Sergey Ostapchenko (SINP MSU)

Particle Physics Phenomenology Workshop devoted to the memory of Alexei B. Kaidalov

Moscow, July 21-25, 2013

Outline

(1) Introduction: RFT approach \& Quark-Gluon String model
(2) Enhanced Pomeron diagrams

- resummation
- 'loops' \& 'nets' - relative importance
- non-eikonal rap-gap suppression \& diffractive cross sections
(3) QGSJET-II Monte Carlo model
- 'semihard Pomeron'
- enhanced graphs: assumptions \& MC implementation
(3) Inelastic diffraction
- M_{X}-shape for high mass diffraction
- LHC puzzles
(3) Total cross section \& multi-parton interactions
- multi-Pomeron interactions \& multi-parton correlations
- contribution from perturbative splitting: how important?

Outline

(1) Introduction: RFT approach \& Quark-Gluon String model
(2) Enhanced Pomeron diagrams

- resummation
- 'loops' \& 'nets' - relative importance
- non-eikonal rap-gap suppression \& diffractive cross sections
(3) QGSJET-II Monte Carlo model
- 'semihard Pomeron'
- enhanced graphs: assumptions \& MC implementation
(3) Inelastic diffraction
- M_{X}-shape for high mass diffraction
- LHC puzzles
(6) Total cross section \& multi-parton interactions
- multi-Pomeron interactions \& multi-parton correlations
- contribution from perturbative splitting: how important?

Outline

(1) Introduction: RFT approach \& Quark-Gluon String model
(2) Enhanced Pomeron diagrams

- resummation
- 'loops' \& 'nets' - relative importance
- non-eikonal rap-gap suppression \& diffractive cross sections
(3) QGSJET-II Monte Carlo model
- 'semihard Pomeron'
- enhanced graphs: assumptions \& MC implementation
(3) Inelastic diffraction
- M_{X}-shape for high mass diffraction
- LHC puzzles
(6) Total cross section \& multi-parton interactions
- multi-Pomeron interactions \& multi-parton correlations
- contribution from perturbative splitting: how important?

Outline

(1) Introduction: RFT approach \& Quark-Gluon String model
(2) Enhanced Pomeron diagrams

- resummation
- 'loops' \& 'nets' - relative importance
- non-eikonal rap-gap suppression \& diffractive cross sections
(3) QGSJET-II Monte Carlo model
- 'semihard Pomeron'
- enhanced graphs: assumptions \& MC implementation
(4) Inelastic diffraction
- M_{X}-shape for high mass diffraction
- LHC puzzles
(6) Total cross section \& multi-parton interactions
- multi-Pomeron interactions \& multi-parton correlations
- contribution from perturbative splitting: how important?

Outline

(1) Introduction: RFT approach \& Quark-Gluon String model
(2) Enhanced Pomeron diagrams

- resummation
- 'loops' \& 'nets' - relative importance
- non-eikonal rap-gap suppression \& diffractive cross sections
(3) QGSJET-II Monte Carlo model
- 'semihard Pomeron'
- enhanced graphs: assumptions \& MC implementation
(4) Inelastic diffraction
- M_{X}-shape for high mass diffraction
- LHC puzzles
(5) Total cross section \& multi-parton interactions
- multi-Pomeron interactions \& multi-parton correlations
- contribution from perturbative splitting: how important?

Motivation: minimum-bias collisions of hadrons

- at colliders:
- underlying event
- interesting by themselves (total \& elastic cross sections, diffraction, multi-particle production)

Motivation: minimum-bias collisions of hadrons

- at colliders:
- underlying event
- interesting by themselves (total \& elastic cross sections, diffraction, multi-particle production)

Motivation: minimum-bias collisions of hadrons

- at colliders:
- underlying event
- interesting by themselves (total \& elastic cross sections, diffraction, multi-particle production)
- of utmost importance in cosmic ray physics:
- crucial for understanding hadronic cascades in the atmosphere

Cosmic ray studies with extensive air shower techniques

ground-based observations (= thick target experiments)

- primary CR energy \Longleftrightarrow charged particle density at ground
- CR composition \Longleftrightarrow muon density at ground

Cosmic ray studies with extensive air shower techniques

measurements of EAS fluorescence light

- primary CR energy \Longleftrightarrow integrated light
- CR composition \Longleftrightarrow shower maximum position $X_{\text {max }}$

Cosmic ray studies with extensive air shower techniques

CR composition studies - most dependent on interaction models

- e.g. predictions for $X_{\max }$ depend on $\sigma_{p-\text { air }}^{\mathrm{incl}}, \sigma_{p-\text { air }}^{\text {diffr }}$
- predictions for muon density - on the multiplicity $N_{\pi-\text { air }}^{\text {ch }}$

Motivation: minimum-bias collisions of hadrons

- at colliders:
- background for new physics
- interesting by themselves (total \& elastic cross sections, diffraction, multi-particle production)
- of utmost importance in cosmic ray physics:
- crucial for understanding hadronic cascades in the atmosphere
- impressive success of the Quark-Gluon String model [Kaidalov \& Ter-Martyrosyan, 1982]
- in describing cross sections \& soft multi-particle production at accelerators
- in cosmic ray applications (treatment of extensive air showers)

Motivation: minimum-bias collisions of hadrons

- at colliders:
- background for new physics
- interesting by themselves (total \& elastic cross sections, diffraction, multi-particle production)
- of utmost importance in cosmic ray physics:
- crucial for understanding hadronic cascades in the atmosphere
- impressive success of the Quark-Gluon String model [Kaidalov \& Ter-Martyrosyan, 1982]
- in describing cross sections \& soft multi-particle production at accelerators
- in cosmic ray applications (treatment of extensive air showers)

Motivation: minimum-bias collisions of hadrons

- at colliders:
- background for new physics
- interesting by themselves (total \& elastic cross sections, diffraction, multi-particle production)
- of utmost importance in cosmic ray physics:
- crucial for understanding hadronic cascades in the atmosphere
- impressive success of the Quark-Gluon String model [Kaidalov \& Ter-Martyrosyan, 1982]
- in describing cross sections \& soft multi-particle production at accelerators
- in cosmic ray applications (treatment of extensive air showers)

RFT approach \& Quark-Gluon String model [Kaidalov \& Ter-Martyrosyan, 1982]

- high energy hadronic collisions - multiple scattering processes
- may be treated using the Reggeon Field Theory (RFT) [Gribov, 1967]

RFT approach \& Quark-Gluon String model [Kaidalov \& Ter-Martyrosyan, 1982]

- high energy hadronic collisions - multiple scattering processes
- may be treated using the Reggeon Field Theory (RFT) [Gribov, 1967]

RFT approach \& Quark-Gluon String model [Kaidalov \& Ter-Martyrosyan, 1982]

- high energy hadronic collisions - multiple scattering processes
- may be treated using the Reggeon Field Theory (RFT) [Gribov, 1967]
- multiple scattering = multi-Pomeron exchanges (multiple independent cascades)
- allows to calculate: cross sections \& partial probabilities of final states

RFT approach \& Quark-Gluon String model [Kaidalov \& Ter-Martyrosyan, 1982]

- high energy hadronic collisions - multiple scattering processes
- may be treated using the Reggeon Field Theory (RFT) [Gribov, 1967]
- multiple scattering $=$ multi-Pomeron exchanges (multiple independent cascades)
- allows to calculate: cross sections \& partial probabilities of final states

RFT approach \& Quark-Gluon String model [Kaidalov \& Ter-Martyrosyan, 1982]

- high energy hadronic collisions - multiple scattering processes
- may be treated using the Reggeon Field Theory (RFT) [Gribov, 1967]
- cross sections for final states: from 'cut' diagrams
- based on AGK cutting rules [Abramovskii, Gribov \& Kancheli, 1973]

RFT approach \& Quark-Gluon String model [Kaidalov \& Ter-Martyrosyan, 1982]

- high energy hadronic collisions - multiple scattering processes
- may be treated using the Reggeon Field Theory (RFT) [Gribov, 1967]
- cross sections for final states: from 'cut' diagrams
- based on AGK cutting rules [Abramovskii, Gribov \& Kancheli, 1973]

RFT approach \& Quark-Gluon String model [Kaidalov \& Ter-Martyrosyan, 1982]

- high energy hadronic collisions - multiple scattering processes
- may be treated using the Reggeon Field Theory (RFT) [Gribov, 1967]
- cross sections for final states: from 'cut' diagrams
- based on AGK cutting rules [Abramovskii, Gribov \& Kancheli, 1973]

- particle production: hadronization of quark-gluon strings
- parameters: intercepts of secondary Regge trajectories [Kaidalov, 1985]

RFT approach \& Quark-Gluon String model [Kaidalov \& Ter-Martyrosyan, 1982]

- high energy hadronic collisions - multiple scattering processes
- may be treated using the Reggeon Field Theory (RFT) [Gribov, 1967]
- cross sections for final states: from 'cut' diagrams
- based on AGK cutting rules [Abramovskii, Gribov \& Kancheli, 1973]

- particle production: hadronization of quark-gluon strings
- parameters: intercepts of secondary Regge trajectories [Kaidalov, 1985]

Very high energy limit

- original Gribov's formulation: assuming limited small p_{t}-s for the underlying parton cascades
- \Rightarrow no room for high p_{t} jets?

Very high energy limit

- original Gribov's formulation: assuming limited small $p_{t}-\mathrm{s}$ for the underlying parton cascades
- \Rightarrow no room for high p_{t} jets?

