Hadronic collisions: cross sections, diffraction, and multi-parton interactions

Sergey Ostapchenko (SINP MSU)

Particle Physics Phenomenology Workshop devoted to the memory of Alexei B. Kaidalov

Moscow, July 21-25, 2013

< □ ▶
 <li

- Introduction: RFT approach & Quark-Gluon String model
- Inhanced Pomeron diagrams
 - resummation
 - 'loops' & 'nets' relative importance
 - non-eikonal rap-gap suppression & diffractive cross sections
- QGSJET-II Monte Carlo model
 - 'semihard Pomeron'
 - enhanced graphs: assumptions & MC implementation
- Inelastic diffraction
 - M_X -shape for high mass diffraction
 - LHC puzzles
- Total cross section & multi-parton interactions
 - multi-Pomeron interactions & multi-parton correlations
 - contribution from perturbative splitting: how important?

- **1** Introduction: RFT approach & Quark-Gluon String model
- Enhanced Pomeron diagrams
 - resummation
 - 'loops' & 'nets' relative importance
 - non-eikonal rap-gap suppression & diffractive cross sections
- QGSJET-II Monte Carlo model
 - 'semihard Pomeron'
 - enhanced graphs: assumptions & MC implementation
- Inelastic diffraction
 - M_X -shape for high mass diffraction
 - LHC puzzles
- Total cross section & multi-parton interactions
 - multi-Pomeron interactions & multi-parton correlations
 - contribution from perturbative splitting: how important?

- **1** Introduction: RFT approach & Quark-Gluon String model
- Inhanced Pomeron diagrams
 - resummation
 - 'loops' & 'nets' relative importance
 - non-eikonal rap-gap suppression & diffractive cross sections
- QGSJET-II Monte Carlo model
 - 'semihard Pomeron'
 - enhanced graphs: assumptions & MC implementation
- Inelastic diffraction
 - M_X -shape for high mass diffraction
 - LHC puzzles
- Total cross section & multi-parton interactions
 - multi-Pomeron interactions & multi-parton correlations
 - contribution from perturbative splitting: how important?

- **1** Introduction: RFT approach & Quark-Gluon String model
- Inhanced Pomeron diagrams
 - resummation
 - 'loops' & 'nets' relative importance
 - non-eikonal rap-gap suppression & diffractive cross sections
- QGSJET-II Monte Carlo model
 - 'semihard Pomeron'
 - enhanced graphs: assumptions & MC implementation
- Inelastic diffraction
 - M_X -shape for high mass diffraction
 - LHC puzzles
- Total cross section & multi-parton interactions
 - multi-Pomeron interactions & multi-parton correlations
 - contribution from perturbative splitting: how important?

- **1** Introduction: RFT approach & Quark-Gluon String model
- Inhanced Pomeron diagrams
 - resummation
 - 'loops' & 'nets' relative importance
 - non-eikonal rap-gap suppression & diffractive cross sections
- QGSJET-II Monte Carlo model
 - 'semihard Pomeron'
 - enhanced graphs: assumptions & MC implementation
- Inelastic diffraction
 - M_X -shape for high mass diffraction
 - LHC puzzles
- Total cross section & multi-parton interactions
 - multi-Pomeron interactions & multi-parton correlations
 - contribution from perturbative splitting: how important?

- at colliders:
 - underlying event
 - interesting by themselves (total & elastic cross sections, diffraction, multi-particle production)

- at colliders:
 - underlying event
 - interesting by themselves (total & elastic cross sections, diffraction, multi-particle production)

- at colliders:
 - underlying event
 - interesting by themselves (total & elastic cross sections, diffraction, multi-particle production)
- of utmost importance in cosmic ray physics:
 - crucial for understanding hadronic cascades in the atmosphere

Cosmic ray studies with extensive air shower techniques

ground-based observations (= thick target experiments)

- primary CR energy \iff charged particle density at ground
- CR composition muon density at ground

Cosmic ray studies with extensive air shower techniques

- primary CR energy \iff integrated light
- CR composition \iff shower maximum position X_{\max}

Cosmic ray studies with extensive air shower techniques

• predictions for muon density – on the multiplicity $N_{\pi-air}^{ch}$

- at colliders:
 - background for new physics
 - interesting by themselves (total & elastic cross sections, diffraction, multi-particle production)
- of utmost importance in cosmic ray physics:
 - crucial for understanding hadronic cascades in the atmosphere
- impressive success of the Quark-Gluon String model [Kaidalov & Ter-Martyrosyan, 1982]
 - in describing cross sections & soft multi-particle production at accelerators
 - in cosmic ray applications (treatment of extensive air showers)

- at colliders:
 - background for new physics
 - interesting by themselves (total & elastic cross sections, diffraction, multi-particle production)
- of utmost importance in cosmic ray physics:
 - crucial for understanding hadronic cascades in the atmosphere
- impressive success of the Quark-Gluon String model [Kaidalov & Ter-Martyrosyan, 1982]
 - in describing cross sections & soft multi-particle production at accelerators
 - in cosmic ray applications (treatment of extensive air showers)

- at colliders:
 - background for new physics
 - interesting by themselves (total & elastic cross sections, diffraction, multi-particle production)
- of utmost importance in cosmic ray physics:
 - crucial for understanding hadronic cascades in the atmosphere
- impressive success of the Quark-Gluon String model [Kaidalov & Ter-Martyrosyan, 1982]
 - in describing cross sections & soft multi-particle production at accelerators
 - in cosmic ray applications (treatment of extensive air showers)

- high energy hadronic collisions multiple scattering processes
- may be treated using the Reggeon Field Theory (RFT) [Gribov, 1967]

- high energy hadronic collisions multiple scattering processes
- may be treated using the Reggeon Field Theory (RFT) [Gribov, 1967]

- high energy hadronic collisions multiple scattering processes
- may be treated using the Reggeon Field Theory (RFT) [Gribov, 1967]
- multiple scattering = multi-Pomeron exchanges (multiple independent cascades)
- allows to calculate: cross sections & partial probabilities of final states

/□▶ 《 글 ▶ 《 글

- high energy hadronic collisions multiple scattering processes
- may be treated using the Reggeon Field Theory (RFT) [Gribov, 1967]
- multiple scattering = multi-Pomeron exchanges (multiple independent cascades)
- allows to calculate: cross sections & partial probabilities of final states

- high energy hadronic collisions multiple scattering processes
- may be treated using the Reggeon Field Theory (RFT) [Gribov, 1967]
- cross sections for final states: from 'cut' diagrams
- based on AGK cutting rules [Abramovskii, Gribov & Kancheli, 1973]

- high energy hadronic collisions multiple scattering processes
- may be treated using the Reggeon Field Theory (RFT) [Gribov, 1967]
- cross sections for final states: from 'cut' diagrams
- based on AGK cutting rules [Abramovskii, Gribov & Kancheli, 1973]

- high energy hadronic collisions multiple scattering processes
- may be treated using the Reggeon Field Theory (RFT) [Gribov, 1967]
- cross sections for final states: from 'cut' diagrams
- based on AGK cutting rules [Abramovskii, Gribov & Kancheli, 1973]

- particle production: hadronization of quark-gluon strings
 - parameters: intercepts of secondary Regge trajectories [Kaidalov, 1985]

- high energy hadronic collisions multiple scattering processes
- may be treated using the Reggeon Field Theory (RFT) [Gribov, 1967]
- cross sections for final states: from 'cut' diagrams
- based on AGK cutting rules [Abramovskii, Gribov & Kancheli, 1973]

- particle production: hadronization of quark-gluon strings
 - parameters: intercepts of secondary Regge trajectories [Kaidalov, 1985]

- original Gribov's formulation: assuming limited small *p_t*-s for the underlying parton cascades
 - \Rightarrow no room for high p_t jets?

- original Gribov's formulation: assuming limited small *p_t*-s for the underlying parton cascades
 - \Rightarrow no room for high p_t jets?

