

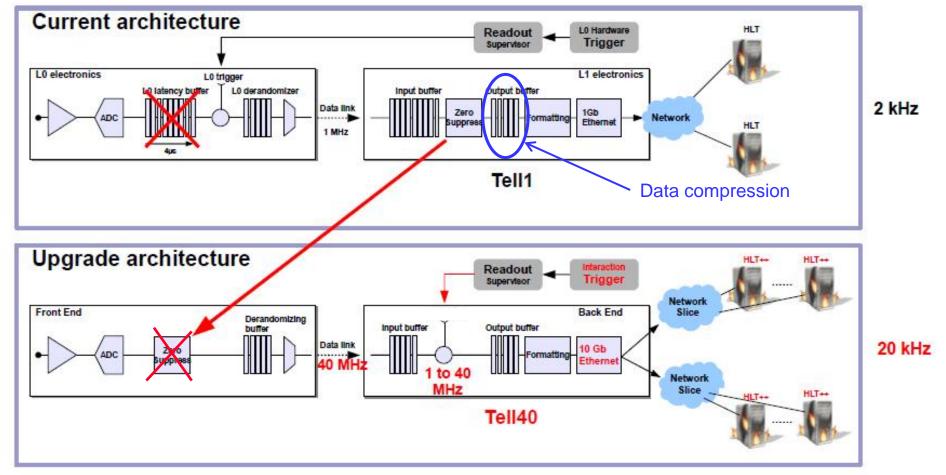
Front-End architecture

- Upgrade architecture
 - What is unchanged?
- ECAL HCAL Front-end Crate
- FEB and CROC architecture
- Link between Front-end, readout and TFC crate
- Data format
- New development for Tests Board
- Summary

Calorimeter upgrade architecture

What is (un)changed?

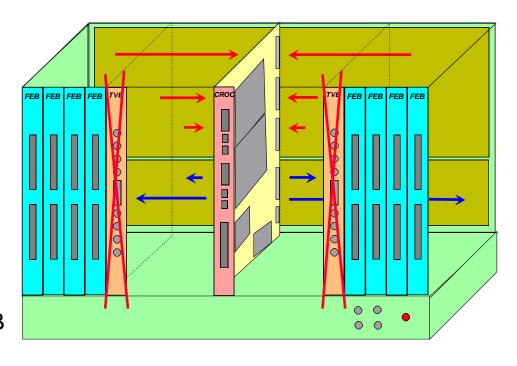
- On the detector side
 - Most of the module are kept (some modules in the inner region replaced)
 - PMT: a reduce gain is applied on the gain to keep them alive
 - Cockcroft-Walton bases (and PS), signal cables, etc ... are kept
 - Remove the SPD, PRS and lead absorber
- On the balcony
 - Keep the crates, backplanes, power supplies, ...
 - Replace the Front-end electronics (GBT 40 MHz readout)
 - **■** Make it compliant with the crates, power supplies, ...
 - Migrate L0 Calo electronics to LLT
- Counting room
 - TELL1 ⇒TELL40
 - Slow control : SPECS ⇒ GBT



Calorimeter upgrade architecture

- What is changed?
 - Current architecture
 - Data compression in the TELL1 board
 - L0 latency buffer

- Upgrade architecture
 - No zero suppression
 - Used 112 bit width of the GBT


LA BORATOIRE DE L'ACCÉLÉRATEUR ILNÉALRE

ECAL-HCAL Front-end crate

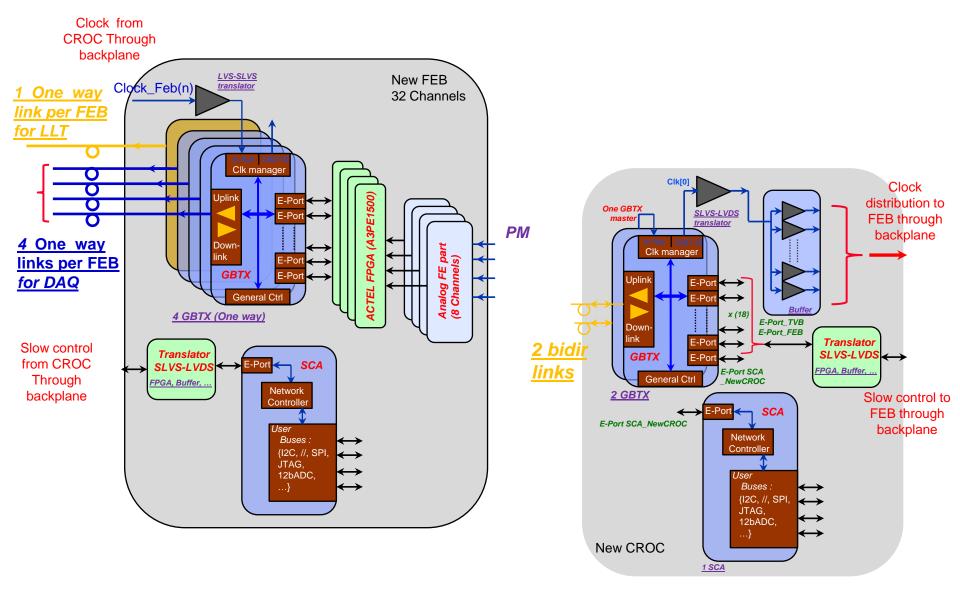
Front-end crate

- Same backplane
 - 3U ⇒ power supply, clock distribution, ...
 - 6U ⇒ links between boards inside the same crate
- New Front-end Board
- New CROC board
- Remove TVB