Very high energy limit

- original Gribov's formulation: assuming limited small $p_{t}-\mathrm{s}$ for the underlying parton cascades
- \Rightarrow no room for high p_{t} jets?
- average parton p_{t} in the cascades should rise with energy (k_{t}-diffusion)
- \Rightarrow energy-dependent Pomeron intercept $\alpha_{\mathbb{P}}(s)$?

Very high energy limit

- original Gribov's formulation: assuming limited small $p_{t}-\mathrm{s}$ for the underlying parton cascades
- \Rightarrow no room for high p_{t} jets?
- average parton p_{t} in the cascades should rise with energy (k_{t}-diffusion)
- \Rightarrow energy-dependent Pomeron intercept $\alpha_{\mathbb{P}}(s)$?
- \Rightarrow loss of predictive power

Very high energy limit

- original Gribov's formulation: assuming limited small $p_{t}-\mathrm{s}$ for the underlying parton cascades
- \Rightarrow no room for high p_{t} jets?
- average parton p_{t} in the cascades should rise with energy (k_{t}-diffusion)
- \Rightarrow energy-dependent Pomeron intercept $\alpha_{\mathbb{P}}(s)$?
- \Rightarrow loss of predictive power
- high energies \Rightarrow nonlinear effects substantial (interactions between parton cascades)
- in RFT: described by enhanced (Pomeron-Pomeron interaction) graphs

Very high energy limit

- original Gribov's formulation: assuming limited small $p_{t}-\mathrm{s}$ for the underlying parton cascades
- \Rightarrow no room for high p_{t} jets?
- average parton p_{t} in the cascades should rise with energy (k_{t}-diffusion)
- \Rightarrow energy-dependent Pomeron intercept $\alpha_{\mathbb{P}}(s)$?
- \Rightarrow loss of predictive power
- high energies \Rightarrow nonlinear effects substantial (interactions between parton cascades)
- in RFT: described by enhanced (Pomeron-Pomeron interaction) graphs

Very high energy limit

- original Gribov's formulation: assuming limited small p_{t}-s for the underlying parton cascades
- \Rightarrow no room for high p_{t} jets?
- average parton p_{t} in the cascades should rise with energy (k_{t}-diffusion)
- \Rightarrow energy-dependent Pomeron intercept $\alpha_{\mathbb{P}}(s)$?
- \Rightarrow loss of predictive power
- high energies \Rightarrow nonlinear effects substantial

Why not using an effective (quasi-)eikonal model?

- absorptive effects stronger at small b, weaker at large b
- requires a bit of parametrising \Rightarrow loss of predictive power
- including HMD via Good-Walker (GW) formalism?
- energy-dependent structure of GW states

Very high energy limit

- original Gribov's formulation: assuming limited small p_{t}-s for the underlying parton cascades
- \Rightarrow no room for high p_{t} jets?
- average parton p_{t} in the cascades should rise with energy (k_{t}-diffusion)
- \Rightarrow energy-dependent Pomeron intercept $\alpha_{\mathbb{P}}(s)$?
- \Rightarrow loss of predictive power
- high energies \Rightarrow nonlinear effects substantial

Why not using an effective (quasi-)eikonal model?

- absorptive effects stronger at small b, weaker at large b
- requires a bit of parametrising \Rightarrow loss of predictive power
- including HMD via Good-Walker (GW) formalism?
- energy-dependent structure of GW states

Very high energy limit

- original Gribov's formulation: assuming limited small p_{t}-s for the underlying parton cascades
- \Rightarrow no room for high p_{t} jets?
- average parton p_{t} in the cascades should rise with energy (k_{t}-diffusion)
- \Rightarrow energy-dependent Pomeron intercept $\alpha_{\mathbb{P}}(s)$?
- \Rightarrow loss of predictive power
- high energies \Rightarrow nonlinear effects substantial

Why not using an effective (quasi-)eikonal model?

- absorptive effects stronger at small b, weaker at large b
- requires a bit of parametrising \Rightarrow loss of predictive power
- including HMD via Good-Walker (GW) formalism?
- energy-dependent structure of GW states

Very high energy limit

- original Gribov's formulation: assuming limited small p_{t}-s for the underlying parton cascades
- \Rightarrow no room for high p_{t} jets?
- average parton p_{t} in the cascades should rise with energy (k_{t}-diffusion)
- \Rightarrow energy-dependent Pomeron intercept $\alpha_{\mathbb{P}}(s)$?
- \Rightarrow loss of predictive power
- high energies \Rightarrow nonlinear effects substantial

Why not using an effective (quasi-)eikonal model?

- absorptive effects stronger at small b, weaker at large b
- requires a bit of parametrising \Rightarrow loss of predictive power
- including HMD via Good-Walker (GW) formalism?
- energy-dependent structure of GW states

Enhanced Pomeron diagrams

- in the dense limit (high energy \& small b):

Pomeron-Pomeron interactions important
[Kancheli, 1973; Cardi, 1974; Kaidalov et al., 1986, ...]

Enhanced Pomeron diagrams

- in the dense limit (high energy \& small b):

Pomeron-Pomeron interactions important
[Kancheli, 1973; Cardi, 1974; Kaidalov et al., 1986, ...]

- e.g. simpliest graphs:

(a)

(b)

(c)

(d)

(e)

(f)

(g)
- in the dense limit (high energy \& small b):

Pomeron-Pomeron interactions important [Kancheli, 1973; Cardi, 1974; Kaidalov et al., 1986, ...]

- e.g. simpliest graphs:

(a)

(b)

(c)

(d)

(e)

(f)

(g)
- describe elastic re-scattering of intermediate partons off the projectile/target hadrons \& off each other
- in the dense limit (high energy \& small b):

Pomeron-Pomeron interactions important [Kancheli, 1973; Cardi, 1974; Kaidalov et al., 1986, ...]

- e.g. simpliest graphs:

(a)

(b)

(c)

(d)

(e)

(f)

(g)
- describe elastic re-scattering of intermediate partons off the projectile/target hadrons \& off each other
- why all-order resummation?
- higher order (wrt $G_{3 \mathbb{P}}$) contributions rise quicker with energy
- have altering signs

Enhanced Pomeron diagrams

- in the dense limit (high energy \& small b): Pomeron-Pomeron interactions important [Kancheli, 1973; Cardi, 1974; Kaidalov et al., 1986, ...]
- e.g. simpliest graphs:

(c)

(d)

(e)

(f)

(g)

Diagrammatic resummation [SO, 2006, 2008, 2010]

- define some elementary 'building blocks'
- construct arbitrary enhanced graphs out of them
- correct for double (triple, etc.) counting
- similarly for cut diagrams (based on AGK-rules)

Enhanced Pomeron diagrams

E.g. sum of irredicible contributions to elastic amplitude

Enhanced Pomeron diagrams

E.g. sum of irredicible contributions to elastic amplitude

- expressed via 'net-fans' - 'reaction-dependent PDFs':

Enhanced Pomeron diagrams

E.g. sum of irredicible contributions to elastic amplitude

In turn, contain Pomeron 'loop' sequences (examples)

Enhanced Pomeron diagrams

E.g. sum of irredicible contributions to elastic amplitude

- expressed via 'net-fans' - 'reaction-dependent PDFs':

Enhanced Pomeron diagrams

- similar (but slightly more complicated) results for the resummation of cut graphs

Enhanced Pomeron diagrams

E.g. sum of irredicible contributions to elastic amplitude

- similar (but slightly more complicated) results for the resummation of cut graphs

Examples of graphs not included in the procedure

Enhanced Pomeron diagrams

- the above-discussed diagrammatic resummation is generic

Enhanced Pomeron diagrams

- the above-discussed diagrammatic resummation is generic
- but: particular assumptions on the Pomeron amplitude \& multi-Pomeron vertices needed
- to check the importance of the neglected graphs
- to check s-channel unitarity of the approach

Enhanced Pomeron diagrams

- the above-discussed diagrammatic resummation is generic
- but: particular assumptions on the Pomeron amplitude \& multi-Pomeron vertices needed
- to check the importance of the neglected graphs
- to check s-channel unitarity of the approach
- choose the vertex for $m \mathbb{P} \rightarrow n \mathbb{P}: G^{(m, n)}=G_{3 \mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
- \Rightarrow 'renormalized' soft Pomeron in the dense limit [Kaidalov et al., 1986]: $\alpha_{\mathbb{P}}^{\text {ren }}=\alpha_{\mathbb{P}}-G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}$

Enhanced Pomeron diagrams

- the above-discussed diagrammatic resummation is generic
- but: particular assumptions on the Pomeron amplitude \& multi-Pomeron vertices needed
- to check the importance of the neglected graphs
- to check s-channel unitarity of the approach
- choose the vertex for $m \mathbb{P} \rightarrow n \mathbb{P}: G^{(m, n)}=G_{3 \mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
- \Rightarrow 'renormalized' soft Pomeron in the dense limit [Kaidalov et al., 1986]: $\alpha_{\mathbb{P}}^{\text {ren }}=\alpha_{\mathbb{P}}-G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}$

Enhanced Pomeron diagrams

- the above-discussed diagrammatic resummation is generic
- but: particular assumptions on the Pomeron amplitude \& multi-Pomeron vertices needed
- to check the importance of the neglected graphs
- to check s-channel unitarity of the approach
- choose the vertex for $m \mathbb{P} \rightarrow n \mathbb{P}: G^{(m, n)}=G_{3 \mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
- \Rightarrow 'renormalized' soft Pomeron in the dense limit [Kaidalov et al., 1986]: $\alpha_{\mathbb{P}}^{\text {ren }}=\alpha_{\mathbb{P}}-G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}$
- NB: applies for $\alpha_{\mathbb{P}}^{\text {ren }}>1$ only (for $G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}>\alpha_{\mathbb{P}}-1, \sigma_{\text {tot }}(s) \rightarrow$ const for $s \rightarrow \infty$)

