CP Violation in Bs Oscillations at ATLAS, CMS and Tevatron in $B_s \rightarrow J/\psi\phi$

James Walder Lancaster University

On behalf of the ATLAS, CDF, CMS and D0 Collaborations

Outline

• Introduction

- $B_s \rightarrow J/\psi \phi$ overview of analyses from:
 - CDF PRL 109, 171802 (2012)
 - DO PRD 85, 032006 (2012)
 - CMS CMS PAS BPH-11-006 (2012)
- **New** ATLAS ATLAS-CONF-2013-039 (2013)

Update of JHEP 12 (2012) 072

 See B. Hoeneisen's presentation for recents results on asymmetry measurements from D0

CP Violation in Bs system

• Measurements of the other observable quantities (e.g. $\Delta\Gamma$) also test theoretical predictions.

LANCASTER

Angular Analysis

- CP-even (L=0,2) and CP-odd (L=1) final states
- Distinguishable through time-dependent angular analysis
- Results presented here define the 3 angles between final state particles in **Transversity basis**
- From the multi-dimensional fit to the data, the three amplitudes and strong phases can, in principle, be extracted.

James Walder

General Purpose Detectors

- General Purpose Detectors (GPDs) at Tevatron and LHC:
 - Tevatron CDF and D0
 - LHC ATLAS and CMS
- Varied programmes of physics; from high- p_T searches to precision measurements in low- p_T regime.
- Designed to provide ~4π Coverage;
 - Fiducial volume at more central rapidities
 - Enhancement in $bb \rightarrow J/\psi$ to $pp \rightarrow J/\psi$ cross-section ratio.
- General requirements (with application to B-physics analyses).
 - Silicon and pixel layers precision tracking and vertexing;
 - Calorimetry systems EM and Hadronic Jets;
 - Muon system trigger, event selection.
- Particle ID (CDF time-of-flight detector) for Kaon/pion separation
 - Background suppression, initial-state flavour-tagging

Tevatron GPD Detectors

6

FPCP 2013, Buzios, Brazil

	CDF	D0
Axial Magnetic field	I.4T	I.9T
Track momentum resolution σ/p_T [GeV] ⁻¹	~0.07%	~0.14%
Lifetime resolution	~90fs	~70fs

•Coverage in muon system out to $|\eta|$ <2

LHC GPD Detectors

	AILAS	CMS
Axial Magnetic field	2 T	3.8 T
Track momentum resolution σ/p_T^2 [GeV] ⁻¹	~0.05%p⊤ + 0.015	~0.015%pt + 0.005
Lifetime resolution	~100 fs	~70 fs

Data Taking

- **Tevatron** Run II proton-antiproton operations at $\sqrt{S} = 1.96$ TeV completed
 - Each detector accumulated
 L ~10 fb⁻¹ for analysis.
- LHC running at 7 TeV in 2011 proton-proton, 8 TeV 2012, (13 TeV 2015)
- ATLAS and CMS collected $L \sim 5 \text{ fb}^{-1} 2011 \text{ and } \sim 20 \text{ fb}^{-1} \text{ in } 2012.$
- Data Taking efficiencies in excess of 90% for all experiments.

James Walder

Techniques in Bs $\rightarrow J/\psi \phi$ Analysis

ANCASTER

Ŷ

CDF: Event Selection

- Analysis using full Run II Dataset at 1.96 TeV (9.6 fb⁻¹)
- After basic event selection:
 - Neural Network, trained on signal MC and data sideband for background.
 - Optimised on sensitivity to β_s .
- Observables from the data:
 - m, t, σ(m), σ(t)
 - Three transversity angles
 - Initial state tagging information
- After selections ~ $11k B_s$ candidates.
- Measured quantities: $\Delta\Gamma_s, au_s, |A_{\perp}|^2, |A_0|^2, \delta_{\perp}$
- *Tagged* analysis initial flavour of B meson estimated:
 - Opposite-side tagging (µ,e,jet-charge)
 - Same-side tagging from correlations of Kaon produced in fragmentation (first 5.2 fb⁻¹).

```
Trigger:
•low-pT di-muon triggers
•2.7 < m(μμ) <4.0 GeV</li>
```

