

Searches for natural Supersymmetry with the ATLAS detector

lacopo Vivarelli Albert-Ludwigs Universität - Freiburg

(on behalf of the ATLAS Collaboration)

Extend the Standard Model?

- The Standard Model is working fine. Why fix it?
 - The Higgs mass suffers from quadratically divergent loop corrections (high level of finetuning)

Taken from http://www.quantumdiaries.org/2012/07/01/the-hierarchy-problem-why-the-higgs-has-a-snowballs-chance-in-hell/

Extend the Standard Model?

- The Standard Model is working fine. Why fix it?
 - The Higgs mass suffers from quadratically divergent loop corrections (high level of finetuning)

Taken from http://www.quantumdiaries.org/2012/07/01/the-hierarchy-problem-why-the-higgs-has-a-snowballs-chance-in-hell/

 Cosmological data call for dark matter: not explained within the SM

Extend the Standard Model?

- The Standard Model is working fine. Why fix it?
 - The Higgs mass suffers from quadratically divergent loop corrections (high level of finetuning)

Taken from http://www.quantumdiaries.org/2012/07/01/the-hierarchy-problem-why-the-higgs-has-a-snowballs-chance-in-hell/

- Cosmological data call for dark matter: not explained within the SM
- Moreover, no unification of the EW and QCD coupling constants, EW symmetry breaking added ad-hoc, etc.

Supersymmetry (SUSY)

- SUSY is a symmetry that relates bosons and fermions
 - a new set of fields differing in spin by 1/2 w.r.t. the SM partners (fine tuning problem solved "naturally")

Supersymmetry (SUSY)

- SUSY is a symmetry that relates bosons and fermions
 - a new set of fields differing in spin by 1/2 w.r.t. the SM partners (fine tuning problem solved "naturally")

Supersymmetry (SUSY)

- SUSY is a symmetry that relates bosons and fermions
 - a new set of fields differing in spin by 1/2 w.r.t. the SM partners (fine tuning problem solved "naturally")

$$W \ni \frac{1}{2}\lambda_{ijk}L_iL_jE_k^c + \lambda'_{ijk}L_iQ_jD_k^c + \frac{1}{2}\lambda''_{ijk}U_i^cD_j^cD_k^c + \mu_iL_iH_u$$

- Lepton and baryon number violation allowed → proton decay
- If R-parity conservation assumed, the Lightest Supersymmetric
 Particle (LSP) is stable: natural Dark Matter candidate

R-parity = (-1)^{3(B-L) + 2s}
-1 for sparticles
1 for particles

See AOB and backup for RPV

Fine tuning - a deeper look

- SUSY is broken. Supersymmetric particles masses arbitrary?
- One needs to quantify the fine tuning:
 - One possible choice: **stability of EW scale** (identified by M_Z) w.r.t. **model parameters** [Nucl. Phys. B306 (63-76) (1987)]

model parameters

$$m_Z^2 = -2\mu^2 + 2\frac{m_{H_d}^2 - \tan^2\beta \ m_{H_u}^2}{\tan^2\beta - 1} \qquad max_{a_i} \left(\left| \frac{a_i}{m_Z^2} \frac{\partial m_Z^2(a_i)}{\partial a_i} \right| \right) < \Delta$$
 tolerated fine tuning

Fine tuning - a deeper look

- SUSY is broken. Supersymmetric particles masses arbitrary?
- One needs to quantify the fine tuning:
 - One possible choice: **stability of EW scale** (identified by M_Z) w.r.t. **model parameters** [Nucl. Phys. B306 (63-76) (1987)]

model parameters

$$m_Z^2 = -2\mu^2 + 2\frac{m_{H_d}^2 - \tan^2\beta \ m_{H_u}^2}{\tan^2\beta - 1} \qquad max_{a_i} \left(\left| \frac{a_i}{m_Z^2} \frac{\partial m_Z^2(a_i)}{\partial a_i} \right| \right) < \Delta$$
 tolerated fine tuning

- What are the important a_i?
 - μ (higgs mass parameter) enters at tree level → light higgsinos
 - A_t, M_{Q3}, M_{u3} are relevant → light stops
 - gluinos introduce large corrections to the stop masses → light gluinos
- Looser constraints on the other sparticles

ATLAS

Natural SUSY

- Prediction:
 - Light X₁⁰, X₁[±] (few hundreds GeV)
 - light (< 1 TeV) stop(s), b_L bound to \widetilde{t}_L (same weak isospin multiplet as \widetilde{t}_L)
 - not-so-heavy gluinos (m_g < 1.5-2 TeV)

- Unless differently stated, we do not use constrained models in deriving the exclusion limits,.
 - •Rather **simplified models** with particle **masses as free parameters**

L. Hall (LBL Workshop, 21-Oct11)

Taken from http://www.thphys.uni-heidelberg.de/~plehn/ index.php?show=prospino&visible=tools

Taken from http://www.thphys.uni-heidelberg.de/~plehn/ index.php?show=prospino&visible=tools

up to 4 top quarks in final state

Taken from http://www.thphys.uni-heidelberg.de/~plehn/ index.php?show=prospino&visible=tools

Taken from http://www.thphys.uni-heidelberg.de/~plehn/ index.php?show=prospino&visible=tools

 ATLAS has set up dedicated search strategies for all production mechanisms

Experimental setup

LHC - performance of the machine

- About 22 fb⁻¹ collected at \sqrt{s} = 8 TeV and 5 fb⁻¹ at \sqrt{s} = 7 TeV
 - Most of which with more than 95% of the ATLAS detector operational
- All results shown in this seminar use either the "HCP" (13 fb⁻¹) or the full (21 fb⁻¹) dataset (√s=8 TeV).

Large luminosity means large pileup. Careful pileup suppression strategies developed.

Performance highlights

The Standard Model in one slide

Background estimation

Standard Model background estimation

 Doing SUSY searches means primarily understanding the Standard Model background.

