electrical trigger)
 - TOTEM triggers on RP pp coincidences \rightarrow full CMS readout
 - CMS triggers on di-jets \rightarrow TOTEM RPs readout for protons signature
 - Ideal for studies of diffraction

• β*=1km optics runs + pPb ion runs

FSC and CMS Mass calibration

Elastic scattering based calibration:

- Elastically scattered protons selected
- T1, T2 vetoed

Particle Flow Mass distribution

digifC signal distribution for selected FSC detectors

CERN-LHC Seminar, 29 January 2012