•**J**/ψ:

```
•pT(\mu) > 4 \text{ GeV}
•|m(J/\Psi) - m^{PDG}(J/\Psi)| < 50 \text{MeV}
```

•φ:

•Oppositely-charged track pair •pT(K) > 0.4 GeV •pT(ϕ) > 1.0 GeV •|m(ϕ) - m^{PDG}(ϕ)| < 9.5MeV

•**B**_s:

μμKK Vertex fit
J/ψ mass constraint
pT(J/ψKK) > 1.0 GeV
5.1 < m(J/ψKK) <5.6 GeV

•NN Variable importance:

Kinematic informationMuon and Hadron PIDVertex fit quality

b

 \bar{B}_s^{U}

K

CDF: Fit Model

- $\mathcal{L} \propto f_s P_s(m|\sigma_m) P_s(t, \vec{\rho}, \xi | \mathcal{D}, \sigma_t) P_s(\sigma_t) P_s(\mathcal{D})$ $+ (1 - f_s) P_b(m) P_b(t|\sigma_t) P_b(\vec{\rho}) P_b(\sigma_t) P_b(\mathcal{D}),$
- Signal:
 - mass: Gaussian with per-candidate errors
 - proper time and angles for differential decay rates
 - corrected for proper-time and angular efficiencies
- Background:
 - mass: Linear
 - lifetime: Exponentials (+,-,-)
 - resolution: Double Gaussian (σ ~90 fs)
- Different distributions for $P_s(\sigma_t)$ and $P_b(\sigma_t)$. Extracted distributions from sideband-subtracted data – signal –, and sidebands.
- Same-side tagging calibrated using amplitude scan to Bs mixing frequency.
 - Opposite-side tagging calibration from comparison of measured to predicted dilution in $B^{\pm} \rightarrow J/\psi K^{\pm}$.

James Walder

CDF: Results

• Fixing β_s to SM prediction yields:

$au_s \quad 1.528 \pm 0.019() \pm 0.009() ,$ $\Delta \Gamma_s \quad 0.068 \pm 0.026() \pm 0.009() ^{-1}$

- $|A_0|^2 \quad 0.512 \pm 0.012() \pm 0.018(),$
- $|A_{\parallel}|^2 = 0.229 \pm 0.010() \pm 0.014(),$
 - $\delta_{\perp} = 2.79 \pm 0.53 (\qquad) \pm 0.15 (\qquad).$
- Correlation between $\Delta\Gamma_s$ and $\tau_s = 0.52$.
- $\beta_s = [-0.06, 0.30]$ @ 68% CL, treating $\Delta\Gamma$ as nuisance parameter and $\Delta\Gamma > 0$.
- No significant contribution from S-wave found in the signal sample.
- Systematic uncertainties:
 - $\Delta\Gamma_s$ background decay-time,

FPCP 2013, Buzios,

- τ_s alignment of the silicon detector,
- Amplitudes angular acceptance models.

• confirms small S-wave contribution in signal window (0.8±0.2)%,

 although suggests larger contribution of mis-identified B₀ background (8.0±0.2)% assuming only P-wave B₀ decays.

ler

FPCP 2013, Buzios, Brazil

D0: Results

- Markov-chain MC used to estimate final confidence limits.
- Limit cos $\delta \perp < 0$
- Results:

 $\begin{aligned} \bar{\tau}_s &= 1.444^{+0.041}_{-0.033} \,\mathrm{ps}, \quad \Delta \Gamma_s = 0.179^{+0.059}_{-0.060} \,\mathrm{ps^{-1}}, \\ \phi_s^{J/\psi\phi} &= -0.56^{+0.36}_{-0.32}, \quad |A_0|^2 = 0.565 \pm 0.017, \\ |A_{\parallel}|^2 &= 0.249^{+0.021}_{-0.022}, \quad \delta_{\parallel} = 3.15 \pm 0.19, \\ \cos(\delta_{\perp} - \delta_s) &= -0.20^{+0.26}_{-0.27}, \quad F_s = 0.173 \pm 0.036. \end{aligned}$

- Strong correlation between δ_{\perp} and δ_{s} ;
- Reasonable contribution from non-resonant KK is estimated.
- Projections to fit results shown for all data passing the BDT selections $(S/\sqrt{S+B}) \sim 12.9)$.