Fake E_Tmiss background estimate

- Large E_T^{miss} can be induced by a jet mis-measurement.
- Relevant for processes with high cross section and no "real" E_T^{miss} (multi-jet, Z→II)

Fake E_Tmiss background estimate

- Large E_T^{miss} can be induced by a jet mis-measurement.
- Relevant for processes with high cross section and no "real" E_T^{miss} (multi-jet, Z→II)

 Derive a "jet response function" from MC and adapt it to data:

• tail: three-jet (Mercedes) events

Fake E_Tmiss background estimate

- Large E_T^{miss} can be induced by a jet mis-measurement.
- Relevant for processes with high cross section and no "real" E_T^{miss} (multi-jet, Z→II)

- Derive a "jet response function" from MC and adapt it to data:
 - core: p_T balance in di-jet events
 - tail: three-jet (Mercedes) events
- Use response function to smear jets in real data events with low MET:
 - Obtain events with large "fake" E_Tmiss
- Validate the estimation in a dedicated control region

Fake lepton background estimate

- General approach to fake lepton background estimation based on a loose/ tight matrix method
- Example with 1 lepton (easily extendable to multi-lepton signatures):

- A fake lepton lepton can arise from:
 - Off-axis HF semileptonic decays
 - Photon conversion
- Strategy: define a "loose" (pre-selected) and a "tight" (signal) lepton selection.
- Then, solve the following system of equations

$$N^{loose} = N^{loose}_{real} + N^{loose}_{fake}$$
 $N^{tight} = \varepsilon_{real}N^{loose}_{real} + \varepsilon_{fake}N^{loose}_{fake}$

Need to be measured independently from data

Simply count how many of them

$$N_{fake}^{tight} = \underbrace{\varepsilon_{fake}}_{\varepsilon_{real} + \varepsilon_{fake}} \underbrace{(N^{loose})_{\varepsilon_{real} + \varepsilon_{fake}}}_{\varepsilon_{real} + \varepsilon_{fake}} \underbrace{(N^{loose})_{\varepsilon_{real} + \varepsilon_{fake}}}_{\varepsilon_{real} + \varepsilon_{fake}}$$

Irreducible background estimate

Normalisation of irreducible backgrounds done in dedicated CR

$$N_{SR}^{i} = \frac{N_{SR}^{i,MC}}{N_{CR}^{i,MC}} (N_{CR}^{i,data} - \sum_{j=process} N_{CR}^{j,MC}) = T(N_{CR}^{i,data} - \sum_{j=process} N_{CR}^{j,MC})$$

Irreducible background estimate

Normalisation of irreducible backgrounds done in dedicated CR

$$N_{SR}^i = \frac{N_{SR}^{i,MC}}{N_{CR}^{i,MC}} (N_{CR}^{i,data} - \sum_{j=process} N_{CR}^{j,MC}) = T(N_{CR}^{i,data}) - \sum_{j=process} N_{CR}^{j,MC})$$

• If $\sum N_{MC}^{j,MC}$ small, then all systematic uncertainty associated to T

Closeness to signal region

Irreducible background estimate

Normalisation of irreducible backgrounds done in dedicated CR

$$N_{SR}^i = \frac{N_{SR}^{i,MC}}{N_{CR}^{i,MC}} (N_{CR}^{i,data} - \sum_{j=process} N_{CR}^{j,MC}) = T(N_{CR}^{i,data} - \sum_{j=process} N_{CR}^{j,MC})$$

- If $\sum N_{MC}^{j,MC}$ small, then all systematic uncertainty associated to T
- Typical uncertainties considered:

Experimental uncertainties:

- -Trigger efficiency
- -Jet energy scale and resolution
- -Lepton energy scale and efficiency
- -E_T^{miss} soft component
- -b-tagging
- -Luminosity
- -pileup modelling

Theory uncertainties:

- -Generator modelling (μ_F , μ_R , ME/PS matching, α_s scale choice when possible otherwise compare generators)
- PS uncertainties (typically compare Pythia and Herwig)
- PDF choice

Closeness to signal region

Background (and uncertainty) determination verified with the use of the validation regions

Calculation done

performing a combined fit

to all CR (signal

contamination accounted for

exclusion)

Gluino production

Gluino mediated stop/sbottom production

- If gluinos are light, they can be produced in pairs and decay through (on- or off-shell) stops/ sbottoms
 - gluino mediated stop/sbottom production

Gluino mediated stop/sbottom production

- If gluinos are light, they can be produced in pairs and decay through (on- or off-shell) stops/ sbottoms
 - gluino mediated stop/sbottom production

If gluino pair production dominant (and only stops not too heavy), then the decay is $\tilde{q} \, \longrightarrow \, \tilde{t}t$

• Final state that contains up to 4 b-jets, up to 12 jets, up to 4 leptons (possibly same sign)

Gluino mediated stop/sbottom production

- If gluinos are light, they can be produced in pairs and decay through (on- or off-shell) stops/ sbottoms
 - gluino mediated stop/sbottom production

- If gluino pair production dominant (and only stops not too heavy), then the decay is $\tilde{q} \, \longrightarrow \, \tilde{t}t$
- Final state that contains up to 4 b-jets, up to 12 jets, up to 4 leptons (possibly same sign)
- Several different analyses target this final state:
 - **0-lepton, 3-b jets plus MET** (up to 6 jets) ATLAS-CONF-2012-145
 - 2 SS leptons + MET + (b-)jets ATLAS-CONF-2013-007

- Not discussed in this seminar:
 - multijet (up to 9 jets) -ATLAS-CONF-2012-103
 - 3-leptons + MET ATLAS-CONF-2012-151

ATLAS

0-lepton - 3 b-jets

- Highest sensitivity to gbb/gtt for a large $\widetilde{\chi}^0_1$ mass range is with a 0-lepton, 3 b-jets
- Two sets of SR: either at least 4 (g->bbX₁⁰) or at least 6 (g->ttX̃₁⁰) jets
- top pair production dominant background, normalised in 1-L control regions

Common criteria: lepton veto, $p_{\rm T}^{j_1} > 90$ GeV, $E_{\rm T}^{\rm miss} > 200$ GeV,							
\geq 3 <i>b</i> -jets, $E_{\mathrm{T}}^{\mathrm{miss}}/\mathrm{m_{eff}^{4j}} > 0.2$, $\Delta\phi_{\mathrm{min}}^{4j} > 0.4$							
SR	N_J ($p_{\rm T} > 50$ GeV)	p _T b-jets	m _{eff}				
SR4-L/M/T	≥ 4 jets	> 50 GeV	$m_{eff}^{4j} > 900/1100/1300 \text{ GeV}$				
SR6-L/M/T	≥ 6 jets	> 30 GeV	$m_{\rm eff}^{\rm incl} > 1100/1300/1500~{ m GeV}$				

$$m_{eff} = \sum_{jets} p_T + E_T^{miss}$$

Three b-jets - results

- In case of **no excess**:
 - First: 95% CL model independent limits on $\sigma_{vis} = \sigma \ x \ A \ x \ \epsilon$
 - Then compute A x ε for specific models and extract exclusion curve

SR	95% CL UL on N _{BSM}		95% CL UL on $\sigma \times \mathscr{A} \times \varepsilon$ [fb]	
	Observed	Expected	Observed	Expected
SR4-L	17.9	$20.5^{+8.0}_{-5.2}$	1.4	1.6
SR4-M	7.6	$8.8^{+3.5}_{-2.1}$	0.59	0.69
SR4-T	6.5	$5.0^{+2.2}_{-1.1}$	0.51	0.39
SR6-L	17.0	$15.5^{+6.2}_{-3.8}$	1.3	1.2
SR6-M	5.9	$6.6^{+2.8}_{-1.5}$	0.46	0.52
SR6-T	5.1	$4.6^{+1.9}_{-0.6}$	0.40	0.36

