Status of LHCb

Roger Forty (CERN) On behalf of the LHCb Collaboration

- 1. Experimental infrastructure
- 2. Detector installation
- 3. Preparation for physics
- 4. Collaboration matters

LHCC Open Session

21 November 2007

The LHCb Experiment

- Dedicated experiment for precision measurement of CP violation and rare decays of b-hadrons (and charm) at the LHC
- Collider-mode operation at same time as the general-purpose detectors, with less-focussed beams \rightarrow most events have a single pp interaction

2

1. Experimental infrastructure

Shielding wall Most detectors open (against radiation) transversely for access Electronics + CPU farm in barracks (Control Room on surface) Offset interaction point To maximize space

Shielding wall

• Upper part completed Labour intensive "Egyptian work" as inaccessible by crane...

 Assembly of lower part is progressing well Paused while a problem with leaking cooling-water pipes is investigated

View of the cavern

Spectrometer magnet

- Warm dipole magnet completed and mapped two years ago
- Switched on again last month
- Operated from CERN Control Centre, together with the three compensating magnets
- Monitored by ECS:

Beam pipe

- Conical, three beryllium sections
- Installation now complete
- Aluminium spares being made (in case of accident)

Bake-out

- Leaks developed in the third Be section during acceptance tests Sealed by LHC vacuum group (AT/VAC) using silicon varnish
- Bake-out completed successfully in June: ready for operation

2. Detector installation

RICHsystemter Track Cal Muon detector

VELO

- 21 stations of Si wafer pairs
 with *r* and φ strip readout
- Split in two halves to allow retraction from beam line
- Both detector halves now completed, installed in the pit

RF-boxes

- Modules sit in secondary vacuum, separated from machine vacuum by 300 µm AlMg3 foil RF-boxes
 - Intricately formed to allow for overlap of the two halves
- Leaks developed (~10⁻⁵ mbar l/s) but only between primary and secondary vacua: no immediate concern for operation
 - R&D has started for replacement RF-boxes

Installation of detector halves

C-side installation, 30 October (video extracts...)

Installation of detector halves

 After completion: testing I/V characteristics of modules → all OK

VELO readout

- Analogue readout → plenty of copper cables, all now installed
- First read-out of data (noise) using the full electronics chain

Trigger Tracker

- VELO is in ~ field-free region
 → straight tracks
- TT is a silicon microstrip detector placed in fringe field of magnet to give first $p_{\rm T}$ measurement for the trigger
- Sensor ladders all completed Excellent quality < 0.1% bad strips Detector boxes + infrastructure installed in pit
- Installation of sensors into detector boxes underway, will be complete end-2007

Tracking Stations

• VELO + TT define tracks upstream of magnet IT + OT measure them after deflection:

Inner Tracker

- IT ladder production complete Support system + infrastructure ready
- Mounting of silicon detectors in their boxes in progress
- First two boxes installed in pit Remaining 10 installation ~ one/week

Outer Tracker

- Drift chambers: straw tubes 5 mm diameter, 5 m length
- Detector installation complete Electronics installation underway
- Cosmic trigger counters set up for commissioning

OT gain-loss issue (recap)

- Extensive ageing studies made during R&D phase
 - Expect 1 C/cm integrated charge at hottest region after 10 years
 - High rate, high dose tests
 → no ageing detected
- However, irradiation with weak lab source for a short period (left over a weekend)
 - Significant gain loss observed
 Similar results with ⁹⁰Sr (β-emitter)

Scanned area: 10 ×16 cm

5 m module

Largest effect for 2–5 nA/cm

Culprit identified

• Test chamber built without glue

Araldite (AY103) added at entrance

• 1 m-long chambers constructed with different glue:

- Trabond (2115) gives no apparent gain loss
- → Problem is from out-gassing of Araldite

Minimising the effect

- The gain-loss effect is clearly reduced by flushing chambers
 - All modules are continuously flushed, including next ~ year to first data
- Warming modules to 40°C during flushing also helps
 - Heating jackets prepared for use in situ