CMS PAS BPH-11-006

- 2011 7 TeV analysis corresponding to integrated luminosity of 5.0 \pm 0.1 fb⁻¹
- 19,000 B_s candidates after selections, in mass range [5.24–5.49] GeV and proper-decay length [0.02–0.3]cm
- Observables:
 - m, t, 3 transversity angles
- 5-d unbinned maximum likelihood fit extracts:
 - $\Delta\Gamma_s, \Gamma_s, |A_{\perp}|^2, |A_0|^2, \delta_{\parallel} = |A_{\parallel}|^2 = 1 |A_{\perp}|^2 |A_0|^2$
- Assumption of no CP violation $\phi_s=0$ in fit.
- Untagged analysis equal probability for B_s or $\overline{B_s}$
- S-wave contributions assumed negligible

Trigger:
•pT(μμ) > 6.9 GeV
•L_{xy}/σ_{Lxy} > 3
•2.8 < m(μμ) <3.35 GeV
•DCA(μ) < 0.5 cm
•J/Ψ:

• $pT(\mu) > 4 \text{ GeV}$ • $|m(J/\Psi) - m^{PDG}(J/\Psi)| < 150 \text{MeV}$

•**φ**:

Oppositely-charged track pair
pT(K) > 0.7 GeV
|m(φ) - m^{PDG}(φ)| < 10MeV

•**B**s:

• $\mu\mu$ KK Vertex fit •J/ ψ mass constraint •Vertex χ^2 probability > 2% •5.2 < m(J/ ψ KK) <5.65 GeV

CMS: – Fit Model

- Fit to (reduced) mass distribution fixes narrow Gaussian model.
- 14,456 ± 140 Signal Events
 - Mass position: 5366.8 ± 0.1 MeV
 - Plot shown in mass range [5.24, 5.48], proper decay time [0.02,0.3] cm
- Likelihood function:

$$\begin{aligned} \mathcal{L} &= L_{\text{signal}} + L_{\text{background}}, \\ L_{\text{signal}} &= (f(\Theta, t; \alpha) \otimes G(t, \kappa, \sigma(t))]) \cdot M(m) \cdot \epsilon(t) \epsilon(\Theta), \\ L_{\text{background}} &= b(\Theta, t, m), \end{aligned}$$

- Signal modelled using:
 - mass: Two Gaussians
 - angular efficiencies from MC
- Background:
 - mass: exponential
 - lifetime: two Gaussian and two exponentials
 - angles from sinusoidal for ϕ_T , and Legendre polynomials for $\cos(\theta_T)$ and $\cos(\psi_T)$.

Invariant mass J/ψ K⁺K⁻ [GeV]

•Proper-time efficiency from MC

•Efficiency is the ratio of selected to generated signal events in bins of proper-time •Requiring $ct(B_s) > 0.02cm$ allows for high and stable efficiency

- •Angular Efficiency from MC
- •Independent parameterisations using Legendre polynomials,
- Correlations sufficiently small to be neglected.

CMS: Fit Projections

- Fit to data sideband determines angular shapes for background description
- Proper-time calibration scale factor extracted from a 2-d mass-lifetime fit to data without Lxy significance requirement.
- Final fit performed in mass, lifetime and angular space (full mass range 5.2 < m(J/ψKK) <5.65 GeV).
- Projections of fit results shown for proper decay length and transversity angles for each component of the fit.