Three b-jets - results

- In case of **no excess**:
 - First: 95% CL model independent limits on $\sigma_{vis} = \sigma \times A \times \epsilon$
 - Then compute A x ε for specific models and extract exclusion curve

- Model assumptions:
 - g→ttX₁⁰ (BR: 100%) via off-shell stop (little dependency on the stop mass).
 - Only free parameters: m_g, m_x

SR	95% CL UL on N _{BSM}		95% CL UL on $\sigma \times \mathscr{A} \times \varepsilon$ [fb]	
	Observed	Expected	Observed	Expected
SR4-L	17.9	$20.5^{+8.0}_{-5.2}$	1.4	1.6
SR4-M	7.6	$8.8^{+3.5}_{-2.1}$	0.59	0.69
SR4-T	6.5	$5.0^{+2.2}_{-1.1}$	0.51	0.39
SR6-L	17.0	$15.5^{+6.2}_{-3.8}$	1.3	1.2
SR6-M	5.9	$6.6^{+2.8}_{-1.5}$	0.46	0.52
SR6-T	5.1	$4.6^{+1.9}_{-0.6}$	0.40	0.36

Same-Sign (SS) leptons

 Generic signature sensitive to new physics. SS expected in many SUSY scenarios

gluino is a majorana fermion - SS final states **enhanced**

- Results use the **full 2012 dataset**
- With respect to ATLAS-CONF-2012-105:
 - New signal regions defined (with and without b-jets)
 - Sensitivity extended to other gluino decay modes and to direct sbottom production

SS leptons - signal region definitions

- Signal regions definition based on:
 - jet and b-jet multiplicity

$$m_{eff} = \sum_{i} p_T^j + \sum_{l} p_T^l + E_T^{miss}$$

- m_T between leading lepton and E_T^{miss}
- E_T^{miss} and M_{eff}

$$m_T = \sqrt{2p_T^{\ell} E_T^{miss} (1 - \cos \Delta \phi(E_T^{miss}, \ell))}$$

Signal region	N_{b-jets}	Signal cuts (discovery case)	Signal cuts (exclusion case)
SR0b	0	$N_{\rm jets} \ge 3$, $E_{\rm T}^{\rm miss} > 150$ GeV	$N_{\text{jets}} \ge 3$, $E_{\text{T}}^{\text{miss}} > 150 \text{ GeV}$, $m_{\text{T}} > 100 \text{ GeV}$,
		$m_{\rm T} > 100 \; {\rm GeV}, m_{\rm eff} > 400 \; {\rm GeV}$	binned shape fit in m_{eff} for $m_{\text{eff}} > 300 \text{ GeV}$
SR1b	≥1	$N_{\rm jets} \ge 3$, $E_{\rm T}^{\rm miss} > 150$ GeV	$N_{\rm jets} \ge 3$, $E_{\rm T}^{\rm miss} > 150$ GeV, $m_{\rm T} > 100$ GeV,
		$m_{\rm T} > 100 \; {\rm GeV}, m_{\rm eff} > 700 \; {\rm GeV}$	binned shape fit in $m_{\rm eff}$ for $m_{\rm eff} > 300$ GeV
SR3b	≥3	$N_{\rm jets} \ge 4$	$N_{\rm jets} \ge 5$,
		-	$E_{\rm T}^{\rm miss}$ < 150 GeV or $m_{\rm T}$ < 100 GeV

SS leptons - background estimation

- Background processes:
 - Irreducible background: ttV, diboson→MC used
 - Reducible background (e.g. tt, Z) estimated with matrix method
 - charge flip (for electrons): estimated with SS to OS ratio on the Z→ee peak

Validation regions defined at low E_T^{miss}

Event classes	VR-diboson	VR-ttW	VR-ttZ
Observed events	54	9	4
Expected background events	74 ± 13	4.2 ± 1.9	8.0 ± 2.0
Expected tt+V events	1.6 ± 0.8	2.7 ± 1.5	3.2 ± 1.1
Expected diboson events	60 ± 7	0.4 ± 0.1	3.9 ± 1.3
Expected fake lepton events	12 ± 11	1.1 ± 1.1	0.9 ± 0.5
Expected charge mis-meas. events	0	0	0

SS leptons - results

B) Exclusion case	SR0b	SR1b	SR3b
Observed events	5	11	1
Expected background events	7.5 ± 3.2	10.1 ± 3.9	1.8 ± 1.3
Expected $t\bar{t} + V$ events	0.5 ± 0.4	3.4 ± 1.5	0.6 ± 0.4
Expected diboson events	3.4 ± 1.1	1.4 ± 0.7	< 0.1
Expected fake lepton events	3.4 ± 2.9	4.4 ± 3.1	1.0 ± 1.1
Expected charge mis-measurement events	0.2 ± 0.1	0.8 ± 0.3	0.1 ± 0.1
$\overline{p_0}$	0.5	0.39	0.5

with different hypotheses on the chargino mass

 $\rightarrow t\tilde{t} \rightarrow tb\tilde{\chi}_1^{\pm}$

Summary on gluino-mediated stop production

Direct stop/sbottom production

direct 3rd generation squark production

- The stops/sbottoms constrained by naturalness to be not heavier than ~ 1 TeV
- Wide, dedicated effort for both <u>direct stop and direct</u> sbottom production search in ATLAS

- $\tilde{b}_1 \rightarrow bX_1^0$: 0-lepton (2b + MET)
- b₁→tX₁[±]: 2-leptons SS (already discussed), 3-leptons

Stop decays:

- $\widetilde{t_1} \rightarrow t\widetilde{X}_1^0$: 0-lepton, 1-lepton, 2-leptons
- t

 1-lepton, 2-leptons, 0-lepton (2b + MET)
- Final states containing Z bosons: natural GMSB with X_1^0 NLSP or $t_2 \rightarrow t_1$ Z transitions

2011 stop status

Natural SUSY with ATLAS - 26th March 2013 - CERN

- m_{CT}(bb): boost-corrected contransverse mass
 - It has an end-point at (m_{prod}²m_{inv}²)/m_{prod}
- - Look for 2 b-jets (veto on third jet), large E_T^{miss}
 - Use M_{CT} to suppress top; Main background: Z
 (→νν)+b-jets
- for small $\Delta m(\widetilde{b}, \widetilde{X}_1^0)$:
 - Focus on events with a hard ISR jet produced

direct sbottom - 2 b-jets + ETmiss

ATLAS-CONF-2012-165

- m_{CT}(bb): boost-corrected contransverse mass
 - It has an end-point at (m_{prod}²m_{inv}²)/m_{prod}
- - Look for 2 b-jets (veto on third jet), large E_T^{miss}
 - Use M_{CT} to suppress top; Main background: Z
 (→νν)+b-jets
- for small $\Delta m(\widetilde{b}, \widetilde{X}_1^0)$:
 - Focus on events with a hard ISR jet produced