- original Gribov's formulation: assuming limited small *p_t*-s for the underlying parton cascades
 - \Rightarrow no room for high p_t jets?
- average parton p_t in the cascades should rise with energy $(k_t$ -diffusion)

個 と く ヨ と く ヨ と

• \Rightarrow energy-dependent Pomeron intercept $\alpha_{\mathbb{P}}(s)$?

- original Gribov's formulation: assuming limited small *p_t*-s for the underlying parton cascades
 - \Rightarrow no room for high p_t jets?
- average parton p_t in the cascades should rise with energy $(k_t$ -diffusion)
- \Rightarrow energy-dependent Pomeron intercept $\alpha_{\mathbb{P}}(s)$?
 - ullet \Rightarrow loss of predictive power

- original Gribov's formulation: assuming limited small p_t-s for the underlying parton cascades
 - \Rightarrow no room for high p_t jets?
- average parton p_t in the cascades should rise with energy $(k_t$ -diffusion)
- \Rightarrow energy-dependent Pomeron intercept $\alpha_{\mathbb{P}}(s)$?
 - \Rightarrow loss of predictive power
- high energies ⇒ nonlinear effects substantial (interactions between parton cascades)
- in RFT: described by enhanced (Pomeron-Pomeron interaction) graphs

- original Gribov's formulation: assuming limited small p_t-s for the underlying parton cascades
 - \Rightarrow no room for high p_t jets?
- average parton p_t in the cascades should rise with energy $(k_t$ -diffusion)
- \Rightarrow energy-dependent Pomeron intercept $\alpha_{\mathbb{P}}(s)$?
 - ullet \Rightarrow loss of predictive power
- high energies ⇒ nonlinear effects substantial (interactions between parton cascades)
- in RFT: described by enhanced (Pomeron-Pomeron interaction) graphs

- original Gribov's formulation: assuming limited small *p_t*-s for the underlying parton cascades
 - \Rightarrow no room for high p_t jets?
- average parton p_t in the cascades should rise with energy (k_t-diffusion)
- \Rightarrow energy-dependent Pomeron intercept $\alpha_{\mathbb{P}}(s)$?
 - \Rightarrow loss of predictive power
- high energies \Rightarrow nonlinear effects substantial

- absorptive effects stronger at small b, weaker at large b
 - $\bullet\,$ requires a bit of parametrising \Rightarrow loss of predictive power
- including HMD via Good-Walker (GW) formalism?
 - energy-dependent structure of GW states

- original Gribov's formulation: assuming limited small *p_t*-s for the underlying parton cascades
 - \Rightarrow no room for high p_t jets?
- average parton p_t in the cascades should rise with energy (k_t-diffusion)
- \Rightarrow energy-dependent Pomeron intercept $\alpha_{\mathbb{P}}(s)$?
 - \Rightarrow loss of predictive power
- high energies \Rightarrow nonlinear effects substantial

- \bullet absorptive effects stronger at small b, weaker at large b
 - requires a bit of parametrising \Rightarrow loss of predictive power
- including HMD via Good-Walker (GW) formalism?
 - energy-dependent structure of GW states

- original Gribov's formulation: assuming limited small *p_t*-s for the underlying parton cascades
 - \Rightarrow no room for high p_t jets?
- average parton p_t in the cascades should rise with energy (k_t-diffusion)
- \Rightarrow energy-dependent Pomeron intercept $\alpha_{\mathbb{P}}(s)$?
 - \Rightarrow loss of predictive power
- high energies \Rightarrow nonlinear effects substantial

- absorptive effects stronger at small b, weaker at large b
 - $\bullet\,$ requires a bit of parametrising \Rightarrow loss of predictive power
- including HMD via Good-Walker (GW) formalism?
 - energy-dependent structure of GW states

- original Gribov's formulation: assuming limited small *p_t*-s for the underlying parton cascades
 - \Rightarrow no room for high p_t jets?
- average parton p_t in the cascades should rise with energy (k_t-diffusion)
- \Rightarrow energy-dependent Pomeron intercept $\alpha_{\mathbb{P}}(s)$?
 - \Rightarrow loss of predictive power
- high energies \Rightarrow nonlinear effects substantial

- absorptive effects stronger at small b, weaker at large b
 - $\bullet\,$ requires a bit of parametrising \Rightarrow loss of predictive power
- including HMD via Good-Walker (GW) formalism?

energy-dependent structure of GW states

Enhanced Pomeron diagrams

 in the dense limit (high energy & small b): Pomeron-Pomeron interactions important [Kancheli, 1973; Cardi, 1974; Kaidalov et al., 1986, ...]

□ > < E >

Enhanced Pomeron diagrams

 in the dense limit (high energy & small b): Pomeron-Pomeron interactions important [Kancheli, 1973; Cardi, 1974; Kaidalov et al., 1986, ...]

Enhanced Pomeron diagrams

 in the dense limit (high energy & small b): Pomeron-Pomeron interactions important [Kancheli, 1973; Cardi, 1974; Kaidalov et al., 1986, ...]

• describe elastic re-scattering of intermediate partons off the projectile/target hadrons & off each other
in the dense limit (high energy & small b): Pomeron-Pomeron interactions important [Kancheli, 1973; Cardi, 1974; Kaidalov et al., 1986, ...]

- describe elastic re-scattering of intermediate partons off the projectile/target hadrons & off each other
- why all-order resummation?
 - higher order (wrt $G_{3\mathbb{P}}$) contributions rise quicker with energy
 - have altering signs

 in the dense limit (high energy & small b): Pomeron-Pomeron interactions important [Kancheli, 1973; Cardi, 1974; Kaidalov et al., 1986, ...]

Diagrammatic resummation [SO, 2006, 2008, 2010]

- define some elementary 'building blocks'
- construct arbitrary enhanced graphs out of them
- correct for double (triple, etc.) counting
- similarly for cut diagrams (based on AGK-rules)

E.g. sum of irredicible contributions to elastic amplitude

• expressed via 'net-fans' - 'reaction-dependent PDFs':

E.g. sum of irredicible contributions to elastic amplitude

E.g. sum of irredicible contributions to elastic amplitude

• expressed via 'net-fans' - 'reaction-dependent PDFs':

• similar (but slightly more complicated) results for the resummation of cut graphs

• similar (but slightly more complicated) results for the resummation of cut graphs

• the above-discussed diagrammatic resummation is generic

- the above-discussed diagrammatic resummation is generic
- but: particular assumptions on the Pomeron amplitude & multi-Pomeron vertices needed
 - to check the importance of the neglected graphs
 - to check s-channel unitarity of the approach

- the above-discussed diagrammatic resummation is generic
- but: particular assumptions on the Pomeron amplitude & multi-Pomeron vertices needed
 - to check the importance of the neglected graphs
 - to check s-channel unitarity of the approach
- choose the vertex for $m\mathbb{P} \to n\mathbb{P}$: $G^{(m,n)} = G_{3\mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
 - \Rightarrow 'renormalized' soft Pomeron in the dense limit [Kaidalov et al., 1986]: $\alpha_{\mathbb{P}}^{\text{ren}} = \alpha_{\mathbb{P}} G_{3\mathbb{P}}/\gamma_{\mathbb{P}}$

- the above-discussed diagrammatic resummation is generic
- but: particular assumptions on the Pomeron amplitude & multi-Pomeron vertices needed
 - to check the importance of the neglected graphs
 - to check s-channel unitarity of the approach
- choose the vertex for $m\mathbb{P} o n\mathbb{P}$: $G^{(m,n)} = G_{3\mathbb{P}} \, \gamma_{\mathbb{P}}^{m+n-3}$
 - \Rightarrow 'renormalized' soft Pomeron in the dense limit [Kaidalov et al., 1986]: $\alpha_{\mathbb{P}}^{\text{ren}} = \alpha_{\mathbb{P}} G_{3\mathbb{P}}/\gamma_{\mathbb{P}}$