James Walder

Ŷ

CMS: Results

• From the fit:

$$\Delta \Gamma_s = 0.048 \pm 0.024 \text{ (stat.)} \pm 0.003 \text{ (syst.)} \text{ ps}^{-1}$$
 ,

$$\tau_{B_s} = 0.04580 \pm 0.00059 \text{ (stat.)} \pm 0.00022 \text{ (syst.) cm}$$

$$|A_0|^2 = 0.528 \pm 0.010 \; (ext{stat.}) \pm 0.015 \; (ext{syst.})$$
 ,

$$|A_{\perp}|^2 ~=~ 0.251 \pm 0.013~{
m (stat.)} \pm 0.014~{
m (syst.)}$$
 ,

$$\delta_{||} \ \ = \ \ 2.79 \pm 0.14 \; ({\rm stat.}) \pm 0.19 \; ({\rm syst.}) \; {\rm rad} \; .$$

• Dominant sources of systematic uncertainties from angular and temporal efficiency models.

<u>.</u>					2
Uncertainty source	$\Delta\Gamma_s [\mathrm{ps}^{-1}]$	<i>cτ</i> [cm]	$ A_0 ^2$	$ A_{\perp} ^2$	$\delta_{ }$ [rad]
Signal PDF modeling					
Signal mass model	0.00072	0.00012	0.0022	0.0006	0.039
Proper time resolution	0.00170	0.00006	0.0007	0.0000	0.007
ϕ_s approximation	0.00000	0.00001	0.0000	0.0000	0.002
S-wave assumption	0.00109	0.00001	0.0130	0.0066	0.056
Background PDF modeling					
Background mass model	0.00019	0.00000	0.0000	0.0001	0.003
Background lifetime model	0.00040	0.00000	0.0001	0.0002	0.003
Peaking B^0 background	0.00025	0.00006	0.0002	0.0022	0.050
Background angular model	0.00175	0.00003	0.0001	0.0064	0.161
Limited simulation statistics					
Angular efficiency parameters	0.00019	0.00002	0.0057	0.0055	0.037
Temporal efficiency parameters	0.00000	0.00005	0.0000	0.0000	0.000
Temporal efficiency parametrization	0.00181	0.00014	0.0005	0.0007	0.001
Angular efficiency parametrization	0.00063	0.00003	0.0021	0.0086	0.007
Likelihood function bias	0.00000	0.00004	0.0004	0.0000	0.014
Total uncertainty	0.00341	0.00022	0.0146	0.0140	0.187

ATLAS: Event Selection

- 2011 data sample using 4.9 fb⁻¹ at 7 TeV
- Preliminary update to previously published untagged analysis: JHEP 12 (2012) 072
 - Same dataset addition of initial state B-meson flavour tagging
- 131k B_s candidates after selections;
 - mass range [5.15,5.65] GeV.
- Negligible effects from selection of correct primary vertex due to pileup ($<\mu> \sim 8$).
- No requirement is made on proper-time cut,
 - full prompt contribution considered in fit
- S-wave contributions to the fit are also considered

•Trigger:

Single and di-muon trigger suite
Requiring at least one muon, pT(µ) > 4 GeV

•**J**/ψ:

pT(μ) > 4 GeV
|η| dependent mass cuts (retains 99.8% of signal)
χ²/ndf < 10

•**φ**:

Oppositely-charged track pair
pT(K) > 1.0 GeV
|m(φ) - m^{PDG}(φ)| < 11MeV

•**B**_s:

• $\mu\mu$ KK Vertex fit •J/ ψ mass constraint •Vertex χ^2 /ndf < 3 •5.15 < m(J/ ψ KK) <5.65 GeV

√s = 7 TeV

Ŷ

ATLAS: Tagging Performance

- and probability distributions (Punzi terms) are considered.
 Punzi terms are parameterised from fit to sideband-subtracted (signal),
 - and sideband (background) B_s data
- P=0.5 in absence of tagging information.