Signal region	Bkg. estimate	Obs. data	95% CL UI	L on $\sigma_{ m vis}$ (fb)
			expected	observed
SR1 (m _{CT} > 150 GeV)	176±25	172	4.2	4.1
SR1 (m _{CT} > 200 GeV)	71±11	66	1.9	1.7
SR1 (m _{CT} > 250 GeV)	25±4	16	0.96	0.61
SR1 (m _{CT} > 300 GeV)	7.4±1.7	8	0.58	0.62
SR2	95±11	104	2.5	3.0
SR3a	203 ± 35	207	4.2	4.2
SR3b	27 ± 5	21	1.0	0.74

Direct sbottom search summary

2 b-jets + MET

Direct sbottom search summary

2 b-jets + MET

SS-dileptons

$$ilde{t}_1 o t ilde{\chi}_1^0$$
 - O-lepton

- Basic idea: reconstruct two hadronic top quarks and investigate E_Tmiss distribution
- At high E_T^{miss}, background **dominated by semileptonic tt** decays (with a hadronic tau)

$$\tilde{t}_1 \to t \tilde{\chi}_1^0$$
 - 0-lepton

- Basic idea: reconstruct two hadronic top quarks and investigate E_Tmiss distribution
- At high E_T^{miss}, background dominated by semileptonic tt decays (with a hadronic tau)

Lepton veto

Signal definition

Multijet rejection

Top rejection

	Signal
Trigger	$E_{ m T}^{ m miss}$
N _{lep}	0
$p_{\mathrm{T}}^{\ell_{\mathrm{T}}}$ $p_{\mathrm{T}}^{\ell_{2}}$	< 10 (10)
$p_{\mathrm{T}}^{\ell_2}$	_
$m_{\ell\ell}$	
$N_{ m jet}$	≥ 6
p_{T}^{jet}	> 80,80,35,35
$N_{b ext{-jet}}$	≥ 2
m_{jjj}	80 to 270
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 200, 300, 350
Emiss,track	> 30
$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, E_{\mathrm{T}}^{\mathrm{miss,track}})$	$< \pi/3$
$m_{\mathrm{T}}(\ell, E_{\mathrm{T}}^{\mathrm{miss}})$	_
$\Delta \phi$ (jet, $E_{\rm T}^{\rm miss}$)	$>\pi/5$
$m_{\mathrm{T}}(b\text{-jet},E_{\mathrm{T}}^{\mathrm{miss}})$	> 175
Tau veto	yes

$$\tilde{t}_1
ightarrow t \tilde{\chi}_1^0$$
 - 0-lepton

- Basic idea: reconstruct two hadronic top quarks and investigate E_Tmiss distribution
- At high E_T^{miss}, background **dominated by semileptonic tt** decays (with a hadronic tau)
- top and Z→vv evaluated in dedicated control regions
- Residual multijet background evaluated with jet smearing method

Lepton veto

Signal definition

Multijet rejection

Top rejection

	Signal	tī CR	Z+jets CR	Multijet CR
		single	two	
Trigger	$E_{ m T}^{ m miss}$	electron (muon)	electron (muon)	$E_{ m T}^{ m miss}$
N_{lep}	0	1	2	0
p_{T}^{ℓ}	< 10 (10)	> 35 (35)	> 20 (20)	< 10 (10)
$p_{\mathrm{T}}^{\ell} \ p_{\mathrm{T}}^{\ell_2}$	_	< 10 (10)	> 20 (10)	_
$m_{\ell\ell}$	_	_	81 to 101	_
N _{jet}	≥ 6	≥ 6	≥ 6	≥6
p_{T}^{jet}	> 80,80,35,35	> 80,80,35,35	> 80,80,35,35	> 80,80,35,35
$N_{b ext{-jet}}$	≥ 2	≥ 2	≥ 2	≥ 2
m_{jjj}	80 to 270	0 to 600	80 to 270	_
$E_{ m T}^{ m miss}$	> 200, 300, 350	> 200, 300, 350	> 70	> 160
E _T miss,track	> 30	> 30	> 30	> 30
$\Delta \phi(E_{\rm T}^{\rm miss}, E_{\rm T}^{\rm miss, track})$	$<\pi/3$	$<\pi/3$	$<\pi/3$	$> \pi/3$
$m_{\mathrm{T}}(\ell, E_{\mathrm{T}}^{\mathrm{miss}})$	_	40 to 120	_	_
$\Delta \phi$ (jet, E_T^{miss})	$> \pi/5$	$> \pi/10$	$> \pi/5$	$<\pi/5$
$m_{\mathrm{T}}(b\text{-jet}, E_{\mathrm{T}}^{\mathrm{miss}})$	> 175	_	> 175	> 175
Tau veto	yes	no	yes	no

- Results updated for full 2012 dataset
- High E_T^{miss} for the signal because of LSP. Multiple signal regions:
 - relying mostly on a harsh selection on E_T^{miss} and m_T
 - tag one b-jet, reconstruct one hadronic top mass
- **Dominant background:** dileptonic ttbar decays (one lepton is **either lost or a tau**). W+ HF also relevant

- Results updated for full 2012 dataset
- High E_T^{miss} for the signal because of LSP. Multiple signal regions:
 - relying mostly on a harsh selection on E_T^{miss} and m_T
 - tag one b-jet, reconstruct one hadronic top mass
- **Dominant background:** dileptonic ttbar decays (one lepton is **either lost or a tau**). W+ HF also relevant

- Dedicated new optimization
 - additional transverse mass variables improves sensitivity at high stop mass
 - m_T/E_T^{miss} shape fit improves toward diagonal

Requirement	SRtN1_shape	SRtN2	SRtN3
$\Delta \phi(j_1, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}) >$	0.8	-	0.8
$\Delta \phi(j_2, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}) >$	0.8	0.8	0.8
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV] >	100(*)	200	275
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}} [\mathrm{GeV}^{1/2}] >$	5	13	11
$m_{\rm T}$ [GeV] >	60(*)	140	200
m _{eff} [GeV] >	-	-	-
am_{T2} [GeV] >	-	170	175
m_{T2}^{τ} [GeV] >	-	-	80
$m_{\mathrm{had-top}}$	Yes	Yes	Yes
$N^{\text{iso-trk}} = 0$	_	-	-
Number of b -jets \geq	1	1	1
$p_{\rm T}$ (leading b-jet) [GeV] >	25	25	25
$p_{\rm T}$ (second b -jet) [GeV] >	-	-	-