- the above-discussed diagrammatic resummation is generic
- but: particular assumptions on the Pomeron amplitude & multi-Pomeron vertices needed
 - to check the importance of the neglected graphs
 - to check s-channel unitarity of the approach
- choose the vertex for $m\mathbb{P} o n\mathbb{P}$: $G^{(m,n)} = G_{3\mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
 - \Rightarrow 'renormalized' soft Pomeron in the dense limit [Kaidalov et al., 1986]: $\alpha_{\mathbb{P}}^{\text{ren}} = \alpha_{\mathbb{P}} G_{3\mathbb{P}}/\gamma_{\mathbb{P}}$
 - NB: applies for α^{ren}_P > 1 only (for G_{3P}/γ_P > α_P − 1, σ_{tot}(s) → const for s → ∞)

- 4 回 2 - 4 □ 2 - 4 □

- the above-discussed diagrammatic resummation is generic
- but: particular assumptions on the Pomeron amplitude & multi-Pomeron vertices needed
 - to check the importance of the neglected graphs
 - to check s-channel unitarity of the approach
- choose the vertex for $m\mathbb{P} \to n\mathbb{P}$: $G^{(m,n)} = G_{3\mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
 - \Rightarrow 'renormalized' soft Pomeron in the dense limit [Kaidalov et al., 1986]: $\alpha_{\mathbb{P}}^{\text{ren}} = \alpha_{\mathbb{P}} G_{3\mathbb{P}}/\gamma_{\mathbb{P}}$
 - NB: applies for α^{ren}_P > 1 only (for G_{3P}/γ_P > α_P − 1, σ_{tot}(s) → const for s → ∞)

• \Rightarrow positive-definite cross sections for various final states

- the above-discussed diagrammatic resummation is generic
- but: particular assumptions on the Pomeron amplitude & multi-Pomeron vertices needed
 - to check the importance of the neglected graphs
 - to check s-channel unitarity of the approach
- choose the vertex for $m\mathbb{P} \to n\mathbb{P}$: $G^{(m,n)} = G_{3\mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
 - \Rightarrow 'renormalized' soft Pomeron in the dense limit [Kaidalov et al., 1986]: $\alpha_{\mathbb{P}}^{\text{ren}} = \alpha_{\mathbb{P}} G_{3\mathbb{P}}/\gamma_{\mathbb{P}}$
 - NB: applies for α^{ren}_P > 1 only (for G_{3P}/γ_P > α_P − 1, σ_{tot}(s) → const for s → ∞)
- ullet \Rightarrow positive-definite cross sections for various final states
- neglected contributions negiligible (smaller than 1/mille)

- interesting case model with 2 Pomerons:
 - \bullet 'soft' Pomeron: smaller $\alpha_{\mathbb{P}soft}$, larger $\alpha'_{\mathbb{P}soft}$
 - 'hard' Pomeron: larger $\alpha_{\mathbb{P}hard}$, smaller $\alpha'_{\mathbb{P}hard}$

- interesting case model with 2 Pomerons:
 - 'soft' Pomeron: smaller $\alpha_{\mathbb{P}soft}$, larger $\alpha'_{\mathbb{P}soft}$
 - 'hard' Pomeron: larger $\alpha_{\mathbb{P}hard}$, smaller $\alpha'_{\mathbb{P}hard}$

- interesting case model with 2 Pomerons:
 - \bullet 'soft' Pomeron: smaller $\alpha_{\mathbb{P}soft}$, larger $\alpha'_{\mathbb{P}soft}$
 - 'hard' Pomeron: larger $\alpha_{\mathbb{P}hard}$, smaller $\alpha'_{\mathbb{P}hard}$

- interesting case model with 2 Pomerons:
 - \bullet 'soft' Pomeron: smaller $\alpha_{\mathbb{P}soft}$, larger $\alpha'_{\mathbb{P}soft}$
 - 'hard' Pomeron: larger $\alpha_{\mathbb{P}hard}$, smaller $\alpha'_{\mathbb{P}hard}$
- choose $\alpha_{\mathbb{P}soft} 1 < G_{3\mathbb{P}}/\gamma_{\mathbb{P}} < \alpha_{\mathbb{P}hard} 1$
 - 'soft' Pomeron becomes undercritical in the dense limit: $\alpha_{\mathbb{P}soft}^{ren} < 1$

<ロ> (四) (四) (三) (三)

- 'soft' Pomeron dominates at large b (larger slope)
- 'hard' Pomeron dominates at small $b~(lpha_{\mathbb{P}hard}^{ren}>1)$

- interesting case model with 2 Pomerons:
 - \bullet 'soft' Pomeron: smaller $\alpha_{\mathbb{P}soft}$, larger $\alpha'_{\mathbb{P}soft}$
 - 'hard' Pomeron: larger $\alpha_{\mathbb{P}hard}$, smaller $\alpha'_{\mathbb{P}hard}$
- choose $\alpha_{\mathbb{P}soft} 1 < G_{3\mathbb{P}}/\gamma_{\mathbb{P}} < \alpha_{\mathbb{P}hard} 1$
 - 'soft' Pomeron becomes undercritical in the dense limit: $\alpha_{\mathbb{P}soft}^{ren} < 1$
 - 'soft' Pomeron dominates at large b (larger slope)
 - 'hard' Pomeron dominates at small $b~(lpha_{\mathbb{P}hard}^{\mathrm{ren}}>1)$

- interesting case model with 2 Pomerons:
 - 'soft' Pomeron: smaller $\alpha_{\mathbb{P}soft}$, larger $\alpha'_{\mathbb{P}soft}$
 - 'hard' Pomeron: larger $\alpha_{\mathbb{P}hard}$, smaller $\alpha'_{\mathbb{P}hard}$
- choose $\alpha_{\mathbb{P}soft} 1 < G_{3\mathbb{P}}/\gamma_{\mathbb{P}} < \alpha_{\mathbb{P}hard} 1$
 - 'soft' Pomeron becomes undercritical in the dense limit: $\alpha_{\mathbb{P}soft}^{ren} < 1$
 - 'soft' Pomeron dominates at large b (larger slope)
 - 'hard' Pomeron dominates at small $b~(lpha_{\mathbb{P}hard}^{ren}>1)$

- Interesting case model with 2 Pomerons:
 - 'soft' Pomeron: smaller $\alpha_{\mathbb{P}soft}$, larger $\alpha'_{\mathbb{P}soft}$
 - 'hard' Pomeron: larger $\alpha_{\mathbb{P}hard}$, smaller $\alpha'_{\mathbb{P}hard}$
- choose $\alpha_{\mathbb{P}soft} 1 < G_{3\mathbb{P}}/\gamma_{\mathbb{P}} < \alpha_{\mathbb{P}hard} 1$
 - 'soft' Pomeron becomes undercritical in the dense limit: $\alpha_{\mathbb{P}soft}^{ren} < 1$

<ロ> (四) (四) (三) (三)

- 'soft' Pomeron dominates at large b (larger slope)
- 'hard' Pomeron dominates at small $b~(lpha_{\mathbb{P}hard}^{ren}>1)$

Relative importance of 'nets' & 'loops'

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Relative importance of 'nets' & 'loops'

Relative importance of 'nets' & 'loops'

• NB: relative contribution of $\mathbb P\text{-loops}$ strongly depends on $\alpha'_{\mathbb P}$

- simpliest loop contribution $\propto G_{3\mathbb{P}}^2/lpha_{\mathbb{P}}'$
- $\Rightarrow \to \infty$ for $\alpha'_{\mathbb{P}} \to 0$ (assuming the slope for the 3P-vertex $\simeq 0$)
- in the above example, $\alpha'_{\mathbb{P}soft} = 0.14~\text{GeV}^{-2}$ was used

- C: (real) parton cascade which produces hadrons
- A,B: (virtual) parton cascades which transfer momentum
- D,E: virtual rescatterings which suppress diffraction (eikonal rap-gap suppression factor)

- C: (real) parton cascade which produces hadrons
- A,B: (virtual) parton cascades which transfer momentum
- D,E: virtual rescatterings which suppress diffraction (eikonal rap-gap suppression factor)

- C: (real) parton cascade which produces hadrons
- A,B: (virtual) parton cascades which transfer momentum
- D,E: virtual rescatterings which suppress diffraction (eikonal rap-gap suppression factor)

• schematic diagram for single high mass diffraction:

- C: (real) parton cascade which produces hadrons
- A,B: (virtual) parton cascades which transfer momentum
- D,E: virtual rescatterings which suppress diffraction (eikonal rap-gap suppression factor)

NB: generally, also multiple exchanges of the ABC subgraph

• e.g. required by s-channel unitarity for DD (at small b)

• schematic diagram for single high mass diffraction:

- C: (real) parton cascade which produces hadrons
- A,B: (virtual) parton cascades which transfer momentum
- D,E: virtual rescatterings which suppress diffraction (eikonal rap-gap suppression factor)

• importance of higher order corrections to the ABC-subgraph?

