


# Strawman LHCONE Point to Point Experiment Plan

LHCONE meeting

Paris, June 17-18, 2013





#### **This Strawman**

 This strawman is not so much intended to be the experiment plan, but rather a framework for developing the plan, though some suggestions are included

# **Objectives**

- Determine the readiness of NSI implementations to serve in production environments
- Fine-tune the user interface
- Determine if virtual circuits can contribute to "fixing" the site WAN-LAN problem:
  - by providing a direct connection to a (presumably) trusted collaborator
  - by drawing attention to the fact that there is a problem at the boundary
  - etc.
- Engage in an interaction of mutual education with the sites
- Demonstrate a robust and workable multi-domain circuit setup capability
- Define and adapt/integrate/deploy the science applications (CMS PhEDEx, ATLAS PANDA) with circuit services.

## **Approach**

- Phase I: WAN WAN
  - Implement and test the circuit service within the WAN and (maybe) aggregator environment
- Phase II: Site boundary—Regional—WAN—Regional—Site boundary
  - Terminate the circuits at the site boundary
  - Both ATLAS and CMS expressed interest in being part of the initial proof-of-concept demo
- Phase III: End-to-End circuits
  - Use circuits to connect systems / clusters at one site directly to systems / clusters at another site
- Phase IV: Full mesh of circuits
  - Build a full mesh of static circuits whose bandwidth can be set by the site
  - Need to be careful here that the approach will scale

#### Phase I: WAN – WAN

## Objective

- Verify basic circuit functionality in the WANs, aggregators regionals, and exchange points
- Test plan
  - TBD
- Milestones
  - Draw up a test plan for the R&E domains to verify interoperating NSI implementations
  - Produce a test suite that WAN, regionals, and exchange operators can use to verify their NSI implementations
    - Step one: Define the functionality needed for the service to be useful,
  - 3. Identify systems within the domains of the WAN providers that can be used for testing.
  - 4. Conduct cross-domain circuit setup testing in the WAN provider environment.
    - Agree on and document success criteria

#### Phase II:

## Site boundary – Regional – WAN – Regional – Site boundary

## Objective

 Use circuits to connect site infrastructure by circuits, but do not assume that automated circuit setup will extend into the site

## Test plan

- Identify a set of sites and intervening networks that are willing and capable of implementing the P2P service.
- Bandwidth used could be a portion of the bandwidth used for VRF infrastructure today
- What to do with the circuit?
  - Connect to a statically defined site VLAN that could be used to connect an end system
  - Connect to a statically defined site VLAN that connects to an internal router interface that could then rout some of the hosts using the current VRF over the circuit
    - Routing issues vis a vis LHCONE VRFs?

# Phase II: Site boundary — ... – Site boundary

#### Milestones

- 1. Michael Ernst and Tony Wildish will liaise with the Experiments to expose the idea and solicit site participation, as well as on integration of an appropriate interface to the applications.
- 2. Document for the site LAN engineers what is required to provide this capability both on the external and internal facing site border router interfaces.
- 3. Determine a baseline of performance prior to implementing the circuit service experiment and prior to sites preparing for the experiment.
  - This may already exist in the LHC analysis systems performance stats.
- 4. Define experiments and metrics that will demonstrate the capability ideally between a number of diverse sites Tier 2, Tier 3, and geographically remote (on different continents)

## Phase III: End-toEnd circuits

## Objective

- Demonstrate circuits that connect end systems within sites that have a virtual circuit infrastructure and inter-domain circuit set-up capability
- Determine the right level of API abstraction
- Try and address concerns that circuits are complex to deploy and debug

## Test plan

- For API determination, continue joint application and networking experts meeting at CERN
  - ALICE especially is interested in doing clever optimizations with information from the network and co-scheduling resources.

## Phase III: End-toEnd circuits

#### Milestones

- 1. Solicit experience from the entities that already have experience in using circuit service capability
  - ANSE, DYNES, ESnet, Internet2, GEANT, NRENs, etc.
- 2. Document for the site LAN engineers and the LHC resource administrators what is required to provide this capability in the interior of the site and at the end systems
- 3. Deploy and verify site hardware, software, and engineering capability
- Define experiments and metrics that will demonstrate the capability ideally between a number of diverse sites – Tier 2, Tier 3, and geographically remote (on different continents)
  - This might be done with the existing LHC analysis systems performance monitors.

## Phase IV: Full mesh of circuits

- Objective
  - Build a full mesh of static circuits whose bandwidth can be increased/decreased based on application/workflow needs.
- Test plan
  - TBD
- Milestones
  - Develop the test plan.

# Resources required

- Sites with sufficient WAN network capacity that meaningful VC experiments can be done
  - (given that VCs will reduce the available capacity for best-effort traffic or what ever else the physical circuit is used for)
- Sites with hardware and engineering resources sufficient to deploy an NSI domain and willingness to devote the engineering effort needed to set up and conduct experiments
- HEP workflow software environments willing to integrate an API that will enable them to communicate their bandwidth requirements to the network, so the bandwidth of the circuits can be determined

## **Evaluation and Results**

• Were the Objectives achieved in a way that is seen as a net gain?