Data/MC agreement

$ilde{t}_1 ightarrow t ilde{\chi}_1^0$ - Results (21 fb⁻¹)

- No excess in any of the signal regions considered (see backup for details)
- Model:
 - stop pair production only, $\widetilde{\mathbf{t}_1}$ mostly $\widetilde{\mathbf{t}}_R$, \widetilde{X}_1^0 bino-like
 - BR($t\widetilde{X}_1^0$) = 100%

$\tilde{t}_1 \to t \tilde{\chi}_1^0$ - Results (21 fb⁻¹)

- No excess in any of the signal regions considered (see backup for details)
- Model:
 - stop pair production only, $\widetilde{\mathbf{t}}_1$ mostly $\widetilde{\mathbf{t}}_R$, \widetilde{X}_1^0 bino-like
 - BR($t\widetilde{X}_1^0$) = 100%

$\tilde{t}_1 ightarrow t \tilde{\chi}_1^0$ - more results

- Dependency on the model chosen:
 - stop chirality if the top quark is left handed:
 - 1-lepton slightly penalised by lepton decreased acceptance
 - 0-lepton **almost insensitive** to the top chirality.

$\tilde{t}_1 ightarrow t \tilde{\chi}_1^0$ - more results

- Dependency on the model chosen:
 - stop chirality if the **top quark is left handed**:
 - 1-lepton slightly penalised by lepton decreased acceptance
 - 0-lepton **almost insensitive** to the top chirality.

- What if BR is not 100%?
- limits as a function of the BR (assumes the other decay mode is invisible)

150

100

$$\tilde{t}_1 \to b \tilde{\chi}_1^{\pm}$$

• With respect to $t_1 \rightarrow tX_1^0$, the mass of the chargino is one additional degree of freedom

Hypothesis	Targeted signature (3 players at 8 TeV)
gaugino universality: m _{X±} ~2m _{X0}	2-leptons - large leptons M _{T2} 1-lepton (dedicated SR)
stop-chargino mass degeneracy m _{X±} ~m _{t1} - 10 GeV	2-leptons - large leptons MT2
neutralino-chargino mass degeneracy (favoured if X_1^0, X_1^\pm higgsino-like): $m_{X_\pm} \sim m_{X_0}$	2 b-jets + MET; 0-lepton
Fixed chargino mass at 150 GeV	2-leptons - large leptons M _{T2} 1-lepton (dedicated SR)

Requirement	SRbC1	SRbC2	SRbC3
$\Delta \phi(j_1, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}) >$	0.8	0.8	0.8
$\Delta \phi(j_2, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}) >$	0.8	0.8	0.8
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV] >	150	160	160
$E_{\rm T}^{\rm miss} / \sqrt{H_{\rm T}} [{\rm GeV}^{1/2}] >$	7	8	8
$m_{\rm T}$ [GeV] >	120	120	120
$m_{\rm eff}$ [GeV] >	-	550	700
am_{T2} [GeV] >	-	175	200
m_{T2}^{τ} [GeV] >	-	-	-
$m_{\rm had-top}$	-	-	-
$N^{\text{iso-trk}} = 0$	Yes	Yes	Yes
Number of b -jets \geq	1	2	2
$p_{\rm T}$ (leading b-jet) [GeV] >	25	100	120
$p_{\rm T}$ (second b -jet) [GeV] >	-	50	90

First player

- Dedicated optimisation of the 1-lepton analysis:
 - drop the top mass requirement
 - Soften requirements on E_T^{miss} (and its significance)
 - Introduce a cut on meff

$$\tilde{t}_1 \to b \tilde{\chi}_1^{\pm}$$

Second player

- 2 b + E_T^{miss} analysis already discussed
- Same signal regions as for direct sbottom sensitive to $\tilde{t}_1 \rightarrow b\tilde{X}_1^{\pm}$ for small $\Delta m(\tilde{X}_1^{\pm}, \tilde{X}_1^{0})$
- Loss of acceptance due to lepton and jet veto

$$\tilde{t}_1 \to b \tilde{\chi}_1^{\pm}$$
 - Summary

Third player (2 leptons)

ATLAS-CONF-2012-167

 Basic idea: the dilepton M_{T2} has an upper bound for events where they come from Ws

$$m_{\mathrm{T2}}(\mathbf{p}_{\mathrm{T}}^{\ell_1}, \mathbf{p}_{\mathrm{T}}^{\ell_2}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}) = \min_{\mathbf{q}_{\mathrm{T}} + \mathbf{r}_{\mathrm{T}} = \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}} \left\{ \max[\ m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell_1}, \mathbf{q}_{\mathrm{T}}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell_2}, \mathbf{r}_{\mathrm{T}}) \] \right\}$$

$$\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$$
 - Summary

Third player (2 leptons)

ATLAS-CONF-2012-167

 Basic idea: the dilepton M_{T2} has an upper bound for events where they come from Ws

And the summary

Stop summary

ATLAS

More on direct stop - final states with Z

- If $m(\widetilde{t}_1) \sim m(t) + m(\widetilde{X}_1^0)$ then looking for \widetilde{t}_2 might be useful
 - Natural GMSB models can have similar final states
 - Dedicated 2L and 3L approaches (requiring a reconstructed on-shell Z from OS)

More on direct stop - final states with Z

- If $m(\widetilde{t}_1) \sim m(t) + m(\widetilde{X}_1{}^0)$ then looking for \widetilde{t}_2 might be useful
 - Natural GMSB models can have similar final states
 - Dedicated 2L and 3L approaches (requiring a reconstructed on-shell Z from OS)
- Fake lepton background estimated with matrix method
- Residual Z+jets contribution to 2L analysis estimated with jet smearing method

	SR2L1A	SR2L1B	SR2L2	SR3L1	SR3L2
N ^{lepton}		2		≥ 3	
$ m_{\ell\ell}-m_Z $	< 5 GeV	< 10 GeV	< 5 GeV	< 10 GeV	
$N^{b ext{-jets}}$		≥ 1			1
N ^{jets}	3, 4		≥ 5	≥	5
$p_{\mathrm{T}}(\mathrm{jet}_{1})$		> 30 GeV		> 50 GeV	> 40 GeV
$p_{\mathrm{T}}(\mathrm{jet}_{N})$		> 30 GeV		> 30 GeV	> 40 GeV
$E_{ m T}^{ m miss}$	> 160 GeV > 200 GeV		> 160 GeV	> 60	GeV
$p_{\mathrm{T}}(\ell\ell)$	> 80 GeV	> 160 GeV	> 80 GeV	-	> 75 GeV
$\Delta\phi^{\ell\ell}$	< 1.5 rad				-
$p_{\mathrm{T}}(\ell_1)$	> 25 GeV			> 40 GeV	> 60 GeV