- C: (real) parton cascade which produces hadrons
- A,B: (virtual) parton cascades which transfer momentum
- D,E: virtual rescatterings which suppress diffraction (eikonal rap-gap suppression factor)
- importance of higher order corrections to the ABC-subgraph?
- compare different approximations for the ABC-subgraph:
 - full resummation
 - 1st order wrt $G_{3\mathbb{P}}$ (A, B & C uncut/cut Froissarons)
 - just the triple-Pomeron contribution
- in all the cases, full resummation is used for D & E

- importance of higher order corrections to the ABC-subgraph?
- compare different approximations for the ABC-subgraph:
 - full resummation
 - 1st order wrt $G_{3\mathbb{P}}$ (A, B & C uncut/cut Froissarons)
 - just the triple-Pomeron contribution
- in all the cases, full resummation is used for D & E

- RFT-based treatment of multiple scattering
- basic ingredient: treatment of an individual parton cascade

- RFT-based treatment of multiple scattering
- basic ingredient: treatment of an individual parton cascade

- RFT-based treatment of multiple scattering
- basic ingredient: treatment of an individual parton cascade
- important: transverse development ($\Delta b^2 \sim 1/\Delta q^2$)

- RFT-based treatment of multiple scattering
- basic ingredient: treatment of an individual parton cascade
- important: transverse development $(\Delta b^2 \sim 1/\Delta q^2)$

 e.g. for soft cascades: quick transverse spread & low parton density
- RFT-based treatment of multiple scattering
- basic ingredient: treatment of an individual parton cascade
- important: transverse development $(\Delta b^2 \sim 1/\Delta q^2)$
- e.g. for soft cascades quick transverse spread & low parton density
- hard cascades: frozen in transverse space but high density rise

•••

- e.g. for soft cascades quick transverse spread & low parton density
- hard cascades: frozen in transverse space but high density rise
- semihard cascades: quick expansion during 'soft preevolution' followed by the density rise
 - ullet \Rightarrow dominant in high energy limit

- e.g. for soft cascades quick transverse spread & low parton density
- hard cascades: frozen in transverse space but high density rise
- semihard cascades: quick expansion during 'soft preevolution' followed by the density rise
 - \Rightarrow dominant in high energy limit

- e.g. for soft cascades quick transverse spread & low parton density
- hard cascades: frozen in transverse space but high density rise
- semihard cascades: quick expansion during 'soft preevolution' followed by the density rise

 $P \Rightarrow$ dominant in high energy limit Phenomenological treatment [Kalmykov & SO, 1994,1997]

- soft Pomerons to describe soft (parts of) cascades $(p_t^2 < Q_0^2)$
 - ullet \Rightarrow transverse expansion governed by the Pomeron slope

- DGLAP for hard cascades
- taken together: 'general Pomeron'

- e.g. for soft cascades quick transverse spread & low parton density
- hard cascades: frozen in transverse space but high density rise
- semihard cascades: quick expansion during 'soft preevolution' followed by the density rise

 $P \Rightarrow$ dominant in high energy limit Phenomenological treatment [Kalmykov & SO, 1994,1997]

- soft Pomerons to describe soft (parts of) cascades $(p_t^2 < Q_0^2)$
 - $\bullet\,\Rightarrow\,{\rm transverse}$ expansion governed by the Pomeron slope

- DGLAP for hard cascades
- taken together: 'general Pomeron'

- e.g. for soft cascades quick transverse spread & low parton density
- hard cascades: frozen in transverse space but high density rise
- semihard cascades: quick expansion during 'soft preevolution' followed by the density rise

 $P \Rightarrow$ dominant in high energy limit Phenomenological treatment [Kalmykov & SO, 1994,1997]

- soft Pomerons to describe soft (parts of) cascades $(p_t^2 < Q_0^2)$
 - $\bullet\,\Rightarrow$ transverse expansion governed by the Pomeron slope

- e.g. for soft cascades quick transverse spread & low parton density
- hard cascades: frozen in transverse space but high density rise
- semihard cascades: quick expansion during 'soft preevolution' followed by the density rise

 $P \Rightarrow \text{dominant in high energy limit}$ Phenomenological treatment [Kalmykov & SO, 1994,1997]

- soft Pomerons to describe soft (parts of) cascades $(p_t^2 < Q_0^2)$
 - $\bullet\,\Rightarrow$ transverse expansion governed by the Pomeron slope

- DGLAP for hard cascades
- taken together: 'general Pomeron'

• basic assumption: multi- \mathbb{P} vertices – due to soft $(|q^2| < Q_0^2)$ parton processes

- basic assumption: multi- \mathbb{P} vertices due to soft $(|q^2| < Q_0^2)$ parton processes
- based on soft Pomeron coupling
- vertex for $m\mathbb{P} \to n\mathbb{P}$: $G^{(m,n)} = G_{3\mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
- in dense limit (large s, small b) 'renormalized' soft Pomeron [Kaidalov et al., 1986]: α^{ren}_{Psoft} = α_{Psoft} - G_{3P}/γ_P

• choose
$$G_{3\mathbb{P}}/\gamma_{\mathbb{P}} > \alpha_{\mathbb{P}soft} - 1$$

- basic assumption: multi- \mathbb{P} vertices due to soft $(|q^2| < Q_0^2)$ parton processes
- based on soft Pomeron coupling
- vertex for $m\mathbb{P} \to n\mathbb{P}$: $G^{(m,n)} = G_{3\mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
- in dense limit (large *s*, small *b*) 'renormalized' soft Pomeron [Kaidalov et al., 1986]: $\alpha_{\mathbb{P}soft}^{\mathrm{ren}} = \alpha_{\mathbb{P}soft} - G_{3\mathbb{P}}/\gamma_{\mathbb{P}}$

• choose
$$G_{3\mathbb{P}}/\gamma_{\mathbb{P}} > \alpha_{\mathbb{P}soft} - 1$$

- basic assumption: multi- \mathbb{P} vertices due to soft $(|q^2| < Q_0^2)$ parton processes
- based on soft Pomeron coupling
- vertex for $m\mathbb{P} \to n\mathbb{P}$: $G^{(m,n)} = G_{3\mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
- in dense limit (large *s*, small *b*) 'renormalized' soft Pomeron [Kaidalov et al., 1986]: $\alpha_{\mathbb{P}soft}^{\mathrm{ren}} = \alpha_{\mathbb{P}soft} - G_{3\mathbb{P}}/\gamma_{\mathbb{P}}$