Enhanced Pomeron diagrams

- the above-discussed diagrammatic resummation is generic
- but: particular assumptions on the Pomeron amplitude \& multi-Pomeron vertices needed
- to check the importance of the neglected graphs
- to check s-channel unitarity of the approach
- choose the vertex for $m \mathbb{P} \rightarrow n \mathbb{P}: G^{(m, n)}=G_{3 \mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
- \Rightarrow 'renormalized' soft Pomeron in the dense limit [Kaidalov et al., 1986]: $\alpha_{\mathbb{P}}^{\text {ren }}=\alpha_{\mathbb{P}}-G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}$
- NB: applies for $\alpha_{\mathbb{P}}^{\text {ren }}>1$ only (for $G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}>\alpha_{\mathbb{P}}-1, \sigma_{\text {tot }}(s) \rightarrow$ const for $s \rightarrow \infty$)
- \Rightarrow positive-definite cross sections for various final states

Enhanced Pomeron diagrams

- the above-discussed diagrammatic resummation is generic
- but: particular assumptions on the Pomeron amplitude \& multi-Pomeron vertices needed
- to check the importance of the neglected graphs
- to check s-channel unitarity of the approach
- choose the vertex for $m \mathbb{P} \rightarrow n \mathbb{P}: G^{(m, n)}=G_{3 \mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
- \Rightarrow 'renormalized' soft Pomeron in the dense limit [Kaidalov et al., 1986]: $\alpha_{\mathbb{P}}^{\text {ren }}=\alpha_{\mathbb{P}}-G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}$
- NB: applies for $\alpha_{\mathbb{P}}^{\text {ren }}>1$ only (for $G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}>\alpha_{\mathbb{P}}-1, \sigma_{\text {tot }}(s) \rightarrow$ const for $s \rightarrow \infty$)
- \Rightarrow positive-definite cross sections for various final states
- neglected contributions - negiligible (smaller than $1 /$ mille)

Particular toy model［SO，2010］

－interesting case－model with 2 Pomerons：
－＇soft＇Pomeron：smaller $\alpha_{\mathbb{P s} \text { soft }}$ ，larger $\alpha_{\mathbb{P} \text { soft }}^{\prime}$
－＇hard＇Pomeron：larger $\alpha_{\mathbb{P} \text { hard }}$ ，smaller $\alpha_{\mathbb{P} \text { hard }}^{\prime}$

Particular toy model［SO，2010］

－interesting case－model with 2 Pomerons：
－＇soft＇Pomeron：smaller $\alpha_{\mathbb{P s} \text { soft }}$ ，larger $\alpha_{\text {Psoft }}^{\prime}$
－＇hard＇Pomeron：larger $\alpha_{\mathbb{P} \text { hard }}$ ，smaller $\alpha_{\mathbb{P} \text { hard }}^{\prime}$

Particular toy model [SO, 2010]

- interesting case - model with 2 Pomerons:
- 'soft' Pomeron: smaller $\alpha_{\mathbb{P s} \text { soft }}$, larger $\alpha_{\mathbb{P} \text { soft }}^{\prime}$
- 'hard' Pomeron: larger $\alpha_{\mathbb{P} \text { hard }}$, smaller $\alpha_{\mathbb{P} \text { hard }}^{\prime}$

Particular toy model［SO，2010］

－interesting case－model with 2 Pomerons：
－＇soft＇Pomeron：smaller $\alpha_{\mathbb{P} \text { soft }}$ ，larger $\alpha_{\mathbb{P} \text { soft }}^{\prime}$
－＇hard＇Pomeron：larger $\alpha_{\mathbb{P} \text { hard }}$ ，smaller $\alpha_{\text {Phard }}^{\prime}$
－choose $\alpha_{\mathbb{P}_{\text {soft }}}-1<G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}<\alpha_{\mathbb{P} h a r d}-1$
－＇soft＇Pomeron becomes undercritical in the dense limit： $\alpha_{\text {Psoft }}^{\text {ren }}<1$
－＇soft＇Pomeron dominates at large b（larger slope）
－＇hard＇Pomeron dominates at small b（ $\alpha_{\mathbb{P} \text { hard }}^{\text {ren }}>1$ ）

Particular toy model [SO, 2010]

- interesting case - model with 2 Pomerons:
- 'soft' Pomeron: smaller $\alpha_{\mathbb{P} \text { soft }}$, larger $\alpha_{\mathbb{P} \text { soft }}^{\prime}$
- 'hard' Pomeron: larger $\alpha_{\mathbb{P} \text { hard }}$, smaller $\alpha_{\text {Phard }}^{\prime}$
- choose $\alpha_{\mathbb{P}_{\text {soft }}}-1<G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}<\alpha_{\text {Phard }}-1$
- 'soft' Pomeron becomes undercritical in the dense limit: $\alpha_{\text {Psoft }}^{\text {ren }}<1$
- 'soft' Pomeron dominates at large b (larger slope)
- 'hard' Pomeron dominates at small b ($\alpha_{\mathbb{P} \text { hard }}^{\text {ren }}>1$)
－interesting case－model with 2 Pomerons：
－＇soft＇Pomeron：smaller $\alpha_{\mathbb{P} \text { soft }}$ ，larger $\alpha_{\mathbb{P} \text { soft }}^{\prime}$
－＇hard＇Pomeron：larger $\alpha_{\mathbb{P} \text { hard }}$ ，smaller $\alpha_{\text {Phard }}^{\prime}$
－choose $\alpha_{\mathbb{P}_{\text {soft }}}-1<G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}<\alpha_{\text {Phard }}-1$
－＇soft＇Pomeron becomes undercritical in the dense limit： $\alpha_{\text {Psoft }}^{\text {ren }}<1$
－＇soft＇Pomeron dominates at large b（larger slope）
－＇hard＇Pomeron dominates at small b（ $\alpha_{\mathbb{P} \text { hard }}^{\mathrm{ren}}>1$ ）
－interesting case－model with 2 Pomerons：
－＇soft＇Pomeron：smaller $\alpha_{\mathbb{P} \text { soft }}$ ，larger $\alpha_{\mathbb{P} \text { soft }}^{\prime}$
－＇hard＇Pomeron：larger $\alpha_{\mathbb{P} \text { hard }}$ ，smaller $\alpha_{\text {Phard }}^{\prime}$
－choose $\alpha_{\mathbb{P}_{\text {soft }}}-1<G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}<\alpha_{\text {Phard }}-1$
－＇soft＇Pomeron becomes undercritical in the dense limit： $\alpha_{\text {Psoft }}^{\text {ren }}<1$
－＇soft＇Pomeron dominates at large b（larger slope）
－＇hard＇Pomeron dominates at small b（ $\alpha_{\mathbb{P} \text { hard }}^{\text {ren }}>1$ ）

Particular toy model [SO, 2010]

Relative importance of 'nets' \& 'loops'

Particular toy model［SO，2010］

Relative importance of＇nets＇\＆＇loops＇

Particular toy model [SO, 2010]

Relative importance of 'nets' \& 'loops'

- compare $\sigma_{p p}^{\text {tot/el }}$ for the full resummation
- or including 'net'-like graphs only
- or including Pomeron loops only
- \Rightarrow neither 'nets' nor 'loops' are negligible
- NB: relative contribution of \mathbb{P}-loops strongly depends on $\alpha_{\mathbb{P}}^{\prime}$
- simpliest loop contribution $\propto G_{3 \mathbb{P}}^{2} / \alpha_{\mathbb{P}}^{\prime}$
- $\Rightarrow \rightarrow \infty$ for $\alpha_{\mathbb{P}}^{\prime} \rightarrow 0$ (assuming the slope for the $3 \mathbb{P}$-vertex $\simeq 0$)
- in the above example, $\alpha_{\mathbb{P} \text { soft }}^{\prime}=0.14 \mathrm{GeV}^{-2}$ was used

$\sigma_{S D} \&$ non-eikonal rap-gap suppression

- schematic diagram for single high mass diffraction:

- C: (real) parton cascade which produces hadrons
- A, B : (virtual) parton cascades which transfer momentum
- D,E: virtual rescatterings which suppress diffraction (eikonal rap-gap suppression factor)

$\sigma_{S D} \&$ non-eikonal rap-gap suppression

- schematic diagram for single high mass diffraction:

- C: (real) parton cascade which produces hadrons
- A,B: (virtual) parton cascades which transfer momentum
- D,E: virtual rescatterings which suppress diffraction (eikonal rap-gap suppression factor)

$\sigma_{S D} \&$ non-eikonal rap-gap suppression

- schematic diagram for single high mass diffraction:

- C: (real) parton cascade which produces hadrons
- A,B: (virtual) parton cascades which transfer momentum
- D,E: virtual rescatterings which suppress diffraction (eikonal rap-gap suppression factor)

$\sigma_{S D} \&$ non-eikonal rap-gap suppression

- schematic diagram for single high mass diffraction:

- C: (real) parton cascade which produces hadrons
- A,B: (virtual) parton cascades which transfer momentum
- D,E: virtual rescatterings which suppress diffraction (eikonal rap-gap suppression factor)
NB: generally, also multiple exchanges of the ABC subgraph
- e.g. required by s-channel unitarity for DD (at small b)

$\sigma_{S D} \&$ non-eikonal rap-gap suppression

- schematic diagram for single high mass diffraction:
- C: (real) parton cascade which produces hadrons
- A,B: (virtual) parton cascades which transfer momentum
- D,E: virtual rescatterings which suppress diffraction (eikonal rap-gap suppression factor)
- importance of higher order corrections to the ABC-subgraph?