ATLAS: Fit Model

Observables:

- m(J/ψKK), t, σ(m),σ(t)
- Three transversity angles

Muon time dependent trigger efficiency

Ŷ

• Signal modelled using:

- mass: Gaussians (per-event resolution)
- proper time and angles for differential decay rates convoluted with Gaussian and per-event resolution
- angular efficiency
- Background:
 - mass: linear
 - Gaussian plus three exponentials (+,+,-)
 - angles from sinusoidal for φ_T, and Legendre polynomials for cos(θ_T) and cos(ψ_T).

 $\mathscr{F}_{s}(m_{i},t_{i},\Omega_{i},P(B|Q)) = P_{s}(m_{i}|\sigma_{m_{i}}) \cdot P_{s}(\sigma_{m_{i}}) \cdot P_{s}(\Omega_{i},t_{i},P(B|Q)|\sigma_{t_{i}}) \cdot P_{s}(\sigma_{t_{i}}) \cdot P_{s}(P(B|Q)) \cdot A(\Omega_{i},p_{T_{i}}) \cdot P_{s}(p_{T_{i}})$ 9 physics variables to describe $B_{s} \rightarrow J/\Psi\Phi$ and S-wave component: $\Delta\Gamma$, Φ s, Γ s, $|A_{0}(0)|^{2}$, $|A_{II}(0)|^{2}$, δ_{II} ,

 δ_{\perp} , $|As(0)|^2$ and δ_s

The background due to $B^0 \rightarrow J/\psi K^{*0}$ and $B^0 \rightarrow J/\psi K\pi$ (non resonant), described by the parameter f_Bo , constrained by known branching fractions and acceptance (11% of signal amplitude)

The prompt and non-prompt combinatorial background described with empirical angular distribution. (No K-π discrimination.)

ATLAS: Fit Projections

LANCASTER UNIVERSITY

• 22,670 \pm 150 signal B_s events from fit.

ATLAS: Results

Dominant systematics from Tagging , and Background modelling (estimated from	
Tagged analysis provides sufficient sensitivity for δ_{\perp} to be determined from the fit (previously constrained	ed
$\delta_{ }$ and δ_{\perp} - δ_{s} are given as 68% CL.	
S-wave amplitude is compatible with 0.	Z
Consistent with previous Untagged analysis.	_
Φ_s within with Standard Model predictions.]

pseudo-experiment studies)

Systematic uncertainty from tagging dominated by statistical precision in calibration channel.

Parameter	Value	Statistical	Systematic
		uncertainty	uncertainty
$\phi_s(rad)$	0.12	0.25	0.11
$\Delta \Gamma_s(\mathrm{ps}^{-1})$	0.053	0.021	0.009
$\Gamma_s(\mathrm{ps}^{-1})$	0.677	0.007	0.003
$ A_{\ }(0) ^2$	0.220	0.008	0.009
$ A_0(0) ^2$	0.529	0.006	0.011
ed). $ A_S ^2$	0.024	0.014	0.028
δ_{\perp}	3.89	0.46	0.13
δ_{\parallel}	[3.04-3.23]		0.09
$\delta_{\perp} - \delta_{S}$	[3.02-3.25]		0.04

cf. Untagged result:

 $\Phi_s = 0.21 \pm 0.41$ (stat.) ± 0.10 (syst.) rad

Systematics

(rad)
-
$< 10^{-2}$
$< 10^{-2}$
$< 10^{-2}$
0.01
0.01
0.02
0.01
0.02
0.03
0.04

Results – Comparisons

	Φs	Stat.	Syst.
ATLAS	0.12	0.25	0.11
CDF	-0.60 - 0.12		
CMS	_		
D0	-0.56 +0.36 / -0.32		

	ΔΓs (ps ⁻¹)	Stat.	Syst.
ATLAS	0.053	0.021	0.009
CDF	0.068	0.026	0.009
CMS	0.048	0.024	0.003
D0	0.179	+0.060	/ -0.059