• choose
$$G_{3\mathbb{P}}/\gamma_{\mathbb{P}} > \alpha_{\mathbb{P}soft} - 1$$

- basic assumption: multi- \mathbb{P} vertices due to soft $(|q^2| < Q_0^2)$ parton processes
- based on soft Pomeron coupling
- vertex for $m\mathbb{P} \to n\mathbb{P}$: $G^{(m,n)} = G_{3\mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
- in dense limit (large *s*, small *b*) 'renormalized' soft Pomeron [Kaidalov et al., 1986]: $\alpha_{\mathbb{P}soft}^{\mathrm{ren}} = \alpha_{\mathbb{P}soft} - G_{3\mathbb{P}}/\gamma_{\mathbb{P}}$
- choose $G_{3\mathbb{P}}/\gamma_{\mathbb{P}} > \alpha_{\mathbb{P}soft} 1$

- basic assumption: multi- \mathbb{P} vertices due to soft $(|q^2| < Q_0^2)$ parton processes
- based on soft Pomeron coupling
- vertex for $m\mathbb{P} \to n\mathbb{P}$: $G^{(m,n)} = G_{3\mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
- in dense limit (large *s*, small *b*) 'renormalized' soft Pomeron [Kaidalov et al., 1986]: $\alpha_{\mathbb{P}soft}^{\mathrm{ren}} = \alpha_{\mathbb{P}soft} - G_{3\mathbb{P}}/\gamma_{\mathbb{P}}$

• choose $G_{3\mathbb{P}}/\gamma_{\mathbb{P}} > \alpha_{\mathbb{P}soft} - 1$

▶ ★ 医 ▶ … 臣

- \Rightarrow undercritical soft \mathbb{P} ($\Delta_{\mathbb{P}soft} \equiv \alpha_{\mathbb{P}soft}^{ren} 1 < 0$) in dense limit
 - 'shrinking' of soft cascades (& soft pieces of 'semihard' ones)
 - saturation of parton density at the Q_0 -scale
 - but: no evolution for the saturation scale

- basic assumption: multi- \mathbb{P} vertices due to soft $(|q^2| < Q_0^2)$ parton processes
- based on soft Pomeron coupling
- vertex for $m\mathbb{P} \to n\mathbb{P}$: $G^{(m,n)} = G_{3\mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
- in dense limit (large *s*, small *b*) 'renormalized' soft Pomeron [Kaidalov et al., 1986]: $\alpha_{\mathbb{P}soft}^{\mathrm{ren}} = \alpha_{\mathbb{P}soft} - G_{3\mathbb{P}}/\gamma_{\mathbb{P}}$
- choose $G_{3\mathbb{P}}/\gamma_{\mathbb{P}} > \alpha_{\mathbb{P}soft} 1$

▶ ★ 医 ▶ … 臣

- \Rightarrow undercritical soft \mathbb{P} ($\Delta_{\mathbb{P}soft} \equiv \alpha_{\mathbb{P}soft}^{ren} 1 < 0$) in dense limit
 - 'shrinking' of soft cascades (& soft pieces of 'semihard' ones)
 - saturation of parton density at the Q_0 -scale
 - but: no evolution for the saturation scale

- basic assumption: multi- \mathbb{P} vertices due to soft $(|q^2| < Q_0^2)$ parton processes
- based on soft Pomeron coupling
- vertex for $m\mathbb{P} \to n\mathbb{P}$: $G^{(m,n)} = G_{3\mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
- in dense limit (large *s*, small *b*) 'renormalized' soft Pomeron [Kaidalov et al., 1986]: $\alpha_{\mathbb{P}soft}^{\mathrm{ren}} = \alpha_{\mathbb{P}soft} - G_{3\mathbb{P}}/\gamma_{\mathbb{P}}$
- choose $G_{3\mathbb{P}}/\gamma_{\mathbb{P}} > \alpha_{\mathbb{P}soft} 1$

▶ ★ 医 ▶ … 臣

- \Rightarrow undercritical soft \mathbb{P} ($\Delta_{\mathbb{P}soft} \equiv \alpha^{ren}_{\mathbb{P}soft} 1 < 0$) in dense limit
 - 'shrinking' of soft cascades (& soft pieces of 'semihard' ones)
 - saturation of parton density at the Q_0 -scale
 - but: no evolution for the saturation scale

- basic assumption: multi- \mathbb{P} vertices due to soft $(|q^2| < Q_0^2)$ parton processes
- based on soft Pomeron coupling
- vertex for $m\mathbb{P} \to n\mathbb{P}$: $G^{(m,n)} = G_{3\mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
- in dense limit (large *s*, small *b*) 'renormalized' soft Pomeron [Kaidalov et al., 1986]: $\alpha_{\mathbb{P}soft}^{\mathrm{ren}} = \alpha_{\mathbb{P}soft} - G_{3\mathbb{P}}/\gamma_{\mathbb{P}}$
- choose $G_{3\mathbb{P}}/\gamma_{\mathbb{P}} > \alpha_{\mathbb{P}soft} 1$

E> < E> ... E

- \Rightarrow undercritical soft \mathbb{P} ($\Delta_{\mathbb{P}soft} \equiv \alpha_{\mathbb{P}soft}^{ren} 1 < 0$) in dense limit
 - 'shrinking' of soft cascades (& soft pieces of 'semihard' ones)
 - saturation of parton density at the Q_0 -scale
 - but: no evolution for the saturation scale

• basic assumption: multi- \mathbb{P} vertices – due to soft $(|q^2| < Q_0^2)$ parton processes

Generation of final states

- based on the structure of cut diagrams (positive-definite partial cross sections)
- e.g. diagrams for a single scattering process
 - dashed thick line = 'cut' Pomeron = real parton cascade
 - thick solid lines = uncut Pomerons = virtual parton cascades (elastic re-scattering of intermediate partons)

• basic assumption: multi- \mathbb{P} vertices – due to soft $(|q^2| < Q_0^2)$ parton processes

Generation of final states

- based on the structure of cut diagrams (positive-definite partial cross sections)
- e.g. diagrams for a single scattering process
 - dashed thick line = 'cut' Pomeron = real parton cascade
 - thick solid lines = uncut Pomerons = virtual parton cascades (elastic re-scattering of intermediate partons)

- basic assumption: multi- \mathbb{P} vertices due to soft $(|q^2| < Q_0^2)$ parton processes
- based on soft Pomeron coupling
- vertex for $m\mathbb{P} \to n\mathbb{P}$: $G^{(m,n)} = G_{3\mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
- in dense limit (large *s*, small *b*) 'renormalized' soft Pomeron [Kaidalov et al., 1986]: $\alpha_{\mathbb{P}soft}^{\mathrm{ren}} = \alpha_{\mathbb{P}soft} - G_{3\mathbb{P}}/\gamma_{\mathbb{P}}$

• choose
$$G_{3\mathbb{P}}/\gamma_{\mathbb{P}} > \alpha_{\mathbb{P}soft} - 1$$

scheme explicitely based on AGK-rules $(A_{\text{rules}} = 0)$ in dense limit

⇒ AGK-cancellations apply

• \Rightarrow collinear factorization for inclusive jet spectra fulfilled

- basic assumption: multi- \mathbb{P} vertices due to soft $(|q^2| < Q_0^2)$ parton processes
- based on soft Pomeron coupling
- vertex for $m\mathbb{P} \to n\mathbb{P}$: $G^{(m,n)} = G_{3\mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
- in dense limit (large *s*, small *b*) 'renormalized' soft Pomeron [Kaidalov et al., 1986]: $\alpha_{\mathbb{P}soft}^{\mathrm{ren}} = \alpha_{\mathbb{P}soft} - G_{3\mathbb{P}}/\gamma_{\mathbb{P}}$

• choose
$$G_{3\mathbb{P}}/\gamma_{\mathbb{P}} > \alpha_{\mathbb{P}soft} - 1$$

scheme explicitely based on AGK-rules $(A_{\text{rules}} = 0)$ in dense limit

• \Rightarrow AGK-cancellations apply

• \Rightarrow collinear factorization for inclusive jet spectra fulfilled

• low mass diffraction (LMD):

- resonance excitations (e.g. N^*)
- \mathbb{PPR} -contribution ($\propto dM_X^2/M_X^3$)

