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INTRODUCTION

Unitarity screening considerations, below saturation, date back to the

ISR epoch, where they provided a simple bypass over seeming paradoxes.

1) Whereas non screened σtot grows like a power s∆, σel grows faster, like s2∆

(up to log(s) corrections). With no screening, σel will, eventually, be larger

than σtot.

2) Even though elastic and diffractive scatterings are dynamically similar, the

energy dependence of diffractive cross sections is significantly more moderate.

3) The elastic amplitude is central in impact parameter b, peaking at b=0.

The diffractive amplitudes are peripheral, peaking at large b, which gets larger

with energy.

Estimates of high energy soft scatterings require a unified analysis of elastic

and diffractive scatterings, incorporating s and t unitarity screenings.



S-CHANNEL UNITARITY

The simplest s-channel unitarity bound on ael(s, b) is obtained from

a diagonal re-scattering matrix, where repeated elastic re-scatterings secure

s-channel unitarity, 2Imael(s, b) = |ael(s, b)|
2 +Gin(s, b). i.e. At a given (s,b),

σtot = σel + σinel. Its general solution is:

ael(s, b) = i
(

1 − e−Ω(s,b)/2
)

, Gin(s, b) = 1 − e−Ω(s,b). Ω is arbitrary.

The output s-unitarity bound is | ael(s, b) |≤ 2, leading to very large total and

elastic LHC cross sections, which are not supported by TOTEM recent data.

In a Glauber type eikonal approximation, the input opacity Ω(s, b) is real. It

equals to the imaginary part of the input Born term, a IP exchange in our

context. The output ael(s, b) is imaginary.

The consequent bound is | ael(s, b) |≤ 1, which is the black disc bound.

In a single channel eikonal model, the screened cross sections are:

σtot = 2
∫

d2b
(

1 − e−Ω(s,b)/2
)

, σel =
∫

d2b
(

1 − e−Ω(s,b)/2
)2
, σinel =

∫

d2b
(

1 − e−Ω(s,b)
)

.



The figure shows the s-channel black bound of unity, and the bound implied by

analyticity/crossing symmetry on the expanding b-amplitude. The consequent

Froissart-Martin bound is: σtot ≤ Cln2(s/s0), s0 = 1GeV 2, C ∝ 1/2m2
π ' 30mb.

C is far too large to be relevant at the TeV-scale.

s-unitarity implies: σel ≤
1
2
σtot and σinel ≥

1
2
σtot. At saturation, σel = σinel = 1

2
σtot.

Introducing diffraction, significantly changes the features of s-unitarity.

However, the saturation signatures remain valid.



GOOD-WALKER DECOMPOSITION

Consider a system of two orthonormal states, a hadron Ψh and a diffractive

state ΨD. ΨD replaces the continuous diffractive Fock states. Good-Walker

(GW) noted that Ψh and ΨD do not diagonalize the 2x2 interaction matrix T.

Let Ψ1 and Ψ2 be eigen states of T.

Ψh = αΨ1 + βΨ2, ΨD = −βΨ1 + αΨ2, α2 + β2 = 1.

The eigen states initiate 4 Ai,k elastic GW amplitudes (ψi+ψk → ψi+ψk). i,k=1,2.

For initial p(p̄)−p we have A1,2 = A2,1. I shall follow the GLM definition, in which

the mass distribution of ΨD is not defined and requires a specification.

The elastic, SD and DD amplitudes in a 2 channel screened GW model are:

ael(s, b) = i{α4A1,1 + 2α2β2A1,2 + β4A2,2},

asd(s, b) = iαβ{−α2A1,1 + (α2 − β2)A1,2 + β2A2,2},

add(s, b) = iα2β2{A1,1 − 2A1,2 + A2,2},

Ai,k(s, b) =
(

1 − e
1

2
Ωi,k(s,b)

)

≤ 1.



GW mechanism changes the structure of unitarity below saturation.

• In the GW sector we obtain the Pumplin bound: σel + σGWdiff ≤
1
2σtot.

σGWdiff is the sum of the GW soft diffractive cross sections.

• Below saturation, σel ≤
1
2σtot − σGWdiff and σinel ≥

1
2σtot + σGWdiff .

• ael(s, b) = 1, when and only when, A1,1(s, b) = A1,2(s, b) = A2,2(s, b) = 1.

• When ael(s, b) = 1, all diffractive amplitudes at the same (s,b) vanish.

• As we shall see, there is a distinction between GW and non GW diffraction.

Regardless, GW saturation signatures are valid also in the non GW sector.

• The saturation signature, σel = σinel = 1
2σtot, in a multi channel calculation is

coupled to σdiff = 0. Consequently, prior to saturation the diffractive

cross sections stop growing and start to decrease with energy.

This is a clear signature preceding saturation.



CROSSED CHANNELED UNITARITY

Translating the concepts presented into a viable phenomenology requires a

specification of Ω(s, b), for which Regge Pomeron (IP ) theory is a powerful tool.

Mueller(1971) applied 3 body unitarity to equate the cross section of

a + b→M 2
sd + b to the triple Regge diagram a + b + b̄→ a + b + b̄, with a leading

3IP vertex term.

The 3IP approximation is valid when
m2

p

M2
sd

<< 1 and
M2

sd
s

<< 1.

The leading energy/mass dependences are dσ3IP

dt dM2
sd

∝ s2∆IP ( 1
M2

sd

)1+∆IP .



a) b)

Mueller’s 3IP approximation for non GW diffraction is the lowest order of

t-channel multi IP interactions, compatible with t-channel unitarity.

