Prototyping xTCA for BPM controls

Bartosz Bielawski

bartosz.bielawski@cern.ch

April 9, 2013

Bartosz Bielawski (CERN)

Prototyping xTCA for BPM controls

April 9, 2013 1 / 20

Table of contents

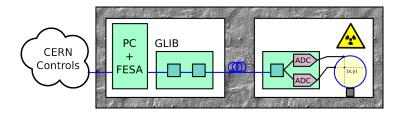
Introduction

2 BE-CO's needs for the next generation of FEC

- Current state of FEC
- Requirements

3 BPM TDAQ

- Test system
- The first impressions
- GLIB
- Description and schematics
- Progress and plans for the future


Summary

BPM TDAQ System

CLIC BPM

A new stripline BPM for CLIC Test Facility is being designed in collaboration with LAPP.

To integrate BPMs into CERN's infrastructure the GLIB will be used as a master and will provide commands and clock and will retrieve sampled data.

The team

The following people are involved in the project:

• CERN (BE-CO-FE):

Stefano Magnoni GLIB-based BPM master side (VHDL), Bartosz Bielawski GLIB-based BPM master side (VHDL, slides), Sylvestre Catin μ TCA system expert, Frank Locci project leader.

Original design:

• LAPP:

Jean-Marc Nappa BPM front-end electonics design (HW & FW), Sebastien Vilalte BPM front-end electonics design (HW & FW), Introduction

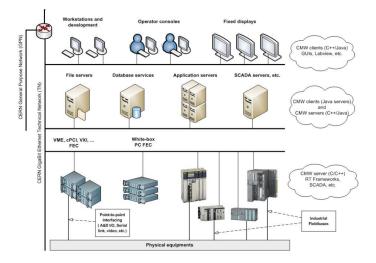
Why we chose to try μ TCA?

Definition

FEC — Front End Computer

- evaluation of μ TCA as a future platform for FECs is one of BE-CO projects,
- prototype BPMs need to be integrated into BE-CO infrastructure and we already have GLIB board,
- due to requirements (speed, radiation) BPMs is a good candidate as BE-CO pilot system for μ TCA evaluation,
- μ TCA is already evaluated at CERN,

Current state of FEC


- Over 1000 FECs for control of all accelerators,
- There are many different systems currently used at CERN:
 - VME64x*, VXI*, VXS,
 - cPCI*, PXI,
 - uTCA, ATCA,
 - Industrial PCs*
- VME standard slowly becomes obsolete,
- Migration from PPC to Intel CPUs,
- CLIC project needs a FEC for the master side (alcove).

*Used as FEC

Bartosz Bielawski (CERN)

BE-CO's needs for the next generation of FEC Current state of FEC

Current CO infrastructure

Bartosz Bielawski (CERN)

▶ < 불 ▶ 불 ∽ < < April 9, 2013 7 / 20

(日) (同) (三) (三)

RAS requirements

Definition

RAS — Reliability, Availability, Serviceability

- remote management over Ethernet:
 - monitor: voltage/current, temp., power and fan status, bandwidth usage,
 - control: fan speed, CPU reset, power on/off.
- highly modular design (reduced repair time),
- redundant power supply,
- support for RTM (Rear Transition Module),
- clock lines and trigger lines (White Rabbit?),
- service units (power, fanout, LED panels) and sockets (power, ethernet, serial terminal) accessibility.

Additional features

These are not actual requirements but we would like to have:

- multiple fast serial links (to hub and/or adjacent slots) supporting Gigabit Ethernet and/or PCI Express and/or other differential buses,
- hot-swap for power supply and cooling units,
- common management interface for different devices,
- supported by multiple companies,
- based on commonly used standards,
- modules available off the shelf:
 - digital and analogue I/Os,
 - fast digitizers/oscilloscopes,
 - waveform generators,
 - serial interfaces (RS232, RS485, CAN, ...),
- standardized connectors/backplane layout,
- cost effective.