$\sigma_{S D} \&$ non-eikonal rap-gap suppression

- schematic diagram for single high mass diffraction:

- C: (real) parton cascade which produces hadrons
- A,B: (virtual) parton cascades which transfer momentum
- D,E: virtual rescatterings which suppress diffraction (eikonal rap-gap suppression factor)
- importance of higher order corrections to the ABC-subgraph?
- compare different approximations for the $A B C$-subgraph:
- full resummation
- 1st order wrt $G_{3 \mathbb{P}}$ (A, B \& C - uncut/cut Froissarons)
- just the triple-Pomeron contribution
- in all the cases, full resummation is used for $D \& E$

$\sigma_{S D} \&$ non-eikonal rap-gap suppression

- importance of higher order corrections to the ABC-subgraph?
- compare different approximations for the ABC -subgraph:
- full resummation
- 1st order wrt $G_{3 \mathbb{P}}$ (A, B \& C - uncut/cut Froissarons)
- just the triple-Pomeron contribution
- in all the cases, full resummation is used for $D \& E$

Impact on $\sigma_{S D}$ (high mass) \& diffraction profile at $14 \mathrm{TeV} \mathrm{c.m}$.

QGSJET-II model: 'semihard Pomeron'

- RFT-based treatment of multiple scattering
- basic ingredient: treatment of an individual parton cascade

QGSJET-II model: 'semihard Pomeron'

- RFT-based treatment of multiple scattering
- basic ingredient: treatment of an individual parton cascade

QGSJET-II model: 'semihard Pomeron'

- RFT-based treatment of multiple scattering
- basic ingredient: treatment of an individual parton cascade
- important: transverse development $\left(\Delta b^{2} \sim 1 / \Delta q^{2}\right)$

QGSJET-II model: 'semihard Pomeron'

- RFT-based treatment of multiple scattering
- basic ingredient: treatment of an individual parton cascade
- important: transverse development $\left(\Delta b^{2} \sim 1 / \Delta q^{2}\right)$
- e.g. for soft cascades:
quick transverse spread \& low parton density

QGSJET-II model: 'semihard Pomeron'

- RFT-based treatment of multiple scattering
- basic ingredient: treatment of an individual parton cascade
- important: transverse development $\left(\Delta b^{2} \sim 1 / \Delta q^{2}\right)$
- e.g. for soft cascades quick transverse spread \& low parton density
- hard cascades: frozen in transverse space but high density rise

QGSJET-II model: 'semihard Pomeron'

- e.g. for soft cascades quick transverse spread \& low parton density
- hard cascades: frozen in transverse space but high density rise
- semihard cascades: quick expansion during 'soft preevolution' followed by the density rise
- \Rightarrow dominant in high energy limit

QGSJET-II model: 'semihard Pomeron'

- e.g. for soft cascades quick transverse spread \& low parton density
- hard cascades: frozen in transverse space but high density rise
- semihard cascades: quick expansion during 'soft preevolution' followed by the density rise
- \Rightarrow dominant in high energy limit

QGSJET-II model: 'semihard Pomeron'

- e.g. for soft cascades quick transverse spread \& low parton density
- hard cascades: frozen in transverse space but high density rise
- semihard cascades: quick expansion during 'soft preevolution' followed by the density rise
$\Leftrightarrow \Rightarrow$ dominant in hioh eneroy limit
Phenomenological treatment [Kalmykov \& SO, 1994,1997]
- soft Pomerons to describe soft (parts of) cascades $\left(p_{t}^{2}<Q_{0}^{2}\right)$
- \Rightarrow transverse expansion governed by the Pomeron slope
- DGLAP for hard cascades
- taken together: 'general Pomeron'

QGSJET-II model: 'semihard Pomeron'

- e.g. for soft cascades quick transverse spread \& low parton density
- hard cascades: frozen in transverse space but high density rise
- semihard cascades: quick expansion during 'soft preevolution' followed by the density rise
- \Rightarrow dominant in hioh enerov limit

Phenomenological treatment [Kalmykov \& SO, 1994,1997]

- soft Pomerons to describe soft (parts of) cascades $\left(p_{t}^{2}<Q_{0}^{2}\right)$
- \Rightarrow transverse expansion governed by the Pomeron slope
- DGLAP for hard cascades
- taken together: 'general Pomeron'

QGSJET-II model: 'semihard Pomeron'

- e.g. for soft cascades quick transverse spread \& low parton density
- hard cascades: frozen in transverse space but high density rise
- semihard cascades: quick expansion during 'soft preevolution' followed by the density rise
$\Leftrightarrow \Rightarrow$ dominant in hioh eneroy limit
Phenomenological treatment [Kalmykov \& SO, 1994,1997]
- soft Pomerons to describe soft (parts of) cascades $\left(p_{t}^{2}<Q_{0}^{2}\right)$
- \Rightarrow transverse expansion governed by the Pomeron slope
- DGLAP for hard cascades
- taken together: 'general Pomeron'

QGSJET-II model: 'semihard Pomeron'

- e.g. for soft cascades quick transverse spread \& low parton density
- hard cascades: frozen in transverse space but high density rise
- semihard cascades: quick expansion during 'soft preevolution' followed by the density rise
$\Leftrightarrow \Rightarrow$ dominant in hioh eneroy limit
Phenomenological treatment [Kalmykov \& SO, 1994,1997]
- soft Pomerons to describe soft (parts of) cascades ($p_{t}^{2}<Q_{0}^{2}$)
- \Rightarrow transverse expansion governed by the Pomeron slope
- DGLAP for hard cascades
- taken together: 'general Pomeron'

Treatment of nonlinear processes: assumptions

- basic assumption: multi-P vertices - due to soft $\left(\left|q^{2}\right|<Q_{0}^{2}\right)$ parton processes

Treatment of nonlinear processes: assumptions

- basic assumption: multi-P vertices - due to soft $\left(\left|q^{2}\right|<Q_{0}^{2}\right)$ parton processes
- based on soft Pomeron coupling
- vertex for $m \mathbb{P} \rightarrow n \mathbb{P}$:
$G^{(m, n)}=G_{3 \mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
- in dense limit (large s, small b) 'renormalized' soft Pomeron [Kaidalov et al., 1986]: $\alpha_{\mathbb{P} \text { soft }}^{\text {ren }}=\alpha_{\mathbb{P s o f t}}-G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}$
- choose $G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}>\alpha_{\mathbb{P s o f t}}-1$

Treatment of nonlinear processes: assumptions

- basic assumption: multi-P vertices - due to soft $\left(\left|q^{2}\right|<Q_{0}^{2}\right)$ parton processes
- based on soft Pomeron coupling
- vertex for $m \mathbb{P} \rightarrow n \mathbb{P}$:
$G^{(m, n)}=G_{3 \mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
- in dense limit (large s, small b) 'renormalized' soft Pomeron [Kaidalov et al., 1986]: $\alpha_{\mathbb{P} \text { soft }}^{\text {ren }}=\alpha_{\mathbb{P s o f t}}-G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}$
- choose $G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}>\alpha_{\mathbb{P s o f t}}-1$

Treatment of nonlinear processes: assumptions

- basic assumption: multi-P vertices - due to soft $\left(\left|q^{2}\right|<Q_{0}^{2}\right)$ parton processes
- based on soft Pomeron coupling
- vertex for $m \mathbb{P} \rightarrow n \mathbb{P}$:
$G^{(m, n)}=G_{3 \mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
- in dense limit (large s, small b) 'renormalized' soft Pomeron [Kaidalov et al., 1986]: $\alpha_{\mathbb{P} \text { soft }}^{\text {ren }}=\alpha_{\mathbb{P s o f t}}-G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}$
- choose $G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}>\alpha_{\mathbb{P s o f t}}-1$

Treatment of nonlinear processes: assumptions

- basic assumption: multi-P vertices - due to soft $\left(\left|q^{2}\right|<Q_{0}^{2}\right)$ parton processes
- based on soft Pomeron coupling
- vertex for $m \mathbb{P} \rightarrow n \mathbb{P}$:
$G^{(m, n)}=G_{3 \mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
- in dense limit (large s, small b) 'renormalized' soft Pomeron [Kaidalov et al., 1986]: $\alpha_{\mathbb{P} \text { soft }}^{\text {ren }}=\alpha_{\mathbb{P s o f t}}-G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}$
- choose $G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}>\alpha_{\mathbb{P s o f t}}-1$

Treatment of nonlinear processes: assumptions

- basic assumption: multi-P vertices - due to soft $\left(\left|q^{2}\right|<Q_{0}^{2}\right)$ parton processes
- based on soft Pomeron coupling
- vertex for $m \mathbb{P} \rightarrow n \mathbb{P}$:
$G^{(m, n)}=G_{3 \mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
- in dense limit (large s, small b) 'renormalized' soft Pomeron [Kaidalov et al., 1986]: $\alpha_{\mathbb{P} \text { soft }}^{\text {ren }}=\alpha_{\mathbb{P} \text { soft }}-G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}$
- choose $G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}>\alpha_{\mathbb{P s o f t}}-1$

- \Rightarrow undercritical soft $\mathbb{P}\left(\Delta_{\mathbb{P} \text { soft }} \equiv \alpha_{\mathbb{P} \text { soft }}^{\mathrm{ren}}-1<0\right)$ in dense limit
- 'shrinking' of soft cascades (\& soft pieces of 'semihard' ones)
- saturation of parton density at the Q_{0}-scale
- but: no evolution for the saturation scale