	δ⊥ [rad]	Stat.	Syst.
ATLAS	3.89	0.46	0.13
CDF	2.79	0.53	0.15
CMS		_	
D0	$cos(\delta - \delta_s) = -0.2$ +0.26 / -0.27		

	$ A_0 ^2$	Stat.	Syst.
ATLAS	0.529	0.006	0.011
CDF	0.512	0.012	0.018
CMS	0.528	0.010	0.015
D0	0.565	±0.017	

LHCb-PAPER-2013-002

 $B_s^0 \rightarrow J/\psi \phi$ $\phi_s = 0.07 \pm 0.09 \text{ (stat)} \pm 0.01 \text{ (syst) rad,}$ $\Gamma_s \equiv (\Gamma_{\rm L} + \Gamma_{\rm H})/2 = 0.663 \pm 0.005 \text{ (stat)} \pm 0.006 \text{ (syst)} \text{ ps}^{-1},$ $\Delta \Gamma_s \equiv \Gamma_{\rm L} - \Gamma_{\rm H} = 0.100 \pm 0.016 \text{ (stat)} \pm 0.003 \text{ (syst)} \text{ ps}^{-1},$

	Γs (ps⁻¹)	Stat.	Syst.
ATLAS	0.677	0.007	0.003
CDF	0.654	0.008	0.004
CMS	0.653	0.008	0.003
D0	0.693	+0.016	/ -0.020

	A ²	Stat.	Syst.
ATLAS	0.220	0.008	0.009
CDF	0.229	0.010	0.018
CMS	0.221	<0.016	<0.021
D0	0.249	+0.021 / -0.020	

$ A_{\perp} ^2$	0.249 ± 0
$ A_0 ^2$	0.521 ± 0
δ_{\parallel} [rad]	3.30^{+0}_{-0}
δ_{\perp} [rad]	3.07 ± 0

 0.009 ± 0.006 0.006 ± 0.010 $\frac{0.13}{0.21} \pm 0.08$ 0.22 ± 0.07

25

• Most recent combination from HFAG on $\Delta\Gamma_s$ vs the CP-violating phase

LHCb-Paper-2013-002 latest result not included

Bs $\rightarrow J/\psi \phi$: Combination

- Tagging improves ATLAS ϕ_s precision by ~40%
 - $\Delta\Gamma_s$ central value and uncertainty unchanged

Conclusions

- Results presented from ATLAS, CDF, CMS, D0 in $B_s \rightarrow J/\psi \phi$
 - In general, good agreement between experiments.
- **D0** and **CDF** provided many pioneering and tantalising measurements on B_s system.
- Current results tending to SM predictions of CP-violating phase in $B_s \rightarrow J/\psi \phi$.
 - Analyses with final datasets published or nearing completion.
- Statistically limited in most measured quantities.
- Future results to come from ATLAS and CMS analyses using 2012 data samples, in same and complementary channels:
 - Additional dedicated B-physics triggered samples stored unprocessed at time of data-taking.
 - With shutdown of LHC releasing CPU needs, these additional data now being reconstructed and analyses are underway.
- Expected LHC data-taking resuming in 2015 at ~13 TeV collisions:
 - Stay tuned for future results from the LHC B-physics programmes.

Backup

Pileup at LHC

- Average number of collisons per bunch crossing:
 - ~ 9 in 2011
 - ~ 21 in 2012

- While effect of pileup minimal in current analyses,
 - Run II running conditions will be additional challenge.

FPCP 2013, Buzios, Brazil

LANCASTER

Trigger Selection

- Data selection begins with optimised suite of di-muon or single-muon triggers:
- ATLAS and D0:
 - collect from suite of low-p_T single and di-muon triggers:
- CDF:
 - low-p_T di-muon trigger with
 2.7 < m(μ⁺μ⁻) < 4.0 GeV
- CMS:
 - Optimised trigger selection of non-prompt J/ψ candidates:
 2.8 < m(J/ψ) <3.35 GeV or
 2.9 < m(J/ψ) <3.3.
 - L_{xy}/σ_{Lxy} > 3 transverse decay-length significance cut to reduce prompt background contributions.

