

# First Data from the NOvA Experiment

Denis Perevalov, Fermi National Accelerator Laboratory for the NOvA Collaboration September 17, 2013 Natal, Brazil XXIV Workshop on Weak Interactions and Neutrinos

XXIV Workshop on Weak Interactions and Neutrino WIN 2013

# **Overview**

NOvA Experiment Introduction
Physics Reach
Current Status
Summary



#### The NOvA Collaboration



#### 36 Institutions from 7 countries; 181 collaborators

3

Argonne National Laboratory University of Athens Banaras Hindu University California Institute of Technology Institute of Physics of the Academy of Sciences of the Czech Republic Charles University, Prague University of Cincinnati Czech Technical University University of Delhi Fermilab Federal Univ. of Goias IndianInstitute of Technology, Guwahati Harvard University Indian Institute of Technology University of Hyderabad Indiana University Iowa State University University of Jammu Lebedev Physical Institute Michigan State University University of Minnesota, Crookston University of Minnesota, Duluth University of Minnesota, Twin Cities Institute for Nuclear Research, Moscow Panjat University University of South Carolina Southern Methodist University Stanford University University of Sussex University of Tennessee University of Texas at Austin Tufts University University of Virginia Wichita State University Winona State University College of William and Mary



## **The NOvA Experiment**

# NOvA

•NuMI (neutrinos from Main Injector) beamline (same as MINOS)

•Off-axis (14 mrad)

 $\bullet v_e$  Appearance





# **The NOvA Experiment**

#### **Goals:**

#### ○ Measure $v_{\mu} \rightarrow v_{e}$ oscillations.

- Measure  $\hat{\theta}_{13}$
- o Determine the mass hierarchy
- $\circ$  Constrain  $\delta_{CP}$
- $_{\odot}~$  Determine the  $\theta_{23}$  octant

#### $\circ~$ Measure $\nu_{\mu}$ disappearance.

• Precision measurement of  $|\Delta m^2_{32}|$ ,  $\sin^2 2\theta_{23}$ 

#### **O Other physics**

- Near Detector neutrino cross-sections
- o Sterile neutrinos
- o Supernova search
- $\circ$  Monopole search
- o Dark matter searches











7

- A Large 14 kton Far Detector
- A smaller functionally equivalent 0.3 kton Near Detector





- A Large 14 kton Far Detector
- A smaller functionally equivalent 0.3 kton Near Detector



#### **NOvA Detectors**



- A smaller functionally equivalent 0.3 kton Near Detector
  - 6.6cm x 3.9cm x 15m cells made out of PVC. Total of 244.064 cells for For Detector
  - 344,064 cells for Far Detector
  - Filled with liquid scintillator.
  - 896 alternating X/Y planes for Far Detector



6.6cm

3.9cm

#### **NOvA Detectors**



**Detector Technology and Electronics** 

**NOvA Cell** 

•Wave length shifting fiber collects light, shifts the light from violet to blue-green





#### **Detector Technology and Electronics**



•Wave length shifting fiber collects light, shifts the light from violet to blue-green

- APDs
  - •Costs about \$10 per channel
  - •Gain of 100
  - •Quantum efficiency ~80%.
- •The cooling system actively cool the APDs to
- -15°C in order to decrease the electronic noise.
- The **gas drying system** ensures that the APDs remain dry all the time.

#### **Detector Technology and Electronics**



•Wave length shifting fiber collects light, shifts the light from violet to blue-green

• APDs

- •Costs about \$10 per channel
- •Gain of 100
- •Quantum efficiency ~80%.
- •The cooling system actively cool the APDs to
- -15°C in order to decrease the electronic noise.

• The **gas drying system** ensures that the APDs remain dry all the time.

#### •Front End Boards :

- Low-noise ASIC amplifier to maximize the sensitivity to small signals.
  - Analog-to-digital converter samples each pixel with a frequency of 2 MHz (8 MHz at Near Detector) APD temperature control



## **Simulated Neutrino Interactions**



#### $v_{\mu}$ charged-current

- long, well-defined muon track
- short proton track with large energy deposition at end

#### $v_e$ charged-current

- single EM shower
- characteristic EM shower development

# Neutral-current with $\pi^0$ final state

- multiple displaced EM showers
- possible gaps near event vertex



## **Prototype Near Detector on Surface**

- Tested detector design, installation procedures, electronics, DAQ.
- Collected beam data from two neutrino beamlines from December 2010 to April 30<sup>th</sup> 2012.
- o Analyzed Data, performed calibrations.