NEW FOR MORIOND '13

No excess above SM predictions

final states with Z

- Simplified model with t

 2, t

 1 and X

 10 only (3L)
- $m_{t2} = m_{X1} + 180 \text{ GeV}$
- \tilde{t}_1 production included in the sample

Electroweak production

Electroweak $\tilde{\mathbf{X}}^0$, $\tilde{\mathbf{X}}^{\pm}$ production

- Neutralinos and chargino masses of few hundreds GeV expected in natural SUSY models
- LHC has sensitivity to the EW couplingsuppressed cross sections
- Give rise to multi-lepton final states
 - Very low SM background expected
 - Decays through sleptons (BR to leptons 100% optimistic) or WZ-like (challenging) decays assumed

Electroweak $\tilde{\mathbf{X}}^{0}$, $\tilde{\mathbf{X}}^{\pm}$ production

Production channel	Analysis
chargino pair production	2-leptons (e, μ) (4.7 fb ⁻¹ , 7 TeV), 2-τ (21 fb ⁻¹ , 8 TeV)
$\widetilde{\mathbf{X}}_{1}^{\pm}\widetilde{\mathbf{X}}_{2}^{0}$ production	2-leptons (e, μ) (4.7 fb ⁻¹ , 7 TeV), 3-leptons (21 fb ⁻¹ , 8 TeV)
$\tilde{\mathbf{X}}_2^0\tilde{\mathbf{X}}_3^0$ production	4-leptons (e, μ, (τ)) (21 fb ⁻¹ , 8 TeV)

- 2-leptons and 2-τ analysis also sensitive to direct slepton production
- 4-leptons analysis primary target is R-parity violating chargino production

$\tilde{\mathbf{X}}^0$, $\tilde{\mathbf{X}}^{\pm}$ production - 3 leptons

ATLAS

- Two series of signal regions defined (based on the presence of a reconstructed di-leptonic Z)
- Irreducible background (dominated by di-boson production) taken from MC
- No attempt for hadronic tau reconstruction

WEW FOR THIS SEMINAR

Reducible (fake lepton)
 background estimated with a matrix method

	Z depleted				
Selection	SRnoZa	SRnoZb	SRnoZc		
$m_{\rm SFOS}$ [GeV]	<60	60-81.2	<81.2 or >101.2		
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	>50	>75	>75		
$m_{\rm T}$ [GeV]	_	_	>110		
$p_{\rm T}$ 3 rd ℓ [GeV]	>10	>10	>30		
SR veto	SRnoZc	SRnoZc	_		
Target	Low mass splitting	No-slep off-shell Z	Slepton bulk		

	>10	>10	>10			
	1110	, 110				
Ш	<110	7110	7 110			
Ш	<110	>110	>110			
Ш	75–120	75–120	>120			
2	81.2-101.2	81.2–101.2	81.2–101.2			
П	SRZa	SRZb	SRZc			
$\bigg] \bigg[$	Z enriched					

m_T: transverse mass using non SFOS lepton

3-leptons background prediction validation

 Background prediction validated in dedicated regions with different background composition

Selection	VRnoZa	VRnoZb	VRZa	VRZb
$m_{\rm SFOS}$ [GeV]	<81.2 or >101.2	<81.2 or >101.2	81.2-101.2	81.2-101.2
<i>b</i> -jet	veto	request	veto	request
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	35-50	>50	30-50	>50
Dominant process	WZ^* , Z^*Z^* , Z^* +jets	$tar{t}$	WZ, Z +jets	WZ

Selection	VRnoZa	VRnoZb	VRZa	VRZb
Tri-boson	1.4 ± 1.4	0.5 ± 0.5	0.6 ± 0.6	0.26 ± 0.26
ZZ	$(1.3 \pm 0.9) \times 10^2$	4.5 ± 2.8	108 ± 23	6.9 ± 2.2
$t\bar{t}V$	2.9 ± 1.2	21 ± 7	7.4 ± 2.6	26 ± 8
WZ	110 ± 21	34 ± 15	$(5.5 \pm 0.9) \times 10^{2}$	$(1.4 \pm 0.4) \times 10^2$
Σ SM irreducible	$(2.4 \pm 0.9) \times 10^2$	60 ± 16	$(6.6 \pm 0.9) \times 10^{2}$	$(1.7 \pm 0.4) \times 10^2$
SM reducible	$(1.5 \pm 0.6) \times 10^2$	$(0.7 \pm 0.4) \times 10^2$	$(3.8 \pm 1.4) \times 10^2$	27 ± 13
Σ SM	$(3.9 \pm 1.1) \times 10^2$	$(1.3 \pm 0.5) \times 10^2$	$(10.4 \pm 1.7) \times 10^2$	$(2.0 \pm 0.4) \times 10^2$
Data	463	141	1131	171

3-leptons results

Selection	SRnoZa	SRnoZb	SRnoZc	SRZa	SRZb	SRZc
Tri-boson	1.7 ± 1.7	0.6 ± 0.6	0.8 ± 0.8	0.5 ± 0.5	0.4 ± 0.4	0.29 ± 0.29
ZZ	14 ± 8	1.8 ± 1.0	0.25 ± 0.17	8.9 ± 1.8	1.0 ± 0.4	0.39 ± 0.28
tīV	0.23 ± 0.23	0.21 ± 0.19	$0.21^{+0.30}_{-0.21}$	0.4 ± 0.4	0.22 ± 0.21	0.10 ± 0.10
WZ	50 ± 9	20 ± 4	2.1 ± 1.6	235 ± 35	19 ± 5	5.0 ± 1.4
Σ SM irreducible	65 ± 12	22 ± 4	3.4 ± 1.8	245 ± 35	20 ± 5	5.8 ± 1.4
SM reducible	31 ± 14	7 ± 5	1.0 ± 0.4	4 ⁺⁵	1.7 ± 0.7	0.5 ± 0.4
Σ SM	96 ± 19	29 ± 6	$\textbf{4.4} \pm \textbf{1.8}$	249 ± 35	22 ± 5	$\textbf{6.3} \pm \textbf{1.5}$
Data	101	32	5	273	23	6
p ₀ -value	0.41	0.37	0.40	0.23	0.44	0.5

3-leptons interpretation

- Signal interpretation (simplified models) assumes wino-like \widetilde{X}_2^0 and \widetilde{X}_1^{\pm} , bino-like \widetilde{X}_1^0 : $m(\widetilde{X}_2^0) = m(\widetilde{X}_1^{\pm})$
- Degenerate neutralino-chargino mass excluded up to 610 GeV if decay via sleptons is assumed
- masses up to 310 GeV excluded even for the decay through W/Z bosons

