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Kinematically simplest process with two
variables s and t

The only measurable characteristics
dσ
dt = 1

16πs2 |A|2 = 1
16πs2 [(ImA(s, t))2 + (ReA(s, t))2]

Two functions ImA(s, t), ReA(s, t) as parts of
a single analytic function A(s, t)
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s = 4E 2; t = −2p2(1− cos θ) (≈ −p2θ2 at θ � 1)
Other FOUR characteristics: σt(s), σel(s), ρ(s, t), B(s, t)

σt(s) =
ImA(p, θ = 0)

s
− optical theorem

σel(s) =

∫ 0

tmin

dt
dσ

dt
(s, t)

ρ(s, t) =
ReA(s, t)

ImA(s, t)

The di�raction cone

dσ

dt
/

(
dσ

dt

)
t=0

= eBt ≈ e−Bp
2θ2

(B ≈ const(t))

The amplitude in the di�raction cone (Gaussian, imaginary)

A(s, t) ≈ isσte
Bt/2 ≈ 4ip2σte

−Bp2θ2/2

Coulomb-nuclear interference � ρ(s, 0) = ρ0.
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Theory
The local dispersion relation

ρ(s, 0) = ρ0(s) ≈ 1

σt

[
tan

(
π

2

d

d ln s

)]
σt ≈

π

2

d lnσt
d ln s

The unitarity relation

ImA(p, θ) = I2(p, θ) + F (p, θ) =

1

32π2

∫ ∫
dθ1dθ2

sin θ1 sin θ2A(p, θ1)A∗(p, θ2)√
[cos θ − cos(θ1 + θ2)][cos(θ1 − θ2)− cos θ]

+ F (p, θ).

The region of integration

|θ1 − θ2| ≤ θ, θ ≤ θ1 + θ2 ≤ 2π − θ.

Imal(s) = |al(s)|2 + Fl(s)− partial wave representation

Imh(s, b) ≈ |h(s, b)|2 + F (s, b)− spatial (impact parameter) view

Froissart bound
σt ≤

π

2m2
π

ln2(s/s0)
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I.M. Dremin, M.T. Nazirov, Pis'ma ZhETF 37 (1983) 163
(JETP Lett. 37 (1983) 198) (see also arXiv:1304.5345)
Predictions according to the integral dispersion relations

The ratio of real to imaginary part of elastic pp-scattering
amplitude at t=0 according to dispersion relations with di�erent
assumptions about high energy behavior of the total cross section
(di�erent signs at low and high energies!). page 7/ 24



WHERE DO WE STAND NOW?

OUR GUESSES ABOUT ASYMPTOTICS

σt(s) ≤ π

2m2
π

ln2(s/s0)

THE BLACK DISK: σt = 2πR2; R = R0 ln s; σel
σt

= σin
σt

= 1
2

B(s) = R2

4 ; ρ(s, t = 0) = π
ln s None observed in experiment!

THE GRAY DISKS: two parameters - radius+opacity

Gray and Gaussian disks (X = σel/σt ; Z = 4πB/σt ; α ≤ 1)
Model 1− e−Ω σt σel B Z XZ X/Z

Gray αθ(R − b) 2παR2 πα2R2 R2/4 1/2α 1/4 α2

Gauss αe−b
2/R2

2παR2 πα2R2/2 R2/2 1/α 1/4 α2/4

The energy behavior√
s, GeV 2.70 4.74 6.27 7.62 13.8 62.5 546 1800 7000

X 0.42 0.27 0.24 0.22 0.18 0.18 0.21 0.23 0.25
Z 0.64 1.09 1.26 1.34 1.45 1.50 1.20 1.08 1.00
XZ 0.27 0.29 0.30 0.30 0.26 0.25 0.26 0.25 0.25
X/Z 0.66 0.25 0.21 0.17 0.16 0.12 0.18 0.21 0.25
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The energy evolution of the proton's shape

Purely phenomenological �t (see arXiv:1306.5384)

A(s, t) = s
√

16πf (s, t).

Fit at ISR in U. Amaldi, K. Schubert Nucl. Phys. B166 (1980) 301

f (s, t) = iα[A1 exp(
1

2
b1αt) + A2 exp(

1

2
b2αt)]− iA3 exp(

1

2
b3t),

where α(s) is complex and is given by

α(s) = [σt(s)/σt(23.5GeV)](1− iρ0(s)).