Recall that unitarity screening of GW (”low mass”) diffraction is carried out

explicitly by eikonalization, while the screening of non GW (”high mass”)

diffraction is carried out by the survival probability (to be discussed).

The figure shows the IP Green function. Multi IP interactions are summed

differently in the various IP models. Note the analogy with QED:

a) Enhanced diagrams, present the renormalization of the propagator.

b) Semi enhanced diagrams, present the pIPp vertex renormalization.



SURVIVAL PROBABILITY

The experimental signature of a IP exchanged reaction is a large rapidity gap

(LRG), devoid of hadrons in the η − φ Lego plot, η = −ln(tanθ
2
).

S2, the LRG survival probability, is a unitarity induced suppression factor of

non GW diffraction, soft or hard: S2 = σscreeneddiff /σnonscreeneddiff .

It is the probability that the LRG signature will not be filled by debris

(partons and/or hadrons) originating from either the s-channel re-scatterings

of the spectator partons, or by the t-channel multi IP interactions.

Denote the gap survival factor initiated by s-channel eikonalization S2
eik, and

the one initiated by t-channel multi IP interactions, S2
mIP .

The incoming projectiles are summed over (i,k).

S2 is obtained from a convolution of S2
eik and S2

mIP .

A simpler, reasonable approximation, is S2 = S2
eik · S

2
mIP .



THE COMPONENTS OF DIFFRACTION

Many of my discussions with Aliosha ended with a civilized disagreement

on the incorporation of the GW mechanism, with Mueller’s approach.

Commonly, low mass diffraction is associated with GW and high mass

diffraction is non GW, with a low 4-5 GeV bound.

Aliosha strongly believed (without a proof) that GW mass upper bound and

Mueller’s high mass lower bound coincide.

i.e. there is no overlap of low and high mass diffraction.

This point of view is shared by KMR, Ostapchenko and Poghosyan.

GLM offer (also without a proof) that GW and high mass diffraction have the

same upper bound.

In GLM most of the diffraction is GW, while in KMR it is high mass.

GLM do not offer a diffractive mass distribution, which needs a dynamic

specification.



THE PARTONIC POMERON

Current IP models differ in details, but have in common a relatively adjusted

large input ∆IP and a diminishing α′
IP .

Recall that, traditionally, ∆IP determines the energy dependence of the total,

elastic and diffractive cross sections while α′
IP determines the forward slopes.

This picture is modified in updated IP models in which s and t unitarity screen-

ings induce a much smaller IP intercept at t=0, denoted ∆eff
IP , which gets smaller

with energy. The exceedingly small fitted α′
IP implies a partonic description of

the IP which leads to a pQCD interpretation.

Gribov’s partonic Regge theory provides the microscopic sub structure of the

IP where the slope of the IP trajectory is related to the mean transverse mo-

mentum of the partonic dipoles constructing the Pomeron.

α′
IP ∝ 1/ < pt >

2, accordingly αS ∝ π/ln
(

< p2
t > /Λ2

QCD

)

<< 1.



We obtain a IP with hardness changing continuesly from hard (BFKL like) to

soft (Regge like). This is a non trivial relation as the soft IP is a simple moving

pole in J-plane, while, the BFKL hard IP is a branch cut, approximated though,

as a simple pole with ∆IP = 0.2 − 0.3, α′
IP ' 0.

GLM and KMR models are rooted in Gribov’s partonic IP theory with a hard

pQCD IP input. It is softened by unitarity screening (GLM), or the decrease of

its partons’ transverse momentum (KMR). The two definitions are correlated.

GLM and KMR have a bound of validity, at 60(GLM) and 100(KMR) TeV,

implied by their approximations. Consequently, as attractive as updated IP

models are, we can not utilize them above 100 TeV.

To this end, the only relevant models are single channel, most of which have a

logarithmic parametrization input. As noted, the main deficiency of these

models is that they ignore the diffractive channels and their handling of

unitarity screening is partial at best.



The single IP picture suggested by the updated IP models implies a smooth

transition from the input hard IP to a soft IP . This picture is supported by the

the HERA dependence of λ = ∆IP on Q2 shown in the figure above.

Note though, that a smooth transition from a soft to hard IP can be reproduced

also by a 2 IPs (soft and hard) model such as Ostapchenco’s.



UNITARITY SATURATION

As we saw, unitarity saturation is coupled to 2 experimental signatures:

σinel
σtot

= σel
σtot

= 0.5,

σdiff = 0.

Checking the experimental cross section data at the TeV-scale, we get:

• σinel/σtot = 0.754(CDF), 0.748(TOTEM), 0.69(AUGER).

The numbers above suggest a very slow approach toward saturation.

• Block and Halzen single channel model, reproduces well the elastic

and total cross sections, can be applied at arbitrary high energies.

The prediction of BH at the Planck-scale (1.22·1016TeV ) is:

σinel/σtot = 1131mb/2067mb = 0.55.

• The above cross section data, supported by model predictions, implies

that saturation will be attained, if at all, at non realistic energies.



• The predicted vanishing of the diffractive cross sections at saturation

implies that σsd, which up to the TEVATRON grows with energy slowly,

compatible with unitarity screenings, will eventually start to reduce.

This may serve as a signature that the elastic amplitude is approaching

saturation.

• The preliminary TOTEM measurements suggest a severe change in the

energy dependence of σsd, which is considerably smaller than its value at

CDF.

σsd/σtot = 0.114(CDF), 0.066(TOTEM).

The diffractive data suggests a much faster approach toward unitarity

saturation than the elastic/total data. As it stands TOTEM diffractive data

is very preliminary. Never the less, the compatibility between the information

derived from different channels of soft scattering deserves a very careful study!