Effect on experiment

- Strongly varying occupancy over OT
 → variation of current expected
 - Region likely to be affected is close to beam pipe
- If flushing + heating does not remove gain-loss effect, would start to see lower efficiency in those modules
- Effect can be repaired (temporarily) by HV training
 - 20 hours at 1.9 kV
- Module production capability will be maintained, and we will investigate resources required for production of replacement modules in case of need

RICH system

- Two RICH detectors to cover momentum range 2–100 GeV
- RICH-2 already completed last year, was only waiting for its photon detectors
- RICH-1 now nearly complete Aerogel radiator delivered

RICH-1 mirrors

- Material budget critical for spherical mirrors as inside tracking volume
- Carbon fibre construction: $1.5\% X_0$ produced by CMA (US) and coated by SESO (France)

Photon detectors

- After the long history of HPD development, production of all 550 required tubes is now complete! (Principal industrial partner: DEP, Holland)
- Excellent performance measured

RICH-2 commissioning

- RICH-2 is now fully equipped with 288 HPDs
 - -10 cannot take 20 kV (~3%), to be replaced
- Commissioning is in progress Pattern of light spots projected onto the HPD plane (will be used for calibration of magnetic distortions)

Note: this layout is a feature of the display tubes are hexagonally close-packed in reality

Number of photoelectrons

Calorimeter system

- Composed of Scintillating Pad Detector/PreShower
 + ECAL + HCAL
- First priority: Level-0 trigger

ECAL: Pb/sci.fi. Shashlik (25 X_0) Inner module **Middle** modu modu particles HCAL: tiles scintillators fibers light-guide PMT 27

Calorimeter system

- Complete calorimeter system has been installed and cabled; Commissioning now in progress
- Cosmics not very well adapted for use in LHCb (few are horizontal 100 m underground) Nevertheless, cosmic triggers being set up for calorimeter commissioning
- In the mean time, system exercised using LED pulses: signal display in HCAL after reconstruction via full chain

Muon detector

- All MWPCs for Muon detector stations M2–5 installed except for 20 (out of 1084, ~2%) that need to be replaced
- All MWPCs and 3-GEMs for M1 produced

M1 installation

- Completion of the M1 infrastructure expected early 2008
 - Delayed: priority given to completing M2–5
 - Has to fit in the crowded region between RICH-2 and Calorimeters:

- Installation of chambers will follow, but may not be complete for the 2008 run
 - Use of M1 is to improve $p_{\rm T}$ determination in the Level-0 trigger
 - Not crucial for the low-rate conditions expected in 2008

Trigger

- Trigger has two levels:
 - 1. Level-0 (hardware, 1 MHz output) Full detector then read out into farm of commercial CPUs
 - 2. HLT (software, 2 kHz output \rightarrow storage)
- Level-0 uses information from:
 - *Pile-up system* Dedicated silicon sensors in VELO tank fast detection of multiple pp vertices
 - Calorimeter trigger
 high-p_T clusters from e, γ, h
 - *Muon trigger* high-p_T (> ~1 GeV) μ candidates
- Production of all Level-0 electronics boards now complete
 - Commissioning in progress

 $\rightarrowtail L0 Decision Unit$ $\rightarrow overall decision$

L0DU card

High Level Trigger

- First release of complete HLT framework last month Suitable for benchmarking CPUs to be purchased for the farm
- Implements strategy of "trigger confirmation" HLT focuses on confirming objects that triggered Level-0 by matching them to tracks in VELO or T-stations
 - eg confirm L0 muons in T stations, extrapolate to origin, calculate mass \rightarrow online J/ ψ (takes ~ 1 ms)

Online system

- In LHCb the ECS is used to control the DAQ, as well as for monitoring and control of the detectors
 - "One click" starting of a run recently achieved (reading RICH-2)

Data Acquisition

- Common read-out board used by most detectors (TELL1) all now installed
- Read-out network is based on Force10 switch (E1200, as used by CERN/IT)
- Control room is now equipped — and is being used!