Electroweak production - 2-taus final states

• Direct $\widetilde{X}_1^{\pm}\widetilde{X}_1^{\pm}(\widetilde{X}_1^{\pm} \to \widetilde{\tau}_L \nu, \tau \widetilde{\nu})$ and $\widetilde{X}_1^{\pm}\widetilde{X}_2^{0}$ ($\widetilde{X}_2^{0} \to \widetilde{\tau}_L \tau$) production (and decay via staus) investigated with 2τ final states (strategy similar to stop m_{T2})

NEW FOR MORIOND '13

Electroweak production - 2-taus final states

• Direct $\widetilde{X}_1^{\pm}\widetilde{X}_1^{\pm}$ ($\widetilde{X}_1^{\pm} \to \widetilde{\tau}_L \nu, \tau \widetilde{\nu}$) and $\widetilde{X}_1^{\pm}\widetilde{X}_2^0$ ($\widetilde{X}_2^0 \to \widetilde{\tau}_L \tau$) production (and decay via staus) investigated with 2τ final states (strategy similar to stop m_{T2})

NEW FOR MORIOND '13

Electroweak production - 2-taus final states

• Direct $\widetilde{X}_1^{\pm}\widetilde{X}_1^{\pm}$ ($\widetilde{X}_1^{\pm} \to \widetilde{\tau}_L \nu, \tau \widetilde{\nu}$) and $\widetilde{X}_1^{\pm}\widetilde{X}_2^{0}$ ($\widetilde{X}_2^{0} \to \widetilde{\tau}_L \tau$) production (and decay via staus) investigated with 2τ final states (strategy similar to stop m_{T2})

NEW FOR MORIOND '13

ATLAS-CONF-2013-028

Natural SUSY with ATLAS - 26th March 2013 - CERN

- Analysis sensitive to both RPC and RPV scenarios
- One of the four leptons can be a hadronically decaying tau (relevant for RPV modes)

- Z-veto (extended to include triplets and quadruplets of leptons) applied in some signal regions
- Irreducible background dominated by ZZ and ttZ production
 - Reducible background relevant only for the signal regions with taus

SR	$\mathrm{N}(\ell=e,\mu)$	$N(\tau)$	Z candidate	$E_{\mathrm{T}}^{\mathrm{miss}}[\mathrm{GeV}]$		$m_{\rm eff} [{ m GeV}]$	Scenario
SR0noZa	≥4	≥0	extended veto	>50			RPC
SR0noZb	≥4	≥0	extended veto	>75	or	>600	RPV
SR1noZ	=3	≥1	extended veto	>100	or	>400	RPV
SR0Z	≥4	≥0	request	>75			GGM
SR1Z	=3	≥1	request	>100			GGM

ATLAS-CONF-2013-036

- Analysis sensitive to both RPC and RPV scenarios
- One of the four leptons can be a hadronically decaying tau (relevant for RPV modes)

- Z-veto (extended to include triplets and quadruplets of leptons) applied in some signal regions
- Irreducible background dominated by ZZ and ttZ production
 - Reducible background relevant only for the signal regions with taus

SR	$\mathrm{N}(\ell=e,\mu)$	$N(\tau)$	Z candidate	$E_{\mathrm{T}}^{\mathrm{miss}}[\mathrm{GeV}]$		$m_{\rm eff} [{ m GeV}]$	Scenario
SR0noZa	≥4	≥0	extended veto	>50			RPC
SR0noZb	≥4	≥0	extended veto	>75	or	>600	RPV
SR1noZ	=3	≥1	extended veto	>100	or	>400	RPV
SR0Z	≥4	≥0	request	>75			GGM
SR1Z	=3	≥1	request	>100			GGM

• Left: \widetilde{X}_3^0 and \widetilde{X}_2^0 nearly mass degenerate. $\Delta m(\widetilde{X}_3^0, \widetilde{X}_1^0) = 80$ GeV. Plot $\Delta m(\widetilde{X}_3^0, I)$ Vs. $m(\widetilde{X}_1^0)$

AT LAS

More results

- SS dilepton analysis
- $g \rightarrow t\tilde{t} \rightarrow tbs (\lambda_{323} = 1)$
- Natural GMSB;
 tanβ = 5; maximal
 mixing for stop;
- 1. $\tilde{g} \to g\tilde{\chi}_i^0 \to g\tau \tilde{\tau} \to g\tau\tau \tilde{G}$, with i = 1, 2
- 2. $\tilde{g} \to q\bar{q}\tilde{\chi}_i^0 \to q\bar{q}\tau \tilde{\tau} \to q\bar{q}\tau\tau\tilde{G}$, with i = 1, 2
- 3. $\tilde{g} \rightarrow qq'\tilde{\chi}_{1}^{\pm} \rightarrow qq'\tilde{\nu}_{\tau} \tilde{\tau} \rightarrow qq'\tilde{\nu}_{\tau}\tau\tilde{G}$

ATLAS-CONF-2013-007

ATLAS-CONF-2013-025

ATLAS-CONF-2013-026

Summary

^{*}Only a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

Summary

- The LHC sensitivity is well within the realm of natural SUSY (and attacked from many different perspectives)
 - Gluino mediated stop production: gluino masses up to ~1.2 TeV are excluded with a variety of assumptions.
 - direct stop production: largely excluded (up to m ~ 600-650 GeV) assuming BR 100% in either $b\widetilde{X}_{1}^{\pm}$ or $t\widetilde{X}_{1}^{0}$
 - Quickly gaining sensitivity to the EW production even for decays not involving sleptons
- The startup of the LHC has been a fruitful and exciting period for SUSY searches
 - Exciting times ahead with the LHC run at design √s!

BACKUP

What we are typically doing

- Heavy sparticles produced in the primary collision
- They decay into lighter objects, emitting (high) P_T jets and possibly other objects (leptons, photons) and MET (LSP)
- A "typical" SUSY event will have large MET and Δm large H_T
- Useful variables:

$$H_T = \sum_{jets} p_T^{jets} (+ \sum_l p_T^l + \dots)$$
$$M_{eff} = E_T^{miss} + H_T$$

- But also other variables with well defined kinematical end point for the SM background
 - M_T (lepton-MET): end point at M_W if produced in W decay
 - M_{T2}, M_{CT}: assume pair produced heavy particles with visible and invisible decays

Higgs and SUSY

$$X_t = (A_t + \mu \cot \beta)/m_S$$

$$m_h^2 = m_Z^2 \cos^2 \beta + rac{3y_t^2 m_t^2}{(4\pi)^2} \left[\log \left(rac{m_S^2}{m_t^2}
ight) + X_t^2 \left(1 - rac{X_t^2}{12}
ight)
ight]$$

- The Higgs mass depend on the average stop mass and X_t
- m_h=126 GeV still allows for a light t₁

What is missing? (3rd gen)

- My own to-do list for the next few months/years:
 - Improve limits at high stop mass:
 - boosted top reconstruction?
- Mixed decays (50% t

 ₁→tX

 ₁0,
 50% t

 ₁→bX

 ₁±) still not considered (and somewhat favoured, actually)
- Complete the investigation in the low mass region (exclude independently of the stop parameters and mass hierarchy).