# **Physics Reach**



 $\mathbf{\bar{v}_{e}}^{(-)}$  Appearance 1 and 2  $\sigma$  Contours for Starred Point 0.09  $P(\bar{v}_e)$  $\begin{array}{l} \Delta m_{23}{}^2 = 2.32 \ 10^{-3} \ eV^2 \\ \sin^2(2\theta_{13}) = 0.095 \\ \sin^2(2\theta_{23}) = 0.97 \end{array}$ 0.08 0.07 0.06 Probability of oscillations for 0.05 both  $v_m$  and  $v_m$  as a function of  $\delta$ . 0.04 0.03  $\Delta m^2 > 0$ 0.02  $\circ \delta = 0$ 



Denis Perevalov, WIN 2013 16-21 September 2013 Natal, Brazil

0

0.01

0

 $\begin{array}{l} \delta = \pi/2 \\ \delta = \pi \end{array}$ 

δ = 3π/2

0.02

0.04

17

0.08

**P**(v<sub>e</sub>)

0.06

# $\mathbf{\bar{v}_{e}}^{(-)}$ Appearance

1 and 2  $\sigma$  Contours for Starred Point

Inverse mass hierarchy gives different values for the probabilities.





# $\mathbf{\bar{v}_{e}}^{(-)}$ Appearance

 $P(\bar{v}_{e})$ 

1 and 2  $\sigma$  Contours for Starred Point

Example of event counts after  $v_e$ selection for 3 years of neutrinos + 3 years of anti-neutrinos

| Events $(\sin^2(2\theta_{13})=0.095)$ | ν  | anti-v |  |
|---------------------------------------|----|--------|--|
| NC                                    | 19 | 10     |  |
| $\nu_{\mu}CC$                         | 5  | <1     |  |
| $\text{beam}  \nu_e$                  | 8  | 5      |  |
| Tot. BG                               | 32 | 15     |  |
| Signal                                | 68 | 32     |  |







#### **Mass Hierarchy Sensitivity**







### $\theta_{23}$ Octant

Currently there is an ambiguity in  $\theta_{23}$ because atmospheric neutrino experiments measured  $v_{\mu}$  disappearance, which is sensitive to  $\sin^2 2\theta_{23}$ 

NOvA will have a sensitivity for resolving whether  $\theta_{23} > \pi/4$  or  $\theta_{23} < \pi/4$ 

#### 1 and 2 $\sigma$ Contours for Starred Point





### $\theta_{23}$ Octant







# $v_{\mu}$ Disappearance Sensitivity

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \sin^2(2\Theta_{23})\sin^2\left(\frac{1.27\Delta m_{32}^2 L}{E}\right)$$

The position of the peak for unoscillated  $v_{\mu}$  rates energy spectrum (~2 GeV) is close to the first oscillation minimum at L=810 km.

This provides a great sensitivity to both  $\Delta m_{32}^2$ ,  $sin^2 2\theta_{23}$ 





## $v_{\mu}$ Disappearance Sensitivity



NOvA can greatly improve the knowledge of  $|\Delta m^2_{32}|$ ,  $\sin^2 2\theta_{23}$ 



25

# 26

# **Status**







NOVA



Denis Perevalov, WIN 2013 16-21 September 2013 Natal, Brazil

NOVA







# **Far Detector Cosmic Ray Data**





• Fermilab has completed a series of upgrades to the accelerator complex and NuMI beamline to increase the power capability from 300kW to 700kW.

- First beam on September 4, 2013
- Need Booster upgrades to reach 700kW
- Started looking for neutrinos!



# Conclusions

- NOvA is a leading HEP experiment in the US looking for  $v_{\mu} \rightarrow v_{e}$  oscillations.
- NOvA Far Detector construction is going well. 70% of the blocks are put in place, 50% filled with scintillator and 15% is instrumented.
- Analyzing cosmic data, performing calibrations.
- First beam data started on September 4, 2013. Analyzing data to find the neutrino beam signal.
- Stay Tuned!