Treatment of nonlinear processes: assumptions

- basic assumption: multi-P vertices - due to soft $\left(\left|q^{2}\right|<Q_{0}^{2}\right)$ parton processes
- based on soft Pomeron coupling
- vertex for $m \mathbb{P} \rightarrow n \mathbb{P}$:
$G^{(m, n)}=G_{3 \mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
- in dense limit (large s, small b) 'renormalized' soft Pomeron [Kaidalov et al., 1986]: $\alpha_{\mathbb{P} \text { soft }}^{\text {ren }}=\alpha_{\mathbb{P} \text { soft }}-G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}$
- choose $G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}>\alpha_{\mathbb{P s o f t}}-1$

- \Rightarrow undercritical soft $\mathbb{P}\left(\Delta_{\mathbb{P} \text { soft }} \equiv \alpha_{\mathbb{P}_{\text {soft }}}^{\text {ren }}-1<0\right)$ in dense limit
- 'shrinking' of soft cascades (\& soft pieces of 'semihard' ones)
- saturation of parton density at the Q_{0}-scale
- but: no evolution for the saturation scale

Treatment of nonlinear processes: assumptions

- basic assumption: multi-P vertices - due to soft $\left(\left|q^{2}\right|<Q_{0}^{2}\right)$ parton processes
- based on soft Pomeron coupling
- vertex for $m \mathbb{P} \rightarrow n \mathbb{P}$:
$G^{(m, n)}=G_{3 \mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
- in dense limit (large s, small b) 'renormalized' soft Pomeron [Kaidalov et al., 1986]: $\alpha_{\mathbb{P} \text { soft }}^{\text {ren }}=\alpha_{\mathbb{P} \text { soft }}-G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}$
- choose $G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}>\alpha_{\mathbb{P s o f t}}-1$

- \Rightarrow undercritical soft $\mathbb{P}\left(\Delta_{\mathbb{P} \text { soft }} \equiv \alpha_{\mathbb{P} \text { soft }}^{\text {ren }}-1<0\right)$ in dense limit
- 'shrinking' of soft cascades (\& soft pieces of 'semihard' ones)
- saturation of parton density at the Q_{0}-scale
- but: no evolution for the saturation scale

Treatment of nonlinear processes: assumptions

- basic assumption: multi-P vertices - due to soft $\left(\left|q^{2}\right|<Q_{0}^{2}\right)$ parton processes
- based on soft Pomeron coupling
- vertex for $m \mathbb{P} \rightarrow n \mathbb{P}$:
$G^{(m, n)}=G_{3 \mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
- in dense limit (large s, small b) 'renormalized' soft Pomeron [Kaidalov et al., 1986]: $\alpha_{\mathbb{P} \text { soft }}^{\text {ren }}=\alpha_{\mathbb{P} \text { soft }}-G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}$
- choose $G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}>\alpha_{\mathbb{P s o f t}}-1$

- \Rightarrow undercritical soft $\mathbb{P}\left(\Delta_{\mathbb{P} \text { soft }} \equiv \alpha_{\mathbb{P} \text { soft }}^{\text {ren }}-1<0\right)$ in dense limit
- 'shrinking' of soft cascades (\& soft pieces of 'semihard' ones)
- saturation of parton density at the Q_{0}-scale
- but: no evolution for the saturation scale

Treatment of nonlinear processes: assumptions

- basic assumption: multi-P vertices - due to soft $\left(\left|q^{2}\right|<Q_{0}^{2}\right)$ parton processes

Generation of final states

- based on the structure of cut diagrams (positive-definite partial cross sections)
- e.g. diagrams for a single scattering process
- dashed thick line $=$ 'cut' Pomeron $=$ real parton cascade
- thick solid lines $=$ uncut Pomerons $=$ virtual parton cascades (elastic re-scattering of intermediate partons)

Treatment of nonlinear processes: assumptions

- basic assumption: multi-P vertices - due to soft $\left(\left|q^{2}\right|<Q_{0}^{2}\right)$ parton processes

Generation of final states

- based on the structure of cut diagrams (positive-definite partial cross sections)
- e.g. diagrams for a single scattering process
- dashed thick line $=$ 'cut' Pomeron $=$ real parton cascade
- thick solid lines $=$ uncut Pomerons $=$ virtual parton cascades (elastic re-scattering of intermediate partons)

Treatment of nonlinear processes: assumptions

- basic assumption: multi-P vertices - due to soft $\left(\left|q^{2}\right|<Q_{0}^{2}\right)$ parton processes
- based on soft Pomeron coupling
- vertex for $m \mathbb{P} \rightarrow n \mathbb{P}$:
$G^{(m, n)}=G_{3 \mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
- in dense limit (large s, small b) 'renormalized' soft Pomeron [Kaidalov et al., 1986]: $\alpha_{\mathbb{P} \text { soft }}^{\text {ren }}=\alpha_{\mathbb{P s o f t}}-G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}$
- choose $G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}>\alpha_{\mathbb{P}_{\text {soft }}}-1$

scheme explicitely based on AGK-rules
- \Rightarrow AGK-cancellations apply
- \Rightarrow collinear factorization for inclusive jet spectra fulfilled

Treatment of nonlinear processes: assumptions

- basic assumption: multi-P vertices - due to soft $\left(\left|q^{2}\right|<Q_{0}^{2}\right)$ parton processes
- based on soft Pomeron coupling
- vertex for $m \mathbb{P} \rightarrow n \mathbb{P}$:
$G^{(m, n)}=G_{3 \mathbb{P}} \gamma_{\mathbb{P}}^{m+n-3}$
- in dense limit (large s, small b) 'renormalized' soft Pomeron [Kaidalov et al., 1986]: $\alpha_{\mathbb{P} \text { soft }}^{\text {ren }}=\alpha_{\mathbb{P s o f t}}-G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}$
- choose $G_{3 \mathbb{P}} / \gamma_{\mathbb{P}}>\alpha_{\mathbb{P}_{\text {soft }}}-1$

scheme explicitely based on AGK-rules
- \Rightarrow AGK-cancellations apply
- \Rightarrow collinear factorization for inclusive jet spectra fulfilled

Diffraction at LHC

- low mass diffraction (LMD):
- resonance excitations (e.g. N^{*})
- $\mathbb{P P P R}$-contribution $\left(\propto d M_{X}^{2} / M_{X}^{3}\right)$

Diffraction at LHC

- low mass diffraction (LMD):
- resonance excitations (e.g. N^{*})
- $\mathbb{P P R}$-contribution ($\propto d M_{X}^{2} / M_{X}^{3}$)
- may be treated with Good-Walker mechanism

Diffraction at LHC

- low mass diffraction (LMD):
- resonance excitations (e.g. N^{*})
- $\mathbb{P P P} \mathbb{R}$-contribution ($\propto d M_{X}^{2} / M_{X}^{3}$)
- may be treated with Good-Walker mechanism
- high mass diffraction (HMD):
- traditionally described by $\mathbb{P P P P}$-asymptotics $\left(\propto d M_{X}^{2} /\left(M_{X}^{2}\right)^{\alpha_{\mathbb{P}}(0)}\right)$
- often implemented as $\propto d M_{X}^{2} / M_{X}^{2}$ (i.e. for $\alpha_{\mathbb{P}}(0)=1$)

Diffraction at LHC

- low mass diffraction (LMD):
- resonance excitations (e.g. N^{*})
- $\mathbb{P P R}$-contribution $\left(\propto d M_{X}^{2} / M_{X}^{3}\right)$
- may be treated with Good-Walker mechanism
- high mass diffraction (HMD):
- traditionally described by $\mathbb{P P P P}$-asymptotics $\left(\propto d M_{X}^{2} /\left(M_{X}^{2}\right)^{\alpha_{\mathbb{P}}(0)}\right)$
- often implemented as $\propto d M_{X}^{2} / M_{X}^{2}$ (i.e. for $\alpha_{\mathbb{P}}(0)=1$)
- NB: M_{X}^{2}-distribution for HMD - strongly modified by absorptive effects [SO, 2011]

Diffraction at LHC

- low mass diffraction (LMD):
- resonance excitations (e.g. N^{*})
- $\mathbb{P P P} \mathbb{R}$-contribution ($\propto d M_{X}^{2} / M_{X}^{3}$)
- may be treated with Good-Walker mechanism
- high mass diffraction (HMD):
- traditionally described by $\mathbb{P P P P}$-asymptotics $\left(\propto d M_{X}^{2} /\left(M_{X}^{2}\right)^{\alpha_{\mathbb{P}}(0)}\right)$
- important for extrapolating from $\sigma_{\text {vis }}$ to $\sigma_{\text {inel }}$

M_{X}^{2}－distribution for single high mass diffraction

－eikonal rap－gap suppression（D，E） doesn＇t impact M_{X}－distribution
－but：large higher order corrections to ABC
－crucial：b－dependence

M_{X}^{2}-distribution for single high mass diffraction

- eikonal rap-gap suppression (D,E) doesn't impact M_{X}-distribution
- but: large higher order corrections to ABC
- crucial: b-dependence

M_{X}^{2}-distribution for single high mass diffraction

- eikonal rap-gap suppression (D,E) doesn't impact M_{X}-distribution
- but: large higher order corrections to ABC
- crucial: b-dependence

M_{X}^{2}-distribution for single high mass diffraction

- eikonal rap-gap suppression (D,E) doesn't impact M_{X}-distribution
- but: large higher order corrections to ABC
- crucial: b-dependence
- finite \mathbb{P} slope \Rightarrow at large b : triple- \mathbb{P} configuration dominates
- A,B,C are represented by a single cascade ('Pomeron') each
- $\Rightarrow d \sigma / d M_{X}^{2} \sim\left(M_{X}^{2}\right)^{-1-\Delta}$
$\left(\Delta=\alpha_{\mathbb{P}}(0)-1>0\right)$