A B > A B >

- low mass diffraction (LMD):
 - resonance excitations (e.g. N^*)
 - \mathbb{PPR} -contribution ($\propto dM_X^2/M_X^3$)
 - may be treated with Good-Walker mechanism

- Iow mass diffraction (LMD):
 - resonance excitations (e.g. N^{*})
 - \mathbb{PPR} -contribution ($\propto dM_X^2/M_X^3$)
 - may be treated with Good-Walker mechanism
- high mass diffraction (HMD):
 - traditionally described by \mathbb{PPP} -asymptotics ($\propto dM_X^2/(M_X^2)^{lpha_\mathbb{P}(0)}$)
 - often implemented as $\propto dM_X^2/M_X^2$ (i.e. for $lpha_{\mathbb{P}}(0)=1$)

- Iow mass diffraction (LMD):
 - resonance excitations (e.g. N^{*})
 - \mathbb{PPR} -contribution ($\propto dM_X^2/M_X^3$)
 - may be treated with Good-Walker mechanism
- high mass diffraction (HMD):
 - traditionally described by \mathbb{PPP} -asymptotics ($\propto dM_X^2/(M_X^2)^{lpha_\mathbb{P}(0)}$)
 - often implemented as $\propto dM_X^2/M_X^2$ (i.e. for $lpha_{\mathbb{P}}(0)=1$)
- NB: M²_X-distribution for HMD strongly modified by absorptive effects [SO, 2011]

- low mass diffraction (LMD):
 - resonance excitations (e.g. N^*)
 - \mathbb{PPR} -contribution ($\propto dM_X^2/M_X^3$)
 - may be treated with Good-Walker mechanism
- high mass diffraction (HMD):
 - traditionally described by \mathbb{PPP} -asymptotics ($\propto dM_X^2/(M_X^2)^{lpha_\mathbb{P}(0)}$)

- eikonal rap-gap suppression (D,E) doesn't impact M_X-distribution
- but: large higher order corrections to ABC
- crucial: *b*-dependence

- eikonal rap-gap suppression (D,E) doesn't impact M_X-distribution
- but: large higher order corrections to ABC
- crucial: *b*-dependence

- eikonal rap-gap suppression (D,E) doesn't impact M_X-distribution
- but: large higher order corrections to ABC
- crucial: *b*-dependence

- eikonal rap-gap suppression (D,E) doesn't impact M_X-distribution
- but: large higher order corrections to ABC
- crucial: *b*-dependence
- finite ℙ slope ⇒ at large b: triple-ℙ configuration dominates
- A,B, C are represented by a single cascade ('Pomeron') each

•
$$\Rightarrow d\sigma/dM_X^2 \sim (M_X^2)^{-1-\Delta}$$

($\Delta = \alpha_{\mathbb{P}}(0) - 1 > 0$)

- eikonal rap-gap suppression (D,E) doesn't impact M_X-distribution
- but: large higher order corrections to ABC
- crucial: *b*-dependence
- finite ℙ slope ⇒ at large b: triple-ℙ configuration dominates
- A,B, C are represented by a single cascade ('Pomeron') each

•
$$\Rightarrow d\sigma/dM_X^2 \sim (M_X^2)^{-1-\Delta}$$

($\Delta = \alpha_{\mathbb{P}}(0) - 1 > 0$)

- eikonal rap-gap suppression (D,E) doesn't impact M_X-distribution
- but: large higher order corrections to ABC
- crucial: *b*-dependence
- finite ℙ slope ⇒ at large b: triple-ℙ configuration dominates
- A,B, C are represented by a single cascade ('Pomeron') each

回 と く ヨ と く ヨ と

• $\Rightarrow d\sigma/dM_X^2 \sim (M_X^2)^{-1-\Delta}$ $(\Delta = \alpha_{\mathbb{P}}(0) - 1 > 0)$

- eikonal rap-gap suppression (D,E) doesn't impact M_X-distribution
- but: large higher order corrections to ABC
- crucial: *b*-dependence

- absorptive corrections at smaller b: rescatering of intermediate partons in A,B,C off the projectile/target
- \Rightarrow flatter M_X^2 -dependence ('renormalization' of the Pomeron)

- eikonal rap-gap suppression (D,E) doesn't impact M_X-distribution
- but: large higher order corrections to ABC
- crucial: *b*-dependence

- absorptive corrections at smaller *b*: rescatering of intermediate partons in A,B,C off the projectile/target
- \Rightarrow flatter M_X^2 -dependence ('renormalization' of the Pomeron)

$\xi = M_X^2/s$ distribution for HMD in QGSJET-II

$\xi = M_X^2/s$ distribution for HMD in QGSJET-II

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

$\xi = M_X^2/s$ distribution for HMD in QGSJET-II

dơ/d∆η, mb

- overall trend similar
- but: rate in variance with ATLAS

DD contribution (b) – comparable to SD (a)

• at lowest order: Pomeron 'loop'

•
$$\sim G_{3\mathbb{P}}^2/lpha_{\mathbb{P}}'\sim G_{3\mathbb{P}}$$

involves only 2 Pomerons coupled to proj. & target
 ⇒ more significant at large b

Image: A mathematical states of the state

• DD contribution (b) – comparable to SD (a)

• at lowest order: Pomeron 'loop'

•
$$\sim G_{3\mathbb{P}}^2/lpha_{\mathbb{P}}'\sim G_{3\mathbb{P}}$$

involves only 2 Pomerons coupled to proj. & target
 ⇒ more significant at large b

- ∢ 🗇 🕨 ∢ 🖹

• DD contribution (b) – comparable to SD (a)

at lowest order: Pomeron 'loop'

•
$$\sim G_{3\mathbb{P}}^2/lpha_{\mathbb{P}}'\sim G_{3\mathbb{P}}$$

- involves only 2 Pomerons coupled to proj. & target
 ⇒ more significant at large b
- CD (DPE) contribution (c) strongly suppressed
 - at lowest order: $\sim G_{3\mathbb{P}}^2$
 - involves 4 Pomerons coupled to proj. & target
 ⇒ vanishes at large b

• DD contribution (b) – comparable to SD (a)

at lowest order: Pomeron 'loop'

•
$$\sim G_{3\mathbb{P}}^2/lpha_{\mathbb{P}}'\sim G_{3\mathbb{P}}$$

- involves only 2 Pomerons coupled to proj. & target
 ⇒ more significant at large b
- CD (DPE) contribution (c) strongly suppressed
 - at lowest order: $\sim G_{3\mathbb{P}}^2$
 - involves 4 Pomerons coupled to proj. & target
 ⇒ vanishes at large b

Example: b profiles for pp at $\sqrt{s} = 5$ TeV:

臣

Cf.: *b* profiles for p - Pb at $\sqrt{s} = 5$ TeV:

Cf.: b profiles for p - Pb at $\sqrt{s} = 5$ TeV:

Diffraction on nuclear target - comparable to the pp case

• 'Marry' slow energy rise of σ_{pp}^{tot} and the steep increase of F_2 ?

- 'Marry' slow energy rise of σ_{pp}^{tot} and the steep increase of F_2 ?
 - production of minijets along \Rightarrow too high σ_{pp}^{tot} [Rogers, Strikman & Stasto, 2008]
 - nonlinear parton dynamics crucial
 - does parton saturation solve the problem?

- 'Marry' slow energy rise of σ_{pp}^{tot} and the steep increase of F_2 ?
 - production of minijets along \Rightarrow too high σ_{pp}^{tot} [Rogers, Strikman & Stasto, 2008]
 - nonlinear parton dynamics crucial
 - does parton saturation solve the problem?

- 'Marry' slow energy rise of σ_{pp}^{tot} and the steep increase of F_2 ?
 - production of minijets along \Rightarrow too high σ_{pp}^{tot} [Rogers, Strikman & Stasto, 2008]
 - nonlinear parton dynamics crucial
 - does parton saturation solve the problem?