CPU farm

- CPU farm for HLT (and monitoring) will eventually be 1000–2000 boxes
 - Depends on price/performance of CPU selected (and processing time required for HLT)
 - Market survey completed, tendering underway for first slice
- Due to lower rates expected at start-up, plan to install ~20% of CPU farm and switch capacity by May 2008, remainder early 2009

Recent test of CPU performance

3. Preparation for physics

- Alignment of detectors under study using simulation
 - Matrix inversion (Millepede) and iterative residual minimisation
- Exercising alignment techniques using test-beam data

Computing

- Successful use of Grid made for large scale simulation + reco.
 > 10⁸ fully-simulated events recently generated ("DC06" data) including bb background at 2 and 5×10³² cm⁻²s⁻¹ luminosity
- However, difficulties encountered with "stripping" the data
 - After reconstruction, first step for physics analyses is to centrally run pre-selections (with loose cuts) for the channels of interest
 - Jobs need to read in rDST's and write DST's (+ETC) at Tier-1 sites (CERN, CNAF, GridKa, IN2P3, NIKHEF, PIC, RAL)
 Problems encountered with storage management at the sites
 → stripping of DC06 data now restarted + reprocess at same time
- Use of the Grid for analysis jobs is increasing steadily

Reconstruction

- Continuous effort made to maintain excellent performance of tracking and particle ID software
 - Keep up with added realism in simulation (tilted detectors, updated material budget)
 - Prepare for adaptation to real data
- Tracking developed for open VELO (will be important at start of run)

Physics studies

- References to recent analyses collected together on a web page <u>http://lhcb-phys.web.cern.ch/lhcb-phys/DC04_physics_performance</u>
- Keeping an eye on the impressive progress of the B factories:
- Observation of $D^0 \overline{D}^0$ mixing:
 - Time dependence of ~ 4000 wrong-sign $D^0 \rightarrow K^+\pi^-$ decays
 - LHCb has ~ 300 Hz of trigger output rate dedicated to charm...
 - → 47,000 tagged wrong-sign decays/year (2fb⁻¹)
 - Will probe CP violation in the D⁰ system at the 10⁻³ level
- First constraints on CKM angle $\gamma \text{ using } B^{\pm} \rightarrow D(K_{S}\pi^{+}\pi^{-}) K^{\pm}$

LHCb THCp		Summary of DC04 physics performance					
Home	Physics	<u>E-mail</u>	Notes	Meetings	Search		

Quick access to sections of this page: Expected yields and sensitivities | Flavour tagging and proper time | Reconstruction | DC04 MC samples |

This page summarizes the LHCb physics performance obtained at the end of 2007 using Monte Carlo studies based on the so-called <u>DC04 samples</u>. These results, documented in <u>public LHCb notes</u>, update and supersede the ones reported in the physics chapter of the <u>LHCb re-optimization TDR</u>.