Resolving the sign ambiguity

• Decay rate amplitudes are invariant under certain transformations,

 $\{\phi_s, \Delta\Gamma_s, \delta_{\perp}, \delta_{\parallel}, \delta_S\} \to \{\pi - \phi_s, -\Delta\Gamma_s, \pi - \delta_{\perp}, -\delta_{\parallel}, -\delta_S\}.$

• Untagged analysis also allows:

 $\{\phi_s, \Delta\Gamma_s, \delta_{\perp}, \delta_{\parallel}, \delta_S\} \to \{-\phi_s, \Delta\Gamma_s, \pi - \delta_{\perp}, -\delta_{\parallel}, -\delta_S\}$

- Led to a four-fold ambiguity on earlier measurements
- From Tagging, and sign determination of $\Delta\Gamma s > 0$ LHCb-PAPER-2011-021
 - Single set of solutions remain

The ATLAS Detector

2011 Data

Y(3S)

12

Barrel semiconductor tracke

muu [GeV]

33

•|η|<2.7 •Toroid B-Field, average ~0.5T Muon Momentum resolution $\sigma/p < 10\%$ up to ~ 1 TeV

FPCP 2013, Buzios, Brazil

James Walder

End-cap semiconductor tracker

End-cap transition radiation tracker

Pixel detectors

Barrel transition radiation tracker

ATLAS: Results

- Tagging improves ϕ_s precision by ~40%
- ΔΓ_s central value and uncertainty unchanged

Statistical uncertainties only

ATLAS - Angles

k	$\mathscr{O}^{(k)}(t)$	$g^{(k)}(\theta_T, \psi_T, \phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1 + \cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1 - \cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})e^{-\Gamma_{\rm L}^{(s)}t}+(1-\cos\phi_{s})e^{-\Gamma_{\rm H}^{(s)}t}\pm 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T(1-\sin^2\theta_T\sin^2\phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2 \psi_T \sin^2 \theta_T$
4	$\frac{1}{2} A_0(0) A_{\parallel}(0) \cos\delta_{\parallel}$	$-\frac{1}{\sqrt{2}}\sin 2\psi_T\sin^2\theta_T\sin 2\phi_T$
	$\left[\left(1 + \cos \phi_s \right) e^{-\Gamma_{\mathrm{L}}^{(s)}t} + \left(1 - \cos \phi_s \right) e^{-\Gamma_{\mathrm{H}}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right]$	
5	$ A_{\parallel}(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{s}$	$\sin^2\psi_T\sin 2\theta_T\sin\phi_T$
	$\pm e^{-\Gamma_s t} (\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos\phi_s \sin(\Delta m_s t))]$	
6	$ A_0(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t}-e^{-\Gamma_{\rm H}^{(s)}t})\cos\delta_{\perp}\sin\phi_s$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin 2\theta_T\cos\phi_T$
	$\pm e^{-\Gamma_s t}(\sin \delta_{\perp} \cos(\Delta m_s t) - \cos \delta_{\perp} \cos \phi_s \sin(\Delta m_s t))]$	v 2
7	$\frac{1}{2} A_{S}(0) ^{2}\left[\left(1-\cos\phi_{s}\right)e^{-\Gamma_{L}^{(s)}t}+\left(1+\cos\phi_{s}\right)e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\frac{2}{3}\left(1-\sin\theta_T\cos^2\phi_T\right)$
8	$ A_{S} A_{\parallel}(0) [\frac{1}{2}(e^{-\Gamma_{L}^{(s)}t}-e^{-\Gamma_{H}^{(s)}t})\sin(\delta_{\parallel}-\delta_{S})\sin\phi_{S}$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$
	$= \frac{1}{2} e^{-\Gamma_s t} (\cos(\delta_{\parallel} - \delta_S) \cos(\Delta m_s t) - \sin(\delta_{\parallel} - \delta_S) \cos\phi_s \sin(\Delta m_s t))]$	~
9	$\frac{1}{2} A_S A_\perp(0) \sin(\delta_\perp - \delta_S)$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin2\theta_T\cos\phi_T$
	$\left[\left(1 - \cos \phi_s \right) e^{-\Gamma_{\rm L}^{(s)}t} + \left(1 + \cos \phi_s \right) e^{-\Gamma_{\rm H}^{(s)}t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right]$	
10	$ A_0(0) A_S(0) [\frac{1}{2}(e^{-\Gamma_{\rm H}^{(s)}t} - e^{-\Gamma_{\rm L}^{(s)}t})\sin\delta_S\sin\phi_s$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
	$= \pm e^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t))]$	~ ` ` '