- 'Marry' slow energy rise of σ_{pp}^{tot} and the steep increase of F_2 ?
 - production of minijets along \Rightarrow too high σ_{pp}^{tot} [Rogers, Strikman & Stasto, 2008]
 - nonlinear parton dynamics crucial
 - does parton saturation solve the problem?
 - mimicked in models by energy-dependent cutoff: $Q_0 = Q_0(s)$

- 'Marry' slow energy rise of σ_{pp}^{tot} and the steep increase of F_2 ?
 - production of minijets along \Rightarrow too high σ_{pp}^{tot} [Rogers, Strikman & Stasto, 2008]
 - nonlinear parton dynamics crucial
 - does parton saturation solve the problem?
 - mimicked in models by energy-dependent cutoff: $Q_0 = Q_0(s)$
 - but: saturation doesn't hold for large b (which dominate σ_{pp}^{tot})
 - what is different in pp compared to DIS?

- 'Marry' slow energy rise of σ_{pp}^{tot} and the steep increase of F_2 ?
 - production of minijets along \Rightarrow too high σ_{pp}^{tot} [Rogers, Strikman & Stasto, 2008]
 - nonlinear parton dynamics crucial
 - does parton saturation solve the problem?
 - mimicked in models by energy-dependent cutoff: $Q_0 = Q_0(s)$
 - but: saturation doesn't hold for large b (which dominate σ_{pp}^{tot})
 - what is different in pp compared to DIS?

- 'Marry' slow energy rise of σ_{pp}^{tot} and the steep increase of F_2 ?
 - production of minijets along \Rightarrow too high σ_{pp}^{tot} [Rogers, Strikman & Stasto, 2008]
 - nonlinear parton dynamics crucial
 - o does parton saturation solve the problem?
 - mimicked in models by energy-dependent cutoff: $Q_0 = Q_0(s)$
 - but: saturation doesn't hold for large b (which dominate σ_{pp}^{tot})
 - what is different in pp compared to DIS?
- in DIS: rescattering of intermediate partons off the parent hadron
- in *pp*: rescattering off the target hadron in addition

- 'Marry' slow energy rise of σ_{pp}^{tot} and the steep increase of F_2 ?
 - production of minijets along \Rightarrow too high σ_{pp}^{tot} [Rogers, Strikman & Stasto, 2008]
 - nonlinear parton dynamics crucial
 - does parton saturation solve the problem?
 - mimicked in models by energy-dependent cutoff: $Q_0 = Q_0(s)$
 - but: saturation doesn't hold for large b (which dominate σ_{pp}^{tot})
 - what is different in pp compared to DIS?
- in DIS: rescattering of intermediate partons off the parent hadron
- in *pp*: rescattering off the target hadron in addition

- 'Marry' slow energy rise of σ_{pp}^{tot} and the steep increase of F_2 ?
 - production of minijets along \Rightarrow too high σ_{pp}^{tot} [Rogers, Strikman & Stasto, 2008]
 - nonlinear parton dynamics crucial
 - o does parton saturation solve the problem?
 - mimicked in models by energy-dependent cutoff: $Q_0 = Q_0(s)$
 - but: saturation doesn't hold for large b (which dominate σ_{pp}^{tot})
 - what is different in pp compared to DIS?
- in DIS: rescattering of intermediate partons off the parent hadron

in *pp*: rescattering off the

non-inclusive observables can't be described with universal PDFs (additional screening corrections are process-dependent)

- How strong is the effect?
- consider σ^{tot}_{pp} including all corrections (also rescattering off the partner hadron)
- with both soft and semihard contributions included $[Q_0^2 = 1 \text{ GeV}^2 (p_t^{\min} = 2 \text{ GeV})]$

- How strong is the effect?
- consider σ^{tot}_{pp} including all corrections (also rescattering off the partner hadron)
- with both soft and semihard contributions included $[Q_0^2 = 1 \text{ GeV}^2 (p_t^{\min} = 2 \text{ GeV})]$

- or just corrections to PDFS (factorizable contributions)
- and neglecting soft processes

- or just corrections to PDFS (factorizable contributions)
- and neglecting soft processes

- nonfactorizable corrections dominate! [SO, 2006]
- why and how?!
- related to multi-parton correlations [Rogers & Strikman, 2010]

- nonfactorizable corrections dominate! [SO, 2006]
- why and how?!
- related to multi-parton correlations [Rogers & Strikman, 2010]

- nonfactorizable corrections dominate! [SO, 2006]
- why and how?!
- related to multi-parton correlations [Rogers & Strikman, 2010]

- soft screening (soft elastic rescattering)
- and double (soft + hard) scattering (particle production)
- equal weights \Rightarrow zero effect for inclusive spectra & σ_{pp}^{tot} ('soft' can't screen 'hard'!)

- soft screening (soft elastic rescattering)
- and double (soft + hard) scattering (particle production)
- equal weights \Rightarrow zero effect for inclusive spectra & σ_{pp}^{tot} ('soft' can't screen 'hard'!)

- soft screening (soft elastic rescattering)
- and double (soft + hard) scattering (particle production)
- equal weights \Rightarrow zero effect for inclusive spectra & σ_{pp}^{tot} ('soft' can't screen 'hard'!)

- soft screening (soft elastic rescattering)
- and double (soft + hard) scattering (particle production)
- equal weights \Rightarrow zero effect for inclusive spectra & σ_{pp}^{tot} ('soft' can't screen 'hard'!)

- now hard screening (hard elastic rescattering)
- and double hard scattering (production of 2 jet pairs)
- no effect for inclusive jet spectra $[(-2) \times 1 + (+1) \times 2 = 0]$
- but: screening correction for σ_{pp}^{tot} [(-2)+(+1) = -1]

- now hard screening (hard elastic rescattering)
- and double hard scattering (production of 2 jet pairs)
- no effect for inclusive jet spectra $[(-2) \times 1 + (+1) \times 2 = 0]$
- but: screening correction for σ_{pp}^{tot} [(-2)+(+1) = -1]

- now hard screening (hard elastic rescattering)
- and double hard scattering (production of 2 jet pairs)
- no effect for inclusive jet spectra $[(-2) \times 1 + (+1) \times 2 = 0]$
- but: screening correction for σ_{pp}^{tot} [(-2)+(+1) = -1]

- now hard screening (hard elastic rescattering)
- and double hard scattering (production of 2 jet pairs)
- no effect for inclusive jet spectra $[(-2) \times 1 + (+1) \times 2 = 0]$
- but: screening correction for σ_{pp}^{tot} [(-2)+(+1) = -1]

- now hard screening (hard elastic rescattering)
- and double hard scattering (production of 2 jet pairs)
- no effect for inclusive jet spectra $[(-2) \times 1 + (+1) \times 2 = 0]$
- but: screening correction for σ_{pp}^{tot} [(-2)+(+1) = -1]

additional screening caused by multi-parton correlations

• two hard parton cascades originate from the same soft parent

- now hard screening (hard elastic rescattering)
- and double hard scattering (production of 2 jet pairs)
- no effect for inclusive jet spectra $[(-2) \times 1 + (+1) \times 2 = 0]$
- but: screening correction for σ_{pp}^{tot} why the effect so strong?
 - double hard scattering from independent cascades: mostly in central collisions
 - correlated partons are close-by in b-space (two sub-cascades start from the same b)
 - \Rightarrow also in peripheral collisions

- now hard screening (hard elastic rescattering)
- and double hard scattering (production of 2 jet pairs)
- no effect for inclusive jet spectra $[(-2) \times 1 + (+1) \times 2 = 0]$
- but: screening correction for σ_{pp}^{tot} why the effect so strong?
 - double hard scattering from independent cascades: mostly in central collisions
 - correlated partons are close-by in b-space (two sub-cascades start from the same b)
 - \Rightarrow also in peripheral collisions