M_{X}^{2}-distribution for single high mass diffraction

- eikonal rap-gap suppression (D,E) doesn't impact M_{X}-distribution
- but: large higher order corrections to ABC
- crucial: b-dependence
- finite \mathbb{P} slope \Rightarrow at large b : triple- \mathbb{P} configuration dominates
- A,B, C are represented by a single cascade ('Pomeron') each
- $\Rightarrow d \sigma / d M_{X}^{2} \sim\left(M_{X}^{2}\right)^{-1-\Delta}$
$\left(\Delta=\alpha_{\mathbb{P}}(0)-1>0\right)$

M_{X}^{2}-distribution for single high mass diffraction

- eikonal rap-gap suppression (D,E) doesn't impact M_{X}-distribution
- but: large higher order corrections to ABC
- crucial: b-dependence
- finite \mathbb{P} slope \Rightarrow at large b : triple- \mathbb{P} configuration dominates
- A,B,C are represented by a single cascade ('Pomeron') each
- $\Rightarrow d \sigma / d M_{X}^{2} \sim\left(M_{X}^{2}\right)^{-1-\Delta}$
$\left(\Delta=\alpha_{\mathbb{P}}(0)-1>0\right)$

M_{X}^{2}-distribution for single high mass diffraction

- eikonal rap-gap suppression (D,E) doesn't impact M_{X}-distribution
- but: large higher order corrections to ABC
- crucial: b-dependence
- absorptive corrections at smaller b : rescatering of intermediate partons in A,B,C off the projectile/target
- \Rightarrow flatter M_{X}^{2}-dependence ('renormalization' of the Pomeron)

M_{X}^{2}-distribution for single high mass diffraction

- eikonal rap-gap suppression (D,E) doesn't impact M_{X}-distribution
- but: large higher order corrections to ABC
- crucial: b-dependence
- absorptive corrections at smaller b : rescatering of intermediate partons in A, B, C off the projectile/target
- \Rightarrow flatter M_{X}^{2}-dependence
('renormalization' of the Pomeron)

$\xi=M_{X}^{2} / s$ distribution for HMD in QGSJET－II

$\xi=M_{X}^{2} / s$ distribution for HMD in QGSJET-II

- nontrivial shape for HMD: due to absorptive effects
- steeper ξ-shape at large b : weaker absorptive effects

$\xi=M_{X}^{2} / s$ distribution for HMD in QGSJET-II

- nontrivial shape for HMD: due to absorptive effects
- steeper ξ-shape at large b : weaker absorptive effects
- flatter ξ-shape at smaller b : strong absorption

Diffraction at LHC

- forward rap-gap $\left(\eta_{F}\right)$ distribution: QGSJET-II-04 wrt ATLAS

Diffraction at LHC

- forward rap-gap $\left(\eta_{F}\right)$ distribution: QGSJET-II-04 wrt ATLAS

Diffraction at LHC

- forward rap-gap $\left(\eta_{F}\right)$ distribution: QGSJET-II-04 wrt ATLAS

Diffraction at LHC

- forward rap-gap $\left(\eta_{F}\right)$ distribution: QGSJET-II-04 wrt ATLAS

Diffraction at LHC

- forward rap-gap $\left(\eta_{F}\right)$ distribution: QGSJET-II-04 wrt ATLAS

But: the model misses $\sim 30 \%$ of HMD seen by ATLAS!

Diffraction at LHC

- forward rap-gap $\left(\eta_{F}\right)$ distribution: QGSJET-II-04 wrt ATLAS

- overall trend - similar
- but: rate in variance with ATLAS

SD, DD, CD: b-profiles

- DD contribution (b) - comparable to SD (a)
- at lowest order: Pomeron 'loop'
- $\sim G_{3 \mathbb{P}}^{2} / \alpha_{\mathbb{P}}^{\prime} \sim G_{3 \mathbb{P}}$
- involves only 2 Pomerons coupled to proj. \& target \Rightarrow more significant at large b

SD, DD, CD: b-profiles

- DD contribution (b) - comparable to SD (a)
- at lowest order: Pomeron 'loop'
- $\sim G_{3 \mathbb{P}}^{2} / \alpha_{\mathbb{P}}^{\prime} \sim G_{3 \mathbb{P}}$
- involves only 2 Pomerons coupled to proj. \& target \Rightarrow more significant at large b

SD, DD, CD: b-profiles

- DD contribution (b) - comparable to SD (a)
- at lowest order: Pomeron 'loop'
- $\sim G_{3 \mathbb{P}}^{2} / \alpha_{\mathbb{P}}^{\prime} \sim G_{3 \mathbb{P}}$
- involves only 2 Pomerons coupled to proj. \& target \Rightarrow more significant at large b
- CD (DPE) contribution (c) - strongly suppressed
- at lowest order: $\sim G_{3 \mathbb{P}}^{2}$
- involves 4 Pomerons coupled to proj. \& target \Rightarrow vanishes at large b

SD, DD, CD: b-profiles

- DD contribution (b) - comparable to SD (a)
- at lowest order: Pomeron 'loop'
- $\sim G_{3 \mathbb{P}}^{2} / \alpha_{\mathbb{P}}^{\prime} \sim G_{3 \mathbb{P}}$
- involves only 2 Pomerons coupled to proj. \& target \Rightarrow more significant at large b
- CD (DPE) contribution (c) - strongly suppressed
- at lowest order: $\sim G_{3 \mathbb{P}}^{2}$
- involves 4 Pomerons coupled to proj. \& target \Rightarrow vanishes at large b

SD, DD, CD: b-profiles

Example: b profiles for $p p$ at $\sqrt{s}=5 \mathrm{TeV}$:

SD，DD，CD：b－profiles

Cf．：b profiles for $p-P b$ at $\sqrt{s}=5 \mathrm{TeV}$ ：

SD, DD, CD: b-profiles

Cf.: b profiles for $p-P b$ at $\sqrt{s}=5 \mathrm{TeV}$:

SD, DD, CD: b-profiles

Cf.: b profiles for $p-P b$ at $\sqrt{s}=5 \mathrm{TeV}$:

Diffraction on nuclear target - comparable to the $p p$ case

From SFs to $\sigma_{p p}^{\text {tot }}$: saturation or multi-parton correlations?

- 'Marry' slow energy rise of $\sigma_{p p}^{\text {tot }}$ and the steep increase of F_{2} ?
- 'Marry' slow energy rise of $\sigma_{p p}^{\text {tot }}$ and the steep increase of F_{2} ?
- production of minijets along \Rightarrow too high $\sigma_{p p}^{\text {tot }}$ [Rogers, Strikman \& Stasto, 2008]
- nonlinear parton dynamics - crucial
- does parton saturation solve the problem?
- 'Marry' slow energy rise of $\sigma_{p p}^{\text {tot }}$ and the steep increase of F_{2} ?
- production of minijets along \Rightarrow too high $\sigma_{p p}^{\text {tot }}$ [Rogers, Strikman \& Stasto, 2008]
- nonlinear parton dynamics - crucial
- does parton saturation solve the problem?
- 'Marry' slow energy rise of $\sigma_{p p}^{\text {tot }}$ and the steep increase of F_{2} ?
- production of minijets along \Rightarrow too high $\sigma_{p p}^{\text {tot }}$ [Rogers, Strikman \& Stasto, 2008]
- nonlinear parton dynamics - crucial
- does parton saturation solve the problem?
- 'Marry' slow energy rise of $\sigma_{p p}^{\text {tot }}$ and the steep increase of F_{2} ?
- production of minijets along \Rightarrow too high $\sigma_{p p}^{\text {tot }}$ [Rogers, Strikman \& Stasto, 2008]
- nonlinear parton dynamics - crucial
- does parton saturation solve the problem?
- mimicked in models by energy-dependent cutoff: $Q_{0}=Q_{0}(s)$
- 'Marry' slow energy rise of $\sigma_{p p}^{\text {tot }}$ and the steep increase of F_{2} ?
- production of minijets along \Rightarrow too high $\sigma_{p p}^{\text {tot }}$ [Rogers, Strikman \& Stasto, 2008]
- nonlinear parton dynamics - crucial
- does parton saturation solve the problem?
- mimicked in models by energy-dependent cutoff: $Q_{0}=Q_{0}(s)$
- but: saturation doesn't hold for large b (which dominate $\sigma_{p p}^{\text {tot }}$)
- what is different in $p p$ compared to DIS?
- 'Marry' slow energy rise of $\sigma_{p p}^{\text {tot }}$ and the steep increase of F_{2} ?
- production of minijets along \Rightarrow too high $\sigma_{p p}^{\text {tot }}$ [Rogers, Strikman \& Stasto, 2008]
- nonlinear parton dynamics - crucial
- does parton saturation solve the problem?
- mimicked in models by energy-dependent cutoff: $Q_{0}=Q_{0}(s)$
- but: saturation doesn't hold for large b (which dominate $\sigma_{p p}^{\text {tot }}$)
- what is different in $p p$ compared to DIS?
- 'Marry' slow energy rise of $\sigma_{p p}^{\text {tot }}$ and the steep increase of F_{2} ?
- production of minijets along \Rightarrow too high $\sigma_{p p}^{\text {tot }}$ [Rogers, Strikman \& Stasto, 2008]
- nonlinear parton dynamics - crucial
- does parton saturation solve the problem?
- mimicked in models by energy-dependent cutoff: $Q_{0}=Q_{0}(s)$
- but: saturation doesn't hold for large b (which dominate $\sigma_{p p}^{\text {tot }}$)
- what is different in $p p$ compared to DIS?
- in DIS: rescattering of intermediate partons off the parent hadron
- in $p p$: rescattering off the target hadron in addition