$\{\phi_s, \Delta\Gamma, \delta_\perp, \delta_\parallel\} o (\pi - \phi_s, -\Delta\Gamma, \pi - \delta_\perp, 2\pi - \delta_\parallel)$

Figure 7: 1D likelihood scans for ϕ_s (left) and $\Delta\Gamma_s$ (right)

ATLAS - per-candidate resolutions

- Per-candidate mass- and lifetime-uncertainty distributions.
- Signal and Background shapes individually modeled for correct usage in likelihood fitting.

CMS Experiment at LHC, CERN Data recorded: Sun Jul 4 01:33:41 2010 EDT Run/Event: 139364 / 20750462 Lumi section: 20

> Trajectories before vertex fit with $p_T > 0.3$ GeV/c in the vicinity of the PV

 $B_s \rightarrow J/\psi \phi$ candidate eve

 μ^+

K-

K+

ATLAS - Systematics

Systematic Uncertainties

LANCASTER UNIVERSITY

	<i>\$</i>	$\Delta \Gamma_s$	Γ_s	$ A_{ }(0) ^2$	$ A_0(0) ^2$	$ A_{S}(0) ^{2}$	δ_{\perp}	δ_{\parallel}	$\delta_{\perp} - \delta_S$
	(rad)	(ps^{-1})	(ps^{-1})				(rad)	(rad)	(rad)
	_			2	2				
ID alignment	$< 10^{-2}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	-	$< 10^{-2}$	$< 10^{-2}$	-
Trigger efficiency	$< 10^{-2}$	$< 10^{-3}$	0.002	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-2}$	$< 10^{-2}$	$< 10^{-2}$
B_d^0 contribution	0.03	0.001	$< 10^{-3}$	$< 10^{-3}$	0.005	0.001	0.02	$< 10^{-2}$	$< 10^{-2}$
Tagging	0.10	0.001	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	0.002	0.05	$< 10^{-2}$	$< 10^{-2}$
Models:									
default fit	$< 10^{-2}$	0.002	$< 10^{-3}$	0.003	0.002	0.006	0.07	0.01	0.01
signal mass	$< 10^{-2}$	0.001	$< 10^{-3}$	$< 10^{-3}$	0.001	$< 10^{-3}$	0.03	0.04	0.01
background mass	$< 10^{-2}$	0.001	0.001	$< 10^{-3}$	$< 10^{-3}$	0.002	0.06	0.02	0.02
resolution	0.02	$< 10^{-3}$	0.001	0.001	$< 10^{-3}$	0.002	0.04	0.02	0.01
background time	0.01	0.001	$< 10^{-3}$	0.001	$< 10^{-3}$	0.002	0.01	0.02	0.02
background angles	0.02	0.008	0.002	0.008	0.009	0.027	0.06	0.07	0.03
Total	0.11	0.009	0.003	0.009	0.011	0.028	0.13	0.09	0.04

Uncertainties of fit model derived in pseudo-experiment studies

Effect of residual misalignment studied in signal MC

Uncertainty in trigger selection efficiency

Uncertainty in the calibration of the tag probability

Uncertainty in the relative fraction of ${\rm B_d}$ background

C. Heller, Beauty 2013, 12.04.2013

FPCP 2013, Buzios, Brazil