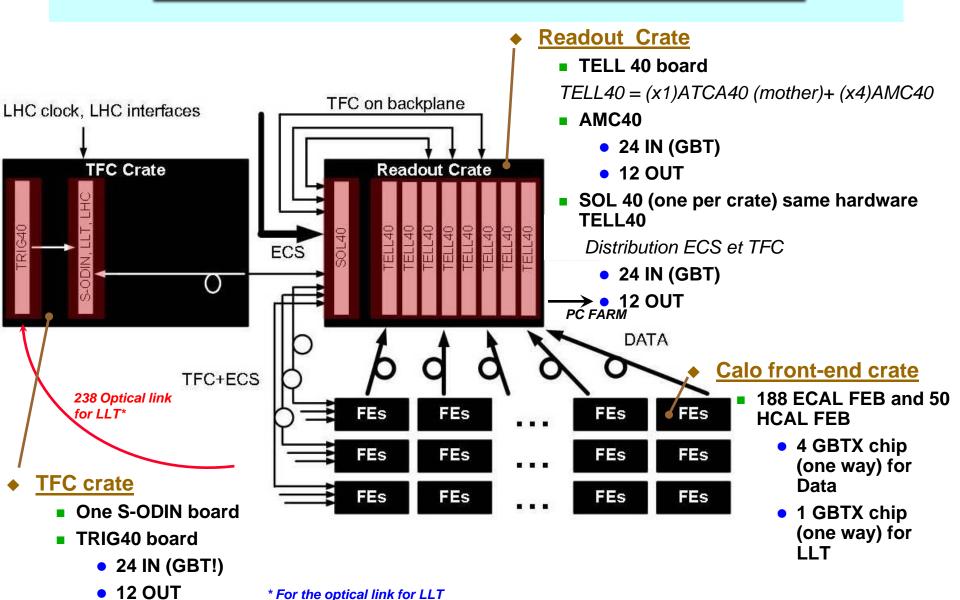
Add an extra LLT fiber on the FEB

FEB and GBT

- On the new Calorimeter FEB
 - 4 GBTX chip (one way) for Data
 - 1 GBTX chip (one way) for LLT
 - 1 SCA chip (FEB Ctrl/Cmd)


CROC and GBT

- On new CROC board
 - 2 GBTX (one master) chip with bidirectional optical fiber (right side and left side of FE crate)
 - 1 SCA chip (CROC Ctrl/Cmd)


Front-end Board and CROC Board architecture

Links Calo front-end crate ATCA40

LHCb

see Cyril 's Talk February 1st, 2013

Data format

- ◆ Trigger data format proposal: (1 link 80 bits)
 - ⇒ local address ■ 5b
 - 16b ⇒ data for trigger(8b Max ET, 8b Sum ET)
 - 12b ⇒ BXID
 - 6b ⇒ Calo Hit (number of channel under threshold)
 - 5b ⇒ Crate Id, under discussion (see Patrick's talk)
 - 4b ⇒ FEB Id, under discussion (see Patrick's talk)
 - 1b ⇒ Status
 - 49 / 80 bits used
- **Data format proposal (4 links 112 bits)**
 - (8x12=96b) ⇒ data
 - 5b ⇒ Crate Id
 - **4b** ⇒ FEB Id

Olivier Duarte

7b ⇒ Lsb of BXID

One 112 bit word for each bunch crossing, No compression. continuous data flow

New and last development for test board?

Olivier Duarte

◆ SPI

- We need 4 spares wire between A3PE FFPGA and analog mezzanine
 - Spare_A3P_To_Analog_Mezza[3:0] used to clock 20 MHZ
 - Used parallel bus implementation wire to SPI

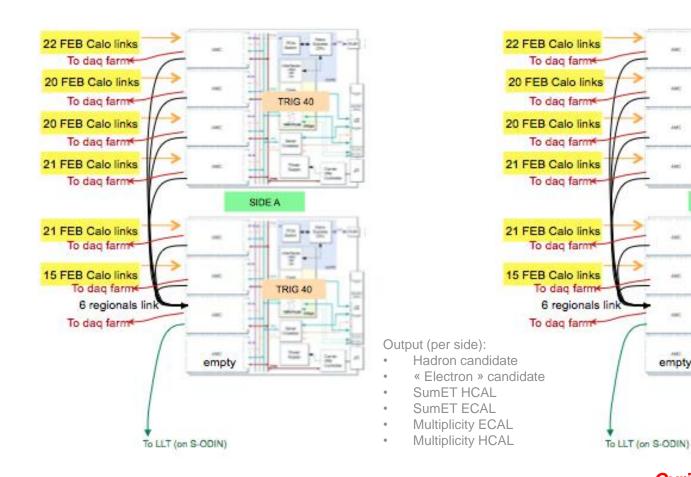
```
(Add_ParBus[7:0], N_Rd_ParBus,
N_Wr_ParBus, N_OE_ParBus)
```

Re-used block developed at LAL (Christophe, Jihane)

<u>Summary</u>

- Upgrade architecture with New FEB, New CROC board and without TVB.
- Re-used old Front-end crate and old 6U and 3U backplane.
- On each FEB, 4 GBTX chip (one way) for data, 1 GBTX chip (one way) for LLT.
- Used Actel FPGA family reprogrammable (A3PE family) for new and new CROC board.
- Prototype new feb and new Croc current 2014 (GBT available ?)

<u>Spare</u>



Olivier Duarte

<u>LLT Calo</u>

◆ Implementation on the TRIG40 side

TRIG 40

SIDE C