Test system

For evaluation purposes we have bought:

- Schroff 19" Rack:
 - 2x MCH slot. 4x PM slot.
 - 12x ACM slots double height, mid size,
 - double star backplane conforming to μ TCA.4.
- 1x NAT MCH with Clock Module.
- 2x NAT μ TCA AC Power Module (600W),
- 1x CT CPU module with Intel Core-i7. 4 GB RAM.
- 1x ESD ADC/DAC ACM (24x DIO, 8x ADC (16b@200kHz), 2x DAC (16b@200kHz), 4x RS485,
- GLIB (from PH-ESE).

BPM TDAQ Test system

Test system — photos

The first impressions

Our first impressions are not very positive...

- We placed the order* 2/11/2012, ETA: 2/03/2013 (4m),
- ... the crate arrived after 5 months (27/03/2013),
- ... with wrong power supplies [†],
- Some of the boards we got seem to were fixed by hand,
- Extracting boards can be tricky, the handles are small and the boards fit tight.

*NAT (Provider: INA Swiss) †48 VDC in place of 230 VAC

Bartosz Bielawski (CERN)

GLIB

On the other hand GLIB seems to be a nice piece of hardware!

- 4 cages for SFP+ on-board,
- 2 FMC sockets,
- flexible clock distribution system,
- can work in stand-alone mode (without crate)

The software/firmware:

- system part provided already written,
- internally uses IPBus and Wishbone,
- Ethernet connectivity out of the box,
- Python scripts can be used to test/manage the board.

GLIB: Test setup

Bartosz Bielawski (CERN)

Prototyping xTCA for BPM controls

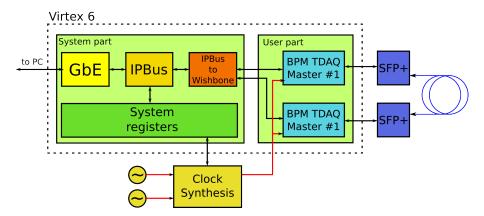
April 9, 2013 14 / 20

BPM TDAQ Description and schematics

Prototype BPM Read-out system [1]

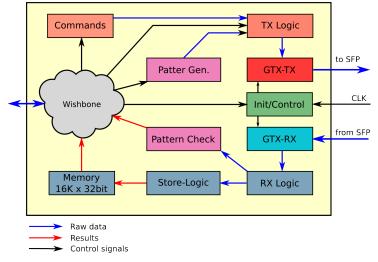
The system consists of two boards:

- the slave board (analogue frontend),
- the master board (GLIB in μ TCA)


Protocol:

- Line rate: 3.84 GHz,
- 8b/10b encoding, 32b words, K28.5 comma, SOF K28.3,
- Record size: 64b x 8192.

BPM TDAQ Description and schematics


Prototype BPM Read-out system [2]

BPM TDAQ Description and schematics

Prototype BPM Read-out system [3]

BPM TDAQ Master

April 9, 2013 17 / 20

3

(日) (周) (三) (三)

Progress and Plans for the future

We have already:

- set up the GLIB and environment for the stand-alone mode,
- wrote BPM TDAQ core, simulated and integrated with GLIB project,

Work in progress:

- test the design with real BPM readout card,
- make it work with GLIB used in the μ TCA crate and with SLC6,
- write a FESA class to support the BPM,

Possible future improvements:

- add PCIe support,
- add more (than 4) slaves using FMC with SFPs.

Summary

Summary

- The μ TCA devices are not so OTS as they are advertised,
 - that is why we did not yet test our crate,
 - but CO is working on making SLC6 run on it.
- GLIB is a nice project:
 - stand-alone mode is great!,
 - IPBus with PyChips makes work much easier,
 - we used wbgen2[‡] to generate interfaces for our core,
 - the White Rabbit[§] capabilities could be added,
 - the quality of supplied scripts could be improved,
 - and some more comments in the VHDL code could be handy...
- We will start playing with our crate as soon as the PSUs arrive,
- Those tiny ATmega16 IPMI modules are used even in commercial equipment.

[‡]http://www.ohwr.org/projects/wishbone-gen [§]http://www.ohwr.org/projects/white-rabbit

Bartosz Bielawski (CERN)

Prototyping xTCA for BPM controls

Summary

Questions and Answers

That's all we prepared for today. Do you have any questions?

Bartosz Bielawski (CERN)

Prototyping xTCA for BPM controls

April 9, 2013 20 / 20