6 parameters at given s (Ai , bi , ρ0 minus normalization at
t=0)

page 9/ 24



Ðèñ.: Fit of the TOTEM data � dash-dotted curve. Dotted curve is
calculated with parameters used at 23.5 GeV and with ρ0 = 0.14
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Ðèñ.: Real (dotted curve) and imaginary (dash-dotted curve) parts of the
amplitude and their ratio (solid curve). Similar curves are usually
predicted by other models which describe the dip as zero of ImA(t).
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The energy evolution of the impact parameter picture

iΓ(s, b) =
1√
π

∫ ∞
0

dqqf (s, t)J0(qb). (1)

2<Γ(s, b) = |Γ(s, b)|2 + G (s, b), (2)

Ðèñ.: The overlap functions at 23.5 GeV (solid curve), 62.5 GeV (dotted
curve) and 7 TeV (dash-dotted curve) page 12/ 24



∆G (b) = G (s1, b)− G (s2, b) (
√
s1 = 7TeV,

√
s2 = 23.5GeV)

Ðèñ.: The di�erence between the overlap functions. Dash-dotted curve is
for 7 TeV and 23.5 GeV energies, solid curve is for 62.5 GeV and
23.5 GeV energies. The parton density at periphery increases!
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THE DIFFRACTION CONE

THEORETICAL APPROACHES (MODELS)
1. Geometric picture and eikonal
The impact parameter (b) representation

A(s, t = −q2) =
2s

i

∫
d2be iqb(e2iδ(s,b)−1) = 2is

∫
d2be iqb(1−e−Ω(s,b))

Two or three regions of the internal hadron structure.
Heisenberg relation: large b (external regions) - small |t|,
small b (internal regions) - large |t|. 15-20 parameters!
E.g., the di�raction pro�le function is

Γ(s, b) = 1− Ω(s, b) = g(s)

[
1

1 + e(b−r)/a
+

1

1 + e(−b+r)/a
− 1

]
and special shapes for internal regions. UNITARIZATION!
2. Electromagnetic analogies
Use of electromagnetic (and parton density) form factors.
The droplet model.
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3. Reggeon exchanges

Ω(s,b) = S(s)F (b2) + (non− leading terms)

S(s) is crossing symmetric and reproduces Pomeron trajectory

S(s) =
sc

(ln s)c ′
+

uc

(ln u)c ′

F (b2) is the Bessel transform of "Pomeron vertices"

F (t) = f |G (t)|2 a
2 + t

a2 − t

G (t) is the proton "nuclear form factor"parametrized like the
electromagnetic form factor with two poles

G (t) =
1

(1− t/m2
1)(1− t/m2

2)

or (one chooses/adds) the exponential form factors like

F (s, t) = ŝε1eB(s)t

4. QCD-inspired approaches
Gluons and quarks as active partons. Similar form factors.
All approaches are rather successful in the di�raction cone. page 15/ 24



Scaling laws in the di�raction cone (arXiv:1212.3313)

π

2

[
∂ ln ImA(s, t)

∂ ln s
− 1

]
= ρ0

[
1 +

∂ ln ImA(s, t)

∂ ln t

]
∂ ln ImA(s, t)

∂ lnσt
− ∂ ln ImA(s, t)

∂ ln t
= 1 +

d ln s

d lnσt
.

t2dσ/dt = Φ(tσt)− geometric scaling
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ρ(s, t) = ρ(s, 0)

[
1 +

1

a

∂ ln ImA(s, t)

∂ ln |t|

]
.

t2adσ/dt = ω(taσt), a = 1.2.
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The value of a accounts for di�erent energy behavior of B and σt -
violation of geometric scaling.
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INTERMEDIATE ANGLES � DIP AND OREAR REGIME

THREE REGIONS: the di�raction cone,
the Orear regime, the hard parton scattering

ImA(p, θ) = I2(p, θ) + F (p, θ) =

1

32π2

∫ ∫
dθ1dθ2

sin θ1 sin θ2A(p, θ1)A∗(p, θ2)√
[cos θ − cos(θ1 + θ2)][cos(θ1 − θ2)− cos θ]

+ F (p, θ).

|θ1 − θ2| ≤ θ, θ ≤ θ1 + θ2 ≤ 2π − θ
I2 - two-particle intermediate states (σel), F - inelastic ones (σinel).
For angles θ outside the di�raction cone one amplitude in I2 is at
small angles and another at large ones: linear integral equation

ImA(p, θ) =
pσt

4π
√

2πB

∫ +∞

−∞
dθ1fρe

−Bp2(θ−θ1)2/2ImA(p, θ1)+F (p, θ).

fρ = 1 + ρ0ρ(θ1).
Analytic solution if F (p, θ)� ImA(p, θ) and fρ ≈const outside
the di�raction cone!
(I.V. Andreev, I.M. Dremin JETP Lett. 6 (1967) 262) page 18/ 24



