Mass relations and extrapolations

Karsten Riisager
Aarhus University

March 21, 2013

Contents

Update and extension of the work of A.S. Jensen, P.G. Hansen and B. Jonson, Nucl.Phys. A431 (1984) 395 - PR C87 (2013) 024319

Mass relations

- Systematic cancellation of smooth terms
- Differences \leftrightarrow derivatives
- Determine pairing terms
- Signature of shell structure

Results

- The $N=152$ shell
- Extrapolations
- Examples: $2011 \rightarrow 2012$ mass tables
- Future extensions ?

Summary
Many thanks to Aksel Jensen and Dennis Hove!

Introduction

Earlier relations

Garvey-Kelson relations very fruitful, all interactions between nucleons cancel to first order G.T. Garvey et al, Rev.Mod.Phys. 41 (69) S1

General overview of masses and other "local mass formulas" D. Lunney, J.M. Pearson and C. Thibault, Rev.Mod.Phys. 75 (03) 1021
Chaotic component in masses ?! e.g. PRL 88 (02) 092502; PL B637 (06) 48; PRL 96 (06) 042502
Recent activity (Van Isacker, Bertsch, Kirson and others)

Theory

Nuclear binding energies

Divide the binding energy into three terms:

$$
B(N, Z)=B_{L D}(N, Z)+B_{\text {shell }}(N, Z)+\Delta(N, Z)
$$

a smooth (liquid drop) term, a shell term and a "pairing" term.

The shell term:

Systematic derivations

Mass relations Q defined formally as
second order mass difference
$Q\left(n_{1}, z_{1} ; n_{2}, z_{2}\right)=-S\left(N-n_{1}, Z-z_{1}\right)+2 S(N, Z)-S\left(N+n_{1}, Z+z_{1}\right)$
between "separations" (first order difference)

$$
S(N, Z)=B(N, Z)-B\left(N-n_{2}, Z-z_{2}\right)
$$

Cancellations

If B were continous and smooth up to second order terms would cancel. By Taylor expansion one finds

$$
\begin{aligned}
Q= & -\frac{\partial^{3} B}{\partial N^{3}} n_{1}^{2} n_{2}-\frac{\partial^{3} B}{\partial N^{2} \partial Z} n_{1}\left(n_{1} z_{2}+2 n_{2} z_{1}\right) \\
& -\frac{\partial^{3} B}{\partial N \partial Z^{2}} z_{1}\left(n_{2} z_{1}+2 n_{1} z_{2}\right)-\frac{\partial^{3} B}{\partial Z^{3}} z_{1}^{2} z_{2}
\end{aligned}
$$

I.e. expect only strong signals from abrupt or irregular changes: Shells, pairing energies etc

Examples from SEMF

The semi-empirical mass formula contains terms like:
A (Volume) - all derivatives vanish
$A^{2 / 3}$ (Surface) - all derivatives equal $\frac{8}{27} A^{-7 / 3}$
$Z^{2} / A^{1 / 3}$ (Coulomb) - derivatives of order $A^{-4 / 3}$
$(N-Z)^{2} / A$ (Symmetry) - derivatives of order A^{-2}
Pairing goes as $(-1)^{N}$ or $(-1)^{Z}$ - so depends on n_{i}, z_{i} !

Theory

SEMF contribution, numerically

Alternative to binding energy: Q_{α}

The Q_{α} is almost similar to S :

$$
S(N, Z)-B\left({ }^{4} \mathrm{He}\right)=-Q_{\alpha}
$$

and can therefore be used in its place
$Q\left(n_{1}, z_{1} ; n_{2}, z_{2}\right)=Q_{\alpha}\left(N-n_{1}, Z-z_{1}\right)-2 Q_{\alpha}(N, Z)+Q_{\alpha}\left(N+n_{1}, Z+z_{1}\right)$

NB! Should use ground state \rightarrow ground state values. . .

Examples

Some examples

\[

\]

Examples

The "double" structures

Reference

Source of mass data

2012 mass table: G. Audi, M. Wang, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer, Chinese Phys. C36 (2012) 1287

2011 prerelease: Georges Audi and Wang Meng, private communication, April 2011

Pairing estimates Δ_{x}

Results from Δ_{n}

$\Delta_{n}(\mathrm{keV})$

Pairing estimates Δ_{x}

Zoom of Δ_{n}

$\Delta_{n}(\mathrm{keV})$

N

Pairing estimates Δ_{x}

Results from Δ_{p}

$\Delta_{p}(\mathrm{keV})$

Pairing estimates Δ_{x}

Zoom of Δ_{p}

$\Delta_{p}(\mathrm{keV})$

Relations based on Q_{α}

Results from $\Delta_{2 n}$

$\Delta_{2 n}(\mathrm{keV}), Q_{\alpha}$

ISOLDE seminar
Mass relations and extrapolations

Relations based on Q_{α}

Results from $\Delta_{2 \alpha}$

Results from $\Delta_{2 n}$

The $\Delta_{2 x}$ relations

Results from $\Delta_{2 p}$

The $\Delta_{2 x}$ relations

Results from $\Delta_{2 \alpha}$

Results from $\Delta_{2(N-Z)}$

Use for extrapolations

If (1) the average behaviour of a mass relation is known in a region and (2) all but one masses in one specific relation is known then one can estimate the missing mass
(1) typically gives bias and scatter a few 100 keV

Estimates from "different directions" can be compared to test the accuracy independent determinations !

Accuracy of extrapolations

Combine several Δ 's to improve reliability.

Compare final results (with extrapolation uncertainty) to new mass values, i.e. values in 2012 tables but not in 2011 preview:

Conclusions

- Systematic derivation of mass relations

Conclusions

- Systematic derivation of mass relations
- Extendable to light nuclei ?

Conclusions

- Systematic derivation of mass relations
- Extendable to light nuclei ?
- Indicator for shells

Conclusions

- Systematic derivation of mass relations
- Extendable to light nuclei ?
- Indicator for shells
- Extract local structures $=$ pairing

Conclusions

- Systematic derivation of mass relations
- Extendable to light nuclei ?
- Indicator for shells
- Extract local structures = pairing
- New extrapolations possible, accuracy typically 2-300 keV