- now hard screening (hard elastic rescattering)
- and double hard scattering (production of 2 jet pairs)
- no effect for inclusive jet spectra $[(-2) \times 1 + (+1) \times 2 = 0]$
- but: screening correction for σ_{pp}^{tot} why the effect so strong?
 - double hard scattering from independent cascades: mostly in central collisions
 - correlated partons are close-by in b-space (two sub-cascades start from the same b)
 - \Rightarrow also in peripheral collisions

- now hard screening (hard elastic rescattering)
- and double hard scattering (production of 2 jet pairs)
- no effect for inclusive jet spectra $[(-2) \times 1 + (+1) \times 2 = 0]$
- but: screening correction for σ_{pp}^{tot} [(-2)+(+1) = -1]

\Rightarrow multi-parton interactions provide a key to understand σ_{pp}^{tot} (and vice versa)

- 3 → 4 contrib. to double parton scatt.: collinearly enhanced [Blok et al., 2011; Ryskin & Snigirev, 2011; Gaunt, 2012]
- may also impact σ_{pp}^{tot} ?
- ullet \Rightarrow attempt to include in the model

- 3 → 4 contrib. to double parton scatt.: collinearly enhanced [Blok et al., 2011; Ryskin & Snigirev, 2011; Gaunt, 2012]
- may also impact σ_{pp}^{tot} ?
- \Rightarrow attempt to include in the model

- 3 → 4 contrib. to double parton scatt.: collinearly enhanced [Blok et al., 2011; Ryskin & Snigirev, 2011; Gaunt, 2012]
- may also impact σ_{pp}^{tot} ?
- \Rightarrow attempt to include in the model

- only $3 \rightarrow 4$ contribution
- assume AGK rules
- neglect *b*-size of the 'hard triangle' wrt soft evolution

- only $3 \rightarrow 4$ contribution
- assume AGK rules
- neglect *b*-size of the 'hard triangle' wrt soft evolution

- only $3 \rightarrow 4$ contribution
- assume AGK rules
- neglect *b*-size of the 'hard triangle' wrt soft evolution

- only $3 \rightarrow 4$ contribution
- assume AGK rules
- neglect *b*-size of the 'hard triangle' wrt soft evolution
- ⇒ 'hard triangle' works as an effective 3ℙ-vertex

- for $Q_0^2 = 3$ GeV²: negligible effect
- \Rightarrow choose $Q_0^2 = 2 \text{ GeV}^2$ and refit the model parameters (using $\sigma_{pp}^{\text{tot/el}}$, F_2 , $F_2^{D(3)}$)

- for $Q_0^2 = 3 \text{ GeV}^2$: negligible effect
- \Rightarrow choose $Q_0^2 = 2 \text{ GeV}^2$ and refit the model parameters (using $\sigma_{pp}^{\text{tot/el}}$, F_2 , $F_2^{D(3)}$)

• for
$$Q_0^2 = 3$$
 GeV²: negligible effect

Backup

• CDF obtained rather large $\sigma_{p\bar{p}}^{\text{DPE}}$ ($\simeq 0.2 \times \sigma_{p\bar{p}}^{\text{SD}}$)

<ロ> (四) (四) (三) (三) (三) (三)

• CDF obtained rather large $\sigma_{p\bar{p}}^{\text{DPE}}$ ($\simeq 0.2 \times \sigma_{p\bar{p}}^{\text{SD}}$)

- sample with $0.035 < \xi_{\bar{p}} < 0.095$: assumed to consist of SD(p) & DPE events
- forward $\xi_{\bar{p}}$ peak fit by SD model
- the rest (events with $\xi_p < 0.02$) assumed to be DPE contribution

《曰》 《聞》 《臣》 《臣》

• CDF obtained rather large $\sigma_{p\bar{p}}^{\text{DPE}}$ ($\simeq 0.2 \times \sigma_{p\bar{p}}^{\text{SD}}$)

- sample with $0.035 < \xi_{\bar{p}} < 0.095$: assumed to consist of SD(p) & DPE events
- forward $\xi_{\bar{p}}$ peak fit by SD model
- the rest (events with $\xi_p < 0.02$) assumed to be DPE contribution

• CDF obtained rather large $\sigma_{p\bar{p}}^{\text{DPE}}$ ($\simeq 0.2 \times \sigma_{p\bar{p}}^{\text{SD}}$)

- sample with $0.035 < \xi_{\bar{p}} < 0.095$: assumed to consist of SD(p) & DPE events
- forward $\xi_{\bar{p}}$ peak fit by SD model
- the rest (events with $\xi_p < 0.02$) assumed to be DPE contribution

・ロト ・同ト ・ヨト ・ヨト

• CDF obtained rather large $\sigma^{\rm DPE}_{p\bar{p}}$ ($\simeq 0.2 \times \sigma^{\rm SD}_{p\bar{p}}$)

- sample with 0.035 < ξ_{p̄} < 0.095: assumed to consist of SD(p) & DPE events
- forward $\xi_{\bar{p}}$ peak fit by SD model
- the rest (events with $\xi_p < 0.02$) assumed to be DPE contribution

CDF conclusions

- same (eikonal) RG suppression of SD & DPE
- no additional suppression of DPE wrt SD

• CDF obtained rather large $\sigma^{\rm DPE}_{p\bar{p}}$ ($\simeq 0.2 \times \sigma^{\rm SD}_{p\bar{p}}$)

- sample with 0.035 < ξ_{p̄} < 0.095: assumed to consist of SD(p) & DPE events
- forward $\xi_{\bar{p}}$ peak fit by SD model
- the rest (events with $\xi_p < 0.02$) assumed to be DPE contribution

CDF conclusions

- same (eikonal) RG suppression of SD & DPE
- no additional suppression of DPE wrt SD

Caveat: the small rap-gap $(y_{gap} = \ln \xi_{\bar{p}} \simeq 2 \div 3)$ may be formed by fluctuations in particle production

Caveat: the small rap-gap $(y_{gap} = \ln \xi_{\bar{p}} \simeq 2 \div 3)$ may be formed by fluctuations in particle production

• check with QGSJET-II simulation: all events with $0.035 < \xi_{\bar{p}} < 0.095$ (exp. triggers NOT implemented)

Caveat: the small rap-gap $(y_{gap} = \ln \xi_{\bar{p}} \simeq 2 \div 3)$ may be formed by fluctuations in particle production

• check with QGSJET-II simulation: all events with $0.035 < \xi_{\bar{p}} < 0.095$ (exp. triggers NOT implemented)

similar fraction of events with $\xi_p < 0.02$ obtained ($\simeq 0.2$)

Caveat: the small rap-gap $(y_{gap} = \ln \xi_{\bar{p}} \simeq 2 \div 3)$ may be formed by fluctuations in particle production

• check with QGSJET-II simulation: all events with $0.035 < \xi_{\bar{p}} < 0.095$ (exp. triggers NOT implemented)

- similar fraction of events with $\xi_p < 0.02$ obtained ($\simeq 0.2$)
- but: dominated by SD (p & p̄ contributions)
Double Pomeron exchange (DPE) & CDF data

Caveat: the small rap-gap $(y_{gap} = \ln \xi_{\bar{p}} \simeq 2 \div 3)$ may be formed by fluctuations in particle production

• check with QGSJET-II simulation: all events with $0.035 < \xi_{\bar{p}} < 0.095$ (exp. triggers NOT implemented)

- similar fraction of events with $\xi_p < 0.02$ obtained ($\simeq 0.2$)
 - but: dominated by SD ($p \& \bar{p}$ contributions)

DPE: only $\sim 10\%$ contribution at $\xi_p < 0.02$

(4回) (三) (三)

Double Pomeron exchange (DPE) & CDF data

Caveat: the small rap-gap $(y_{gap} = \ln \xi_{\bar{p}} \simeq 2 \div 3)$ may be formed by fluctuations in particle production

check with QGSJET-II simulation: all events with
0.035 < ξ_{p̄} < 0.095 (exp. triggers NOT implemented)