－＇Marry＇slow energy rise of $\sigma_{p p}^{\text {tot }}$ and the steep increase of F_{2} ？
－production of minijets along \Rightarrow too high $\sigma_{p p}^{\text {tot }}$
［Rogers，Strikman \＆Stasto，2008］
－nonlinear parton dynamics－crucial
－does parton saturation solve the problem？
－mimicked in models by energy－dependent cutoff：$Q_{0}=Q_{0}(s)$
－but：saturation doesn＇t hold for large b（which dominate $\sigma_{p p}^{\text {tot }}$ ）
－what is different in $p p$ compared to DIS？
－in DIS：rescattering of intermediate partons off the parent hadron
－in $p p$ ：rescattering off the target hadron in addition

- 'Marry' slow energy rise of $\sigma_{p p}^{\text {tot }}$ and the steep increase of F_{2} ?
- production of minijets along \Rightarrow too high $\sigma_{p p}^{\text {tot }}$
[Rogers, Strikman \& Stasto, 2008]
- nonlinear parton dynamics - crucial
- does parton saturation solve the problem?
- mimicked in models by energy-dependent cutoff: $Q_{0}=Q_{0}(s)$
- but: saturation doesn't hold for large b (which dominate $\sigma_{p p}^{\text {tot }}$)
- what is different in $p p$ compared to DIS?
- in DIS: rescattering of intermediate partons off the parent hadron
- in $p p$: rescattering off the
 non-inclusive observables can't be described with universal PDFs (additional screening corrections are process-dependent)

From SFs to $\sigma_{p p}^{\text {tot }}$: nonfactorizable contributions

- How strong is the effect?
- How strong is the effect?
- consider $\sigma_{p p}^{\text {tot }}$ including all corrections (also rescattering off the partner hadron)
- with both soft and semihard contributions included

$$
\left[Q_{0}^{2}=1 \mathrm{GeV}^{2}\left(p_{t}^{\min }=2 \mathrm{GeV}\right)\right]
$$

- How strong is the effect?
- consider $\sigma_{p p}^{\text {tot }}$ including all corrections (also rescattering off the partner hadron)
- with both soft and semihard contributions included

$$
\left[Q_{0}^{2}=1 \mathrm{GeV}^{2}\left(p_{t}^{\min }=2 \mathrm{GeV}\right)\right]
$$

From SFs to $\sigma_{p p}^{\text {tot }}$: nonfactorizable contributions

- How strong is the effect?
- or just corrections to PDFS (factorizable contributions)
- and neglecting soft processes

From SFs to $\sigma_{p p}^{\text {tot: }}$ nonfactorizable contributions

- How strong is the effect?
- or just corrections to PDFS (factorizable contributions)
- and neglecting soft processes

- How strong is the effect?
- nonfactorizable corrections dominate! [SO, 2006]
- why and how?!
- related to multi-parton correlations [Rogers \& Strikman, 2010]

- How strong is the effect?
- nonfactorizable corrections dominate! [SO, 2006]
- why and how?!
- related to multi-parton correlations [Rogers \& Strikman, 2010]

- How strong is the effect?
- nonfactorizable corrections dominate! [SO, 2006]
- why and how?!
- related to multi-parton correlations [Rogers \& Strikman, 2010]

Multi-Pomeron interactions \& multi-parton correlations

- corrections to single hard process due to soft rescattering
- soft screening
(soft elastic rescattering)
- and double (soft + hard) scattering (particle production)
- equal weights \Rightarrow zero effect for inclusive spectra \& $\sigma_{p p}^{\text {tot }}$ ('soft' can't screen 'hard'!)

Multi-Pomeron interactions \& multi-parton correlations

- corrections to single hard process due to soft rescattering
- soft screening (soft elastic rescattering)
- and double (soft + hard) scattering (particle production)
- equal weights \Rightarrow zero effect for inclusive spectra \& $\sigma_{p p}^{\text {tot }}$ ('soft' can't screen 'hard'!)

Multi-Pomeron interactions \& multi-parton correlations

- corrections to single hard process due to soft rescattering
- soft screening
(soft elastic rescattering)
- and double (soft + hard) scattering (particle production)
- equal weights \Rightarrow zero effect for inclusive spectra \& $\sigma_{p p}^{\text {tot }}$ ('soft' can't screen 'hard'!)

Multi-Pomeron interactions \& multi-parton correlations

- corrections to single hard process due to soft rescattering
- soft screening
(soft elastic rescattering)
- and double (soft + hard) scattering (particle production)
- equal weights \Rightarrow zero effect for inclusive spectra \& $\sigma_{p p}^{\text {tot }}$ ('soft' can't screen 'hard'!)

Multi-Pomeron interactions \& multi-parton correlations

- now hard screening (hard elastic rescattering)
- and double hard scattering (production of 2 jet pairs)
- no effect for inclusive jet spectra $[(-2) \times 1+(+1) \times 2=0]$
- but: screening correction for $\sigma_{p p}^{\text {tot }}$ $[(-2)+(+1)=-1]$

Multi-Pomeron interactions \& multi-parton correlations

- now hard screening (hard elastic rescattering)
- and double hard scattering (production of 2 jet pairs)
- no effect for inclusive jet spectra $[(-2) \times 1+(+1) \times 2=0]$
- but: screening correction for $\sigma_{p p}^{\text {tot }}$ $[(-2)+(+1)=-1]$

Multi-Pomeron interactions \& multi-parton correlations

- now hard screening (hard elastic rescattering)
- and double hard scattering (production of 2 jet pairs)
- no effect for inclusive jet spectra $[(-2) \times 1+(+1) \times 2=0]$
- but: screening correction for $\sigma_{p p}^{\text {tot }}$ $[(-2)+(+1)=-1]$

Multi-Pomeron interactions \& multi-parton correlations

- now hard screening (hard elastic rescattering)
- and double hard scattering (production of 2 jet pairs)
- no effect for inclusive jet spectra $[(-2) \times 1+(+1) \times 2=0]$
- but: screening correction for $\sigma_{p p}^{\text {tot }}$ $[(-2)+(+1)=-1]$

Multi-Pomeron interactions \& multi-parton correlations

- now hard screening (hard elastic rescattering)
- and double hard scattering (production of 2 jet pairs)
- no effect for inclusive jet spectra $[(-2) \times 1+(+1) \times 2=0]$
- but: screening correction for $\sigma_{p p}^{\text {tot }}$

$$
[(-2)+(+1)=-1]
$$

additional screening caused by multi-parton correlations

- two hard parton cascades originate from the same soft parent

Multi-Pomeron interactions \& multi-parton correlations

- now hard screening (hard elastic rescattering)
- and double hard scattering (production of 2 jet pairs)
- no effect for inclusive jet spectra $[(-2) \times 1+(+1) \times 2=0]$
- but: screening correction for $\sigma_{p p}^{\text {tot }}$

why the effect so strong?

- double hard scattering from independent cascades: mostly in central collisions
- correlated partons are close-by in b-space (two sub-cascades start from the same \vec{b})
- \Rightarrow also in peripheral collisions

Multi-Pomeron interactions \& multi-parton correlations

- now hard screening (hard elastic rescattering)
- and double hard scattering (production of 2 jet pairs)
- no effect for inclusive jet spectra $[(-2) \times 1+(+1) \times 2=0]$
- but: screening correction for $\sigma_{p p}^{\text {tot }}$

why the effect so strong?

- double hard scattering from independent cascades: mostly in central collisions
- correlated partons are close-by in b-space (two sub-cascades start from the same \vec{b})
- \Rightarrow also in peripheral collisions

Multi-Pomeron interactions \& multi-parton correlations

- now hard screening (hard elastic rescattering)
- and double hard scattering (production of 2 jet pairs)
- no effect for inclusive jet spectra $[(-2) \times 1+(+1) \times 2=0]$
- but: screening correction for $\sigma_{p p}^{\text {tot }}$

why the effect so strong?

- double hard scattering from independent cascades: mostly in central collisions
- correlated partons are close-by in b-space (two sub-cascades start from the same \vec{b})
- \Rightarrow also in peripheral collisions

Multi-Pomeron interactions \& multi-parton correlations

- now hard screening (hard elastic rescattering)
- and double hard scattering (production of 2 jet pairs)
- no effect for inclusive jet spectra $[(-2) \times 1+(+1) \times 2=0]$
- but: screening correction for $\sigma_{p p}^{\text {tot }}$ $[(-2)+(+1)=-1]$

\Rightarrow multi-parton interactions provide a key to understand $\sigma_{p p}^{\text {tot }}$ (and vice versa)

Multi-Pomeron interactions \& multi-parton correlations

- now hard screening

Illustration: b-profiles for MPI for $p p$ at $14 \mathrm{TeV} \mathrm{c.m}. \mathrm{(QGSJET-II)}$

- NB: more stringent limits on Q_{0} from N_{ch} data

Multi-Pomeron interactions \& multi-parton correlations

- now hard screening

Illustration: b-profiles for MPI for $p p$ at 14 TeV c.m. (QGSJET-II)

- NB: more stringent limits on Q_{0} from N_{ch} data

Multi-parton interactions: perturbative splitting

- $3 \rightarrow 4$ contrib. to double parton scatt.: collinearly enhanced [Blok et al., 2011; Ryskin \& Snigirev, 2011; Gaunt, 2012]
- may also impact $\sigma_{p p}^{\text {tot }}$?
- \Rightarrow attempt to include in the model

Multi-parton interactions: perturbative splitting

- $3 \rightarrow 4$ contrib. to double parton scatt.: collinearly enhanced [Blok et al., 2011; Ryskin \& Snigirev, 2011; Gaunt, 2012]
- may also impact $\sigma_{p p}^{\text {tot }}$?
- \Rightarrow attempt to include in the model