Expected yields and sensitivities

Decay mode	Total eff. (%)	2 fb ⁻¹ signal yield	B _{bb} /S	B _{specific} /S	Physics observable	2 fb ⁻¹ statistical precision	10 fb ⁻¹ statistical precision	Assumptions, comments	More info
B _u control channels	1	1		1		1	1	1	<u>.</u>
$B_u \to D^{0_\bullet +_V}$	0.125	2.4M	0.75±0.03						CERN-LHCb-2006-058
$B_u \to D^0(K\pi)\pi^+$	0.64	1.0M	0.13±0.03]		CERN-LHCb-2006-058
B_s mixing effects (including CPV) in	tree dec	ays		I:	,	1	1	1	L.
$B_s \rightarrow D_s^{-\bullet+} v$	0.123	1.06M	0.36±0.13						CERN-LHCb-2007-029
$B_s \rightarrow D_s^- \pi^+$	0.39	140k	[0.014,0.05] 90% CL	[0.08,0.4] (all) 0.044±0.014 (Dπ)	Δm_s	0.007 ps ⁻¹		B/S=0.2	CERN-LHCb-2007-017 CERN-LHCb-2007-041
$B_s \rightarrow D_s K^{\pm}$	0.32	6.2k	< 0.18 90% CL	[0.08,3] (all) 0.15±0.05 (D _s π)	$\begin{array}{l} \gamma^+\varphi_{\rm s}~({\rm tagged})\\ \gamma^+\varphi_{\rm s}\\ \Delta({\rm T1/T2})\\ \lambda \end{array}$	12.7 deg 10.3 deg 10.3 deg 0.061	5.7 deg 4.6 deg 4.6 deg 0.027	B/S=0.7	CERN-LHCb-2007-017 CERN-LHCb-2007-041
$B_{g} \rightarrow J/\psi(\bullet \bullet) \varphi$	2.05	131k	0.12±0.03		$\begin{bmatrix} R_T \\ \Delta \Gamma_s / \Gamma_s \\ \phi_s \end{bmatrix}$	0.0004 0.0092 0.023			CERN-LHCb-2006-047 CERN-THESIS-2006-042
$B_s \to J/\psi(\bullet \bullet)\eta(\gamma\gamma)$	_	~8.5k	2.0 (tot)		ϕ_{s}	0.109			
			L	HCb stat	us repo	ort			40

 $B^{\pm} \rightarrow D(K_{S}\pi^{+}\pi^{-}) K^{\pm}$

 Mode used by B factories to give best existing constraint on CKM angle γ:

 $53^{\circ}_{-18}^{+15^{\circ}} \pm 3^{\circ} \pm 9^{\circ}$ [Belle] $92^{\circ} \pm 41^{\circ} \pm 11^{\circ} \pm 12^{\circ}$ [BaBar]

 $(\text{stat, syst, model}) \\ \sim 400 \text{ events each}$

- LHCb yield ~ $5000 \text{ events}/2 \text{ fb}^{-1}$
- Spot the difference between the Dalitz plots for B⁺ and B⁻ → effect of CP violation
- Binning can reduce model dependence Precision on $\gamma \sim 12^{\circ}$ (in one year)

Physics Studies (continued)

- Preparing to open up the \sim unexplored B_s sector
- Current competition is from the Tevatron experiments *eg* measurement of the $B_s - \overline{B}_s$ mixing phase ϕ_s
 - Counterpart for B_s system of the $B^0 \overline{B}^0$ mixing phase $\phi_d = 2\beta$ Very small in the Standard Model: $-2\lambda^2 \eta \approx -0.04$ rad
 - − First experimental constraint from D0: $\phi_s = -0.79 \pm 0.56$ rad using ~1000 B_s → J/ψ ϕ events [PRL 98/121801] LHCb simulation
 - LHCb expects ~ 130,000 events/year (2 fb⁻¹) $\rightarrow \sigma(\phi_s) = 0.02$ rad
- Preparing analyses where we can make an early impact
 - $eg B_s \rightarrow \mu^+ \mu^-$

$B_s \rightarrow \mu^+ \mu^-$

- BR = $(3.4 \pm 0.5) \times 10^{-9}$ in Standard Model Can be significantly enhanced in SUSY
- Current limit $< 47 \times 10^{-9}$ at 90% CL [CDF]
- Using loose selection, LHCb expects
 - ~ 40 signal events/2 fb⁻¹ (SM BR)
 - ~ 1500 bkg evs (mostly $b \rightarrow \mu, \bar{b} \rightarrow \mu$)
 - Statistical method then applied to separate signal from background using particle ID, vertexing and mass variables

 $\sigma(m_{uu}) = 18 \text{ MeV}$

• Limit set at 90% CL (if no signal): Already interesting for 0.1 fb⁻¹

10

1

4. Collaboration matters

- LHCb is a collaboration of ~ 650 members from 48 institutes
 - in Brazil, China, France, Germany, Ireland, Italy, Poland, Romania, Russia, Spain, Switzerland, Ukraine, UK, and the US
- At our last collaboration week (11-14 September):