NOvA Main Webpage: http://www-nova.fnal.gov/





# BACKUPS



# **Far Detector Cosmic Ray Data**

#### One of the first cosmic events observed in the Far Detector



First Cosmic events are observed in the Far DetectorCalibrations are being performed





## **Electronics**



- Cell readout via looped WLS fiber to APD sensor
  - □ APD costs about \$10 per channel, has gain of 100, actively cooled to to -15°C
- FEB serves several purposes
  - □ Low-noise ASIC amplifier to maximize the sensitivity to small signals.
  - Analog-to-digital converter samples each pixel with a frequency of 2 MHz (8 MHz at Near Detector)
  - □ APD temperature control



#### **Data Acquisition System**



- 64 FEBs provide input to the Data Concentrator Module (DCM)
- DCM packetize the data and sends it through the Gigabit Ethernet to Buffer Nodes
- No data loss at this stage of the data transmission



#### **Data Acquisition System**





Denis Perevalov, WIN 2013 16-21 September 2013 Natal, Brazil

39



#### **Prototype Near Detector on Surface**

#### NuMI Neutrinos (MINOS, Minerva, Argoneut)



We do observe the neutrinos from the NuMI beamline



**Prototype Near Detector on Surface** 

#### **Booster Neutrinos (MiniBooNE, SciBooNE, MicroBooNE)**



We do observe the neutrinos from the Booster beamline



#### **Calibration. Attenuation.**

#### **Cosmic Data**





#### Calibration

#### **Michel Electron Energy Spectrum**





#### **Neutrino flux**



The NOvA off-axis beam has a peak in the 1-3 GeV signal region with 1.6% wrong sign contamination and 0.6% beam v<sub>e</sub>

For anti-neutrino configuration has only 10% wrong sign contamination and 0.8% beam v<sub>e</sub>

# $(\mathbf{\bar{v}}_{e})$ Appearance

 $\circ$  NOvA measures the probability of v<sub>e</sub> appearance in a v<sub>µ</sub> beam:

$$\begin{split} \mathsf{P}(\stackrel{(\overline{\nu}_{\mu})}{\overset{(+)}{\rightarrow}} \stackrel{(\overline{\nu}_{e})}{\overset{(+)}{\rightarrow}} &\approx \sin^{2}2\theta_{13} \sin^{2}\theta_{23} \frac{\sin^{2}(A-1)\Delta}{(A-1)^{2}} \\ & \stackrel{(+)}{\overset{(+)}{\rightarrow}} 2\alpha \sin\theta_{13} \sin\delta_{\mathsf{CP}} \sin2\theta_{12} \sin2\theta_{23} \frac{\sin A\Delta}{A} \frac{\sin(A-1)\Delta}{(A-1)} \sin\Delta \\ & + 2\alpha \sin\theta_{13} \cos\delta_{\mathsf{CP}} \sin2\theta_{12} \sin2\theta_{23} \frac{\sin A\Delta}{A} \frac{\sin(A-1)\Delta}{(A-1)} \cos\Delta \\ & \alpha &= \Delta m_{21}^{2}/\Delta m_{31}^{2} \qquad \Delta &= \Delta m_{31}^{2} L/(4E) \qquad A = \stackrel{(-)}{\overset{(-)}{\rightarrow}} G_{\mathsf{f}} n_{\mathsf{e}} L/(\sqrt{2}\Delta) \end{split}$$

- $\circ~sin^2(2\theta_{13})$  has been measured which allows us to make measurements of  $\delta_{CP}$  and mass hierarchy.
- Note that we can improve  $\theta_{23}$  measurement from  $v_{\mu}$  disappearance.
- Probability is enhanced or suppressed due to matter effects which depend on the mass hierarchy, i.e the sign of  $\Delta m_{31}^2 \sim \Delta m_{32}^2$  as well as neutrino vs. anti-neutrino running.



# Sensitivity to $\delta_{CP}$ versus sin<sup>2</sup>2 $\theta_{13}$

•A Feldman-Cousins method was used

•Results are consistent with secondary selection and cross-check method; agree with truth within  $\sim 1\sigma$ 





47