Multi-parton interactions: perturbative splitting

- $3 \rightarrow 4$ contrib. to double parton scatt.: collinearly enhanced [Blok et al., 2011; Ryskin \& Snigirev, 2011; Gaunt, 2012]
- may also impact $\sigma_{p p}^{\text {tot }}$?
- \Rightarrow attempt to include in the model

Multi-parton interactions: perturbative splitting

- only $3 \rightarrow 4$ contribution
- assume AGK rules
- neglect b-size of the 'hard triangle' wrt soft evolution

Multi-parton interactions: perturbative splitting

- only $3 \rightarrow 4$ contribution
- assume AGK rules
- neglect b-size of the 'hard triangle' wrt soft evolution

Multi-parton interactions: perturbative splitting

- only $3 \rightarrow 4$ contribution
- assume AGK rules
- neglect b-size of the 'hard triangle' wrt soft evolution

Multi－parton interactions：perturbative splitting

－only $3 \rightarrow 4$ contribution
－assume AGK rules
－neglect b－size of the＇hard triangle＇wrt soft evolution
－\Rightarrow＇hard triangle＇works as an effective 3P－vertex

Multi-parton interactions: perturbative splitting

- for $Q_{0}^{2}=3 \mathrm{GeV}^{2}$: negligible effect
- \Rightarrow choose $Q_{0}^{2}=2 \mathrm{GeV}^{2}$ and refit the model parameters (using $\sigma_{p p}^{\text {tot/el }}, F_{2}, F_{2}^{D(3)}$)

Multi-parton interactions: perturbative splitting

- for $Q_{0}^{2}=3 \mathrm{GeV}^{2}$: negligible effect
- \Rightarrow choose $Q_{0}^{2}=2 \mathrm{GeV}^{2}$ and refit the model parameters (using $\sigma_{p p}^{\text {tot/el }}, F_{2}, F_{2}^{D(3)}$)

Multi-parton interactions: perturbative splitting

- for $Q_{0}^{2}=3 \mathrm{GeV}^{2}$: negligible effect
- \Rightarrow choose $Q_{0}^{2}=2 \mathrm{GeV}^{2}$ and refit the model parameters (using $\sigma_{p p}^{\mathrm{tot} / \mathrm{el}}, F_{2}, F_{2}^{D(3)}$)

$\sigma_{p p}^{\text {tot }}$ with/without pert. splitting

Multi-parton interactions: perturbative splitting

- for $Q_{0}^{2}=3 \mathrm{GeV}^{2}$: negligible effect
- \Rightarrow choose $Q_{0}^{2}=2 \mathrm{GeV}^{2}$ and refit the model parameters (using $\sigma_{p p}^{\mathrm{tot} / \mathrm{el}}, F_{2}, F_{2}^{D(3)}$)

$\sigma_{p p}^{\text {tot }}$ with/without pert. splitting

Multi-parton interactions: perturbative splitting

- for $Q_{0}^{2}=3 \mathrm{GeV}^{2}$: negligible effect
- \Rightarrow choose $Q_{0}^{2}=2 \mathrm{GeV}^{2}$ and refit the model parameters (using $\sigma_{p p}^{\mathrm{tot} / \mathrm{el}}, F_{2}, F_{2}^{D(3)}$)

$\sigma_{p p}^{\text {tot }}$ with/without pert. splitting

Multi-parton interactions: perturbative splitting

- for $Q_{0}^{2}=3 \mathrm{GeV}^{2}$: negligible effect
- \Rightarrow choose $Q_{0}^{2}=2 \mathrm{GeV}^{2}$ and refit the model parameters (using $\sigma_{p p}^{\text {tot } / \mathrm{el}}, F_{2}, F_{2}^{D(3)}$)

Interaction profile at $\sqrt{s}=14 \mathrm{TeV}$

Multi-parton interactions: perturbative splitting

- for $Q_{0}^{2}=3 \mathrm{GeV}^{2}$: negligible effect
- \Rightarrow choose $Q_{0}^{2}=2 \mathrm{GeV}^{2}$ and refit the model parameters (using $\sigma_{p p}^{\text {tot } / \mathrm{el}}, F_{2}, F_{2}^{D(3)}$)

Interaction profile at $\sqrt{s}=14 \mathrm{TeV}$

Backup

Double Pomeron exchange（DPE）\＆CDF data

－CDF obtained rather large $\sigma_{p \bar{p}}^{\mathrm{DPE}}\left(\simeq 0.2 \times \sigma_{p \bar{p}}^{\mathrm{SD}}\right)$

Double Pomeron exchange (DPE) \& CDF data

- CDF obtained rather large $\sigma_{p \bar{p}}^{\mathrm{DPE}}\left(\simeq 0.2 \times \sigma_{p \bar{p}}^{\mathrm{SD}}\right)$

- sample with $0.035<\xi_{\bar{p}}<0.095$: assumed to consist of $\operatorname{SD}(p)$ \& DPE events
- forward $\xi_{\bar{p}}$ peak fit by SD model
- the rest (events with $\xi_{p}<0.02$) assumed to be DPE contribution

Double Pomeron exchange (DPE) \& CDF data

- CDF obtained rather large $\sigma_{p \bar{p}}^{\mathrm{DPE}}\left(\simeq 0.2 \times \sigma_{p \bar{p}}^{\mathrm{SD}}\right)$

- sample with $0.035<\xi_{\bar{p}}<0.095$: assumed to consist of $\operatorname{SD}(p) \&$ DPE events
- forward $\xi_{\bar{p}}$ peak fit by SD model
- the rest (events with $\xi_{p}<0.02$) assumed to be DPE contribution

Double Pomeron exchange (DPE) \& CDF data

- CDF obtained rather large $\sigma_{p \bar{p}}^{\mathrm{DPE}}\left(\simeq 0.2 \times \sigma_{p \bar{p}}^{\mathrm{SD}}\right)$

- sample with $0.035<\xi_{\bar{p}}<0.095$: assumed to consist of $\operatorname{SD}(p) \&$ DPE events
- forward $\xi_{\bar{p}}$ peak fit by SD model
- the rest (events with $\xi_{p}<0.02$) assumed to be DPE contribution

Double Pomeron exchange (DPE) \& CDF data

- CDF obtained rather large $\sigma_{p \bar{p}}^{\mathrm{DPE}}\left(\simeq 0.2 \times \sigma_{p \bar{p}}^{\mathrm{SD}}\right)$

- sample with $0.035<\xi_{\bar{p}}<0.095$: assumed to consist of $\operatorname{SD}(p)$ \& DPE events
- forward $\xi_{\bar{p}}$ peak fit by SD model
- the rest (events with $\xi_{p}<0.02$) assumed to be DPE contribution

CDF conclusions

- same (eikonal) RG suppression of SD \& DPE
- no additional suppression of DPE wrt SD

Double Pomeron exchange (DPE) \& CDF data

- CDF obtained rather large $\sigma_{p \bar{p}}^{\mathrm{DPE}}\left(\simeq 0.2 \times \sigma_{p \bar{p}}^{\mathrm{SD}}\right)$

- sample with $0.035<\xi_{\bar{p}}<0.095$: assumed to consist of $\operatorname{SD}(p)$ \& DPE events
- forward $\xi_{\bar{p}}$ peak fit by SD model
- the rest (events with $\xi_{p}<0.02$) assumed to be DPE contribution

CDF conclusions

- same (eikonal) RG suppression of SD \& DPE
- no additional suppression of DPE wrt SD

Double Pomeron exchange (DPE) \& CDF data

Caveat: the small rap-gap ($y_{\text {gap }}=\ln \xi_{\bar{p}} \simeq 2 \div 3$) may be formed by fluctuations in particle production

Double Pomeron exchange (DPE) \& CDF data

Caveat: the small rap-gap ($y_{\text {gap }}=\ln \xi_{\bar{p}} \simeq 2 \div 3$) may be formed by fluctuations in particle production

- check with QGSJET-II simulation: all events with $0.035<\xi_{\bar{p}}<0.095$ (exp. triggers NOT implemented)

Double Pomeron exchange (DPE) \& CDF data

Caveat: the small rap-gap ($y_{\text {gap }}=\ln \xi_{\bar{p}} \simeq 2 \div 3$) may be formed by fluctuations in particle production

- check with QGSJET-II simulation: all events with $0.035<\xi_{\bar{p}}<0.095$ (exp. triggers NOT implemented)

Double Pomeron exchange (DPE) \& CDF data

Caveat: the small rap-gap ($y_{\text {gap }}=\ln \xi_{\bar{p}} \simeq 2 \div 3$) may be formed by fluctuations in particle production

- check with QGSJET-II simulation: all events with $0.035<\xi_{\bar{p}}<0.095$ (exp. triggers NOT implemented)

Double Pomeron exchange (DPE) \& CDF data

Caveat: the small rap-gap ($y_{\text {gap }}=\ln \xi_{\bar{p}} \simeq 2 \div 3$) may be formed by fluctuations in particle production

- check with QGSJET-II simulation: all events with $0.035<\xi_{\bar{p}}<0.095$ (exp. triggers NOT implemented)

Double Pomeron exchange (DPE) \& CDF data

Caveat: the small rap-gap ($y_{\text {gap }}=\ln \xi_{\bar{p}} \simeq 2 \div 3$) may be formed by fluctuations in particle production

- check with QGSJET-II simulation: all events with $0.035<\xi_{\bar{p}}<0.095$ (exp. triggers NOT implemented)

- similar fraction of events with $\xi_{p}<0.02$ obtained $(\simeq 0.2)$ - but: dominated bv SD

Bottom line:

- accurate studies of t-dependence necessary for a reliable determination of DPE cross section