The proof of the assumption about the small overlap function.
F (p, θ) computed from experimental data is negligible outside cone:

F (p, θ) = 16p2

(
π
dσ

dt
/(1 + ρ2)

)1/2

−

8p4fρ
π

∫ 1

−1
dz2

∫ z+
1

z−1

dz1

[
dσ

dt1
· dσ
dt2

]1/2

K−1/2(z , z1, z2),

zi = cos θi ; K (z , z1, z2) = 1− z2 − z2
1 − z2

2 + 2zz1z2,
z±1 = zz2 ± [(1− z2)(1− z2

2 )]1/2
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The elastic di�erential cross section outside the di�raction cone
contains the exponentially decreasing with θ (or

√
|t|) term (Orear

regime!) with imposed on it damped oscillations:

dσ

p1dt
=

(
e
−
√

2B|t| ln 4πB
σt fρ + p2e

−
√

2πB|t| cos(
√

2πB|t| − φ)

)2

.

The experimentally measured values of the di�raction cone slope B
and the total cross section σt determine mostly the shape of the
elastic di�erential cross section in the Orear region of transition
from the di�raction peak to large angle parton scattering. The value
of Z = 4πB/σt is so close to 1 that the �t is extremely sensitive to
fρ. Thus, it becomes possible for the �rst time to estimate the ratio
ρ outside the di�raction cone from �ts of experimental data.
At the LHC, its average value is negative and equal to -2.1!

Do we approach the black disk limit Z → 0.5?

In Orear slope the decrease of Z must be compensated by the
decrease of fρ = 1 + ρ0ρ(t) but ρ0 ∝ ln−1 s! Is it possible that ρ(t)
in Orear region increases in modulus being negative?
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Fit at 7 TeV (dip+Orear in 0.3 < |t| < 1.5 GeV2)
(arXiv:1202.2016)
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PROBLEM: The real part outside the di�raction cone
At t = 0, it is known from Coulomb-nuclear interference
experimentally (at lower than LHC energies) and from dispersion
relations theoretically. ρ0 at LHC may be about 0.13 - 0.14.
No experimental results for ρ(t) are available. However, it can be
calculated (Martin formula) if the imaginary part is known:

ρ(t) = ρ0

[
1 +

t(dImA(t)/dt)

ImA(t)

]
Then the equation for ρ(t) follows from the unitarity condition

dv

dx
= −v

x
− 2

x2

(
Ze−v

2 − 1

ρ2(t = 0)
− 1

)
x =

√
2B|t|, v =

√
ln(Z/fρ), ρ(t) = (Ze−v

2 − 1)/ρ(t = 0)
where v is the solution of the equation.
Asymptotics at |t| → ∞ ρ→ (Z − 1)/ρ(t = 0).
Then fρ → Z and ln(Z/fρ)→ 0!
Prediction: the drastic changes are expected in this region of |t|!
(arXiv:1204.4866)
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LARGE ANGLES � HARD PARTON SCATTERING

Experimentally observed |t|−8-regime in pp-scattering.

Kancheli talk

The dimensional counting

For n partons participating in a single hard scattering

A1(s, t) ∝
(s0

s

) n
2
−2

f1(s/t)

The coherent scattering

Three gluons coherently exchanged between three pairs of quarks.
Multi-Pomeron exchange with one large-pT Pomeron.
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Conclusions

The black disk limit is still far away.

The evolution of the impact parameter overlap function with
energy shows steady increase of the contribution of the
peripheral regions of protons (ISR → Spp̄S → LHC).
The parton density at the periphery increases!
Inelastic di�raction?

Most theoretical models describe the di�raction peak but fail
outside it.

Scaling laws in the di�raction cone are predicted by the local
dispersion relations + Martin formula but comparison with
experiment requires some modi�cation of the latter because it
shows that geometric scaling is not valid.
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At intermediate angles between the di�raction cone and hard
parton scattering region the unitarity condition predicts the
Orear regime with exponential decrease in angles and imposed
on it damped oscillations.

The experimental data on elastic pp di�erential cross section
at low and high (

√
s=7 TeV) energies have been �tted in this

region with well described position of the dip and Orear slope.

The �t by the "unitarity formula" allows for the �rst time at 7
TeV to estimate the ratio ρ(s, t) far from forward direction
t=0. It happened to be about -2.

Controversial forms of ρ(s, t) for di�erent models.
The common feature is the pole at the dip!
The unitarity condition does not require the pole!
The estimate of ρ(t) in the unitarity condition is attempted.

The overlap function is small and negative in the Orear region.
That con�rms the assumption used in solving the unitarity
equation. Important corollary: the phases of inelastic
amplitudes are crucial in any model of inelastic processes.
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