- University College Dublin was admitted as a full member (previously Technical Associate)
- Olav Ullaland (CERN) took over from Alasdair Smith as Resource Coordinator
- Andrey Golutvin (ITEP) was elected as new Spokesperson He will take over from our first spokesperson, Tatsuya Nakada on 1 May 2008 for 3 years

Cost and Funding

- The cost of the experiment is 75.3 MCHF, unchanged from MoU and last LHCC status report (15 November 2006)
- At that time 1.3 MCHF was missing from the funding Since then extra contributions have been pledged: kCHF 55 (Brazil), 300 (France), 20 (Spain), 400 (UK), 500 (US)

 \rightarrow Experiment is now fully funded

- Further expenditure is however foreseen:
 - Replacement of the third beryllium beam pipe section Installed section UX85/3 had minor leaks, closed with varnish OK for initial operation, but concern for long-term reliability
 - 2. Replacement set of VELO modules

The installed silicon sensors will receive a substantial radiation dose Expected to survive for $\int L \sim 6$ fb⁻¹ (i.e. 3 "nominal" years) Profit from existing production setup to produce a replacement set

Organization (simplified)

New bodies introduced to adapt to next phase:	Collaboration Board Chairperson: E. Aslanides	Preparation for the future		
Construction \rightarrow Exploitation	LHCb management Spokesperson Deputy spokesperson Technical coordinator Resource coordinator O. Ullaland			
Operations Planning Group Spokesperson (chair) LHCb management Physics Coordinator O. Schneider LHC contact person A. Schopper Commissioning Coordinator Project leaders for Computing, Physics Software, Trigger and Online	Technical Board Technical Coordinator (chair) LHCb management Subsystem Project Leaders Commissioning Coordinator Electronics Coordinator Upgrade Convener Integration Manager, GLIMOS	Physics Planning Group Physics Coordinator (chair) Spokesperson + deputy Physics working group conveners: Production & decay models, Tagging, Proper-time & mixing, CP measurements, Rare decays, and Jets		
Commissioning Task Force Commissioning Coordinator O. Callot	Subsystem Projects Expt ^I . Area, Magnet, VELO, RICH, ST, OT, Calorimeter, Muon, Level-0, Trigger, Online, Physics Software, Computing	Upgrade Working Group Upgrade Convener: F. Muheim		
	LHCb status report	46		

Upgrade Working Group

- LHCb is designed to run at an average luminosity of 2×10^{32} and be able to handle 5×10^{32} cm⁻²s⁻¹ for short periods
 - For a "nominal" year of 10⁷ seconds this corresponds to 2 fb⁻¹
 Most physics goals are expressed in terms of the reach for 10 fb⁻¹
 (i.e. 5 nominal years)
- Sensitivities would then only slowly increase \rightarrow investigating upgrade of detector to handle higher luminosity: few ×10³³ cm⁻²s⁻¹
 - Not directly coupled to SLHC machine upgrade, since already available, but may well overlap in time with upgrades of ATLAS+CMS
- Working Group set up to identify the R&D required to make an upgrade of LHCb feasible, and to make the physics case
 - Issues of triggering, fast vertex detection, electronics, radiation dose, handling the pile-up and higher occupancy, etc...
 - \rightarrow Expression of Interest for R&D towards an upgrade is in preparation

Conclusion

- Installation of LHCb is almost complete
 - All major structures are in place (except for M1, in progress)
 - Sensitive elements are now produced and mostly in place:
 RICH-1, the Silicon Trackers, and M1 remain to be instrumented, schedule continues to be tight for those detectors
 - Progress made to understand and minimise the OT gain-loss
- Commissioning is now underway
 - Using cosmics where possible, otherwise test pulses, light spots, etc.
 - The first beam-gas events will be very instructive
- Preparation for physics continues
 - The experiment, including software, will be ready for first beam
 - Important measurements can made even with 0.1 fb⁻¹ of data We are eager to see the first collisions!

