



### TEST BEAM RESULTS

Olga Kochebina Laboratoire de l'Accélérateur Linéaire, Orsay, France

LHCb Calorimeter upgrade meeting, 12/04/2013

### **Outline**

#### Tests:

- Software clipping
- Noise without "T"
- Tests of discrete component (COTS)
  - Noise
  - Plateau

# Software clipping

# Software clipping

- How do I do it?
  - From the Oscilloscope I have 2 types of curves:
    - With hardware clipping
    - Without clipping
  - Make clipping on unclipped shape by software
    - Clipping is done by the function:

$$v_1(t_0) = \mathbf{A} \cdot (v_0(t_0) - \mathbf{B} \cdot v_0(t_0 - \mathbf{t_d}))$$

where A, B and t<sub>d</sub> – parameters of clipping

- Make clipping by ourselves
- Fit to "hardware" clipped distributions with this function → find parameters



### Zoom on the fit



$$v_1(t_0) = \mathbf{A} \cdot (v_0(t_0) - \mathbf{B} \cdot v_0(t_0 - \mathbf{t_d}))$$

| Var   | Value     | Error   |
|-------|-----------|---------|
| $t_d$ | 1.034e-08 | 4.5e-10 |
| Α     | 9.113e-01 | 8.4e-03 |
| В     | 3.191e-01 | 2.5e-03 |

## Noise without T

35910

# Run 558, noise only(with T) pattern==2 subtracted

Ch\_sub[2] Ch\_sub[3]



Centered at 0 with positive shift →OK

# Run 575, noise only(without T) pattern==2 subtracted

Ch\_sub[2] Ch\_sub[3] ch\_sub[3] {sample==7&&pattern==2&&t0>2600&&t0<3300} ch sub[2] {sample==7&&t0>1500&&t0<2500} htemp htemp Entries Entries Mean 0.4655 Mean RMS 3.163  $\chi^2$  / ndf 9.151 / 8  $14.29 \pm 2.75$ Sigma  $1.369 \pm 0.183$ ch sub[2] ch sub[3]

Centered at 0 with positive shift →OK

**NB:** RMS <sub>ASIC</sub> ~ 1.6 after subtraction

# Tests of the COTS

# Pedestal

#### Pedestal subtraction

- How do I do it?
  - For channels 1 and 3, area of interest it is ch1 is with signal ch3: only noise in the sample 7
  - Pedestal= min(ch[1]\_sample5, ch[1]\_sample6), values of adc is positive
  - Event-by-event:
    - ch\_sub[1]=(ch[1] pedestal)
  - Same for ch[3]

# Noise

Run 585+586, noise only pattern==2
Not subtracted



# Run 585+586, noise only pattern==2 subtracted

Ch\_sub[1]

ch sub[1] {sample==7&&t0>1500}



Ch\_sub[3]



Centered at 0 with positive shift →OK

**NB: RMS ASIC ~ 1.6 after subtraction** 

## Plateau test

#### How to do

- ADC(FE)<sub>ped subtracted</sub> vs t<sub>0</sub>: 2D plot
- Fit with something
  - Here it is "pol2"
- From the ADC peak value
   make step on t<sub>0</sub> ±1 ns (40 tdc), ±2ns
  - → check plateau, give result in %



#### E=50GeV, COTS Channel 1 #events = 10kh ch t0 50 h ch t0 50 9000 8000 8000 Entries 6425 Entries 6425 Mean x 2444 Mean x 2444 4800 Mean y 1205 Mean y 1205 RMS x 263.9 RMS x 263.9 197.4 RMS y 197.4 RMS y 1600 1600 1391.08 1400 1400 1200 1200 1000 1000 800 TDC t, ns $t_0 = 2574.47$ Test of plateau h diff 50 Entries Mean x Mean y 0.5819 RMS x 1.581 RMS y 0.3492 Minimizer is Linear 1.2 E ND£ 0.8 391.08 2574.47 0.6 0.4 0.2

### Conclusions

- Software clipping
  - Works fine → problem is not here
- Noise without "T"
  - Better than with "T" → expected noise from the "T"
- Tests of discrete component (COTS)

| Noise   | worse than ASIC |
|---------|-----------------|
| Plateau | ~ 1% in ± 2ns   |

### Tests to do?