Mass relations and extrapolations

Karsten Riisager

Aarhus University

March 21, 2013

・ロト ・回ト ・ヨト

< ≣⇒

Results

Contents

Update and extension of the work of A.S. Jensen, P.G. Hansen and B. Jonson, Nucl.Phys. A431 (1984) 395 — PR C87 (2013) 024319

Mass relations

- Systematic cancellation of smooth terms
- Differences ↔ derivatives
- Determine pairing terms
- Signature of shell structure

Results

- The N=152 shell
- Extrapolations
- Examples: $2011 \rightarrow 2012$ mass tables

• Future extensions ?

Summary

Many thanks to Aksel Jensen and Dennis Hove !

イロト イヨト イヨト イヨト

Introduction

Earlier relations

Garvey-Kelson relations very fruitful, all interactions between nucleons cancel to first order G.T. Garvey et al, Rev.Mod.Phys. 41 (69) S1

General overview of masses and other "local mass formulas" D. Lunney, J.M. Pearson and C. Thibault, Rev.Mod.Phys. 75 (03) 1021

Chaotic component in masses ?! e.g. PRL 88 (02) 092502; PL B637 (06) 48; PRL 96 (06) 042502

Recent activity (Van Isacker, Bertsch, Kirson and others)

Mass relations

Results

Conclusion

Theory

Nuclear binding energies

Divide the binding energy into three terms:

 $B(N,Z) = B_{LD}(N,Z) + B_{shell}(N,Z) + \Delta(N,Z),$

a smooth (liquid drop) term, a shell term and a "pairing" term.

The shell term:

0							
U	v	r	v	I	e	v	U

Results

Conclusion

Theory

Systematic derivations

Mass relations Q defined formally as

second order mass difference

 $Q(n_1, z_1; n_2, z_2) = -S(N - n_1, Z - z_1) + 2S(N, Z) - S(N + n_1, Z + z_1)$

between "separations" (first order difference)

$$S(N,Z) = B(N,Z) - B(N-n_2,Z-z_2)$$

If B were continous and smooth up to second order terms would cancel. By Taylor expansion one finds

$$Q = -\frac{\partial^3 B}{\partial N^3} n_1^2 n_2 - \frac{\partial^3 B}{\partial N^2 \partial Z} n_1 (n_1 z_2 + 2n_2 z_1)$$
$$-\frac{\partial^3 B}{\partial N \partial Z^2} z_1 (n_2 z_1 + 2n_1 z_2) - \frac{\partial^3 B}{\partial Z^3} z_1^2 z_2$$

I.e. expect only strong signals from abrupt or irregular changes: Shells, pairing energies etc

Image: A image: A

Results

・ロト ・回ト ・ヨト ・ヨト

Theory

Examples from SEMF

The semi-empirical mass formula contains terms like:

$$A^{2/3}$$
 (Surface) — all derivatives equal $\frac{8}{27}A^{-7/3}$

$$Z^2/A^{1/3}$$
 (Coulomb) — derivatives of order $A^{-4/3}$

$$(N-Z)^2/A$$
 (Symmetry) — derivatives of order A^{-2}

Pairing goes as $(-1)^N$ or $(-1)^Z$ — so depends on n_i, z_i !

Results

Conclusion

3

Theory

SEMF contribution, numerically

Theory

Mass relations

Results

Conclusion

Alternative to binding energy: Q_{lpha}

The Q_{α} is almost similar to S:

$$S(N,Z)-B(^{4}\mathrm{He})=-Q_{\alpha}$$

and can therefore be used in its place

 $Q(n_1, z_1; n_2, z_2) = Q_{\alpha}(N - n_1, Z - z_1) - 2Q_{\alpha}(N, Z) + Q_{\alpha}(N + n_1, Z + z_1)$

NB! Should use ground state \rightarrow ground state values. . .

Overview	Mass relations ○○○○○○●○	Results	Conclusion
Examples			
Some examples			

- 10

< 注▶ < 注▶ -

Mass relations ○○○○○○○● Results

Conclusion

Examples

The "double" structures

イロン イヨン イヨン イヨン

0						
	v	0	r			I.
~				•		

Results ●○○○○○○○○○○○○

Reference

Source of mass data

2012 mass table: G. Audi, M. Wang, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer, Chinese Phys. C36 (2012) 1287

2011 prerelease: Georges Audi and Wang Meng, private communication, April 2011

イロト イポト イヨト イヨト

Mass relations

Results ○●○○○○○○○○○○ Conclusion

Pairing estimates Δ_x

Results from Δ_n

< 🗇 🕨

< ∃⇒

Mass relations

Results

・ロト ・回ト ・ヨト

< ∃⇒

æ

Conclusion

Pairing estimates Δ_x

Zoom of Δ_n

Mass relations

Results ○○○●○○○○○○○○ Conclusion

Pairing estimates Δ_x

Results from Δ_p

Mass relations

Results ○○○○●○○○○○○○ Conclusion

Pairing estimates Δ_x

Zoom of Δ_p

Mass relations

Results ○○○○●●○○○○○○ Conclusion

Relations based on Q_{α}

Results from Δ_{2n}

Mass relations

Results ○○○○○○●○○○○○○ Conclusion

Relations based on Q_{α}

Results from $\Delta_{2\alpha}$

Mass relations

Results

Conclusion

The Δ_{2x} relations

Results from Δ_{2n}

ISOLDE seminar Mass relations and extrapolations

Mass relations

Results

Conclusion

The Δ_{2x} relations

Results from Δ_{2p}

Mass relations

Results

Conclusion

The Δ_{2x} relations

Results from Δ_{2lpha}

ISOLDE seminar Mass relations and extrapolations

Mass relations

Results ○○○○○○○○○○●○○ Conclusion

The Δ_{2x} relations

Results from $\Delta_{2(N-Z)}$

Results

イロト イポト イヨト イヨト

The Δ_{2x} relations

Use for extrapolations

If (1) the average behaviour of a mass relation is known in a region and (2) all but one masses in one specific relation is known then one can estimate the missing mass

(1) typically gives bias and scatter a few 100 keV

Estimates from "different directions" can be compared to test the accuracy independent determinations !

Results ○○○○○○○○○○○○●

-

The Δ_{2x} relations

Accuracy of extrapolations

Combine several Δ 's to improve reliability.

Compare final results (with extrapolation uncertainty) to new mass values, i.e. values in 2012 tables but not in 2011 preview:

Results

Conclusions

• Systematic derivation of mass relations

・ロン ・回 と ・ ヨ と ・ ヨ と

-2

Results

Conclusions

- Systematic derivation of mass relations
- Extendable to light nuclei ?

<ロ> <同> <同> <同> < 同>

- ∢ ≣ ▶

Conclusions

- Systematic derivation of mass relations
- Extendable to light nuclei ?
- Indicator for shells

< ∃ >

Image: A math a math

Conclusions

- Systematic derivation of mass relations
- Extendable to light nuclei ?
- Indicator for shells
- Extract local structures = pairing

Conclusions

- Systematic derivation of mass relations
- Extendable to light nuclei ?
- Indicator for shells
- Extract local structures = pairing
- New extrapolations possible, accuracy typically 2-300 keV