Taken from https://indico.cern.ch/contributionDisplay.py? sessionId=75&contribId=58&confId=181298

Jet measurement

- Constantly improving on jet measurement and pileup suppression techniques
- Jet energy scale known up to the ~1% level
- Pileup subtraction based on jet area method

Missing transverse momentum and b-tagging

- Missing E_T (E_T^{miss}) reconstructed from the vectorial sum of all final state objects:
- each with a dedicated calibration.

Missing transverse momentum and b-tagging

- Missing E_T (E_T^{miss}) reconstructed from the vectorial sum of all final state objects:
- each with a dedicated calibration.

- b-tagging: neural network algorithm combining informations about secondary vertex displacement and impact parameters of jets
- efficiencies generally well reproduced by MC. Systematic uncertainties of the order of 10-15%

RPV modes (4-lepton analysis)

Natural SUSY with ATLAS - 26th March 2013 - CERN

- Targeting generic strong production of gluinos and squarks.
- The exact decay chain depends on the SUSY mass hierarchy

Targeting generic strong production of gluinos and squarks.

• The exact decay chain depends on the SUSY mass

hierarchy

• Two analyses drive the limit with 8 TeV data

	0-lepton (ATLAS-CONF-2012-109)	1-lepton (ATLAS-CONF-2012-104)
leptons	Veto any e or µ above 10 GeV	One isolated e or μ above 25 GeV
jets	2 to 6 jets with $p_T > 60$ GeV (leading jet $p_T > 130$ GeV)	4 jets with p _T > 80 GeV
Other selections	MET > 160 GeV, reject multijet with cuts on MET/M _{eff} , and angle between jets and MET	MET > 250 GeV, M_T > 100 GeV, additional selection on MET/ M_{eff}
Final selection	M _{eff}	M _{eff}

- No excess above SM in any of the signal regions:
 - interpreted first as a model-independent 95% C.L. limit on the visible cross section of BSM processes
 - then as an exclusion limit in specific SUSY models

1 lonton	Signal region		
1-lepton	Electron		Muon
Observed events	10		4
Fitted background events	9.0 ± 2.8	7	$.7 \pm 3.2$
Fitted tt events	6.0 ± 2.2	2	.6 ± 1.9
Fitted W/Z+jets events	1.5 ± 0.7	4	$.2 \pm 2.3$
Fitted other background events	1.0 ± 0.7	0	$.9 \pm 0.3$
Fitted multijet events	0.4 ± 0.6	0	0.0 ± 0.0
MC expected SM events	9.5		11.5
MC expected tt events	5.7		4.6
MC expected W/Z+jets events	2.4		6.0
MC expected other background events	1.0		0.8
Data-driven multijet events	0.4		0.0

1-lepton	$\langle \epsilon \sigma \rangle_{\rm obs}^{95} [{ m fb}]$	S 95 obs	S ⁹⁵ exp	CL_B
Electron	1.69	9.9	9.3+3.3	0.59
Muon	1.09	6.4	$8.3_{-2.3}^{+3.4}$	0.19

- No excess above SM in any of the signal regions:
 - interpreted **first as a model-independent 95% C.L. limit on** σ_{vis} of BSM processes
 - then as an exclusion limit in specific SUSY models

$$\sigma_{\text{vis}} = \sigma \cdot A \cdot \varepsilon$$

	lonton		Signal region	1	
-	lepton	Electron		Muon	
Observed events		10		4	
Fitted background ev	ents	9.0 ± 2.8		7.7 ± 3.2	
Fitted tt events		6.0 ± 2.2		2.6 ± 1.9	
Fitted W/Z+jets even	ts	1.5 ± 0.7		4.2 ± 2.3	
Fitted other backgrou	ind events	1.0 ± 0.7		0.9 ± 0.3	
Fitted multijet events		0.4 ± 0.6		0.0 ± 0.0	
MC expected SM events		9.5		11.5	
MC expected tt event	ts	5.7		4.6	
MC expected W/Z+je	ets events	2.4		6.0	
MC expected other b	ackground events	1.0		0.8	
Data-driven multijet events		0.4		0.0	
	$\langle \epsilon \sigma \rangle_{\rm obs}^{95} [{\rm fb}]$	S 95 obs	S 95 exp	CL_B	
Electron	1.69	9.9	9.3+3.3	0.59	
Muon	1.09	6.4	$8.3_{-2.3}^{-2.0}$	0.19	

- No excess above SM in any of the signal regions:
 - interpreted first as a model-independent 95% C.L. limit on σ_{vis} of BSM processes
 - then as an exclusion limit in specific SUSY models

1 lonton	Signal region		
1-lepton	Electron	Muon	
Observed events	10	4	
Fitted background events	9.0 ± 2.8	7.7 ± 3.2	
Fitted tt events	6.0 ± 2.2	2.6 ± 1.9	
Fitted W/Z+jets events	1.5 ± 0.7	4.2 ± 2.3	
Fitted other background events	1.0 ± 0.7	0.9 ± 0.3	
Fitted multijet events	0.4 ± 0.6	0.0 ± 0.0	
MC expected SM events	9.5	11.5	
MC expected tt events	5.7	4.6	
MC expected W/Z+jets events	2.4	6.0	
MC expected other background events	1.0	0.8	
Data-driven multijet events	0.4	0.0	

	$\langle \epsilon \sigma \rangle_{ m obs}^{95} [{ m fb}]$	S 95 obs	S 95 exp	CL_B
Electron	1.69	9.9	9.3+3.3	0.59
Muon	1.09	6.4	$8.3^{+3.4}_{-2.3}$	0.19

- Simpified models: assume degenerate 1st and 2nd generation squarks. The only possible production processes are gg,gq,qq
- only possible processes (depending on masses)

$$\tilde{g} \to qq\tilde{\chi}_1^0, \tilde{g} \to \tilde{q}\tilde{\chi}_1^0, \tilde{q} \to q\tilde{\chi}_1^0$$

Squark (gluino) masses below 1.3/1.4 (1.1) TeV excluded for any gluino (squark) mass

0-lepton results

Signal Region	A-loose	A-medium	B-medium	C-loose	C-medium	E-loose	E-medium
MC expected events							
Diboson	53.1	18.2	11.1	6.2	0.9	0.0	0.0
W+jets	264.1	53.5	51.9	62.9	16.4	2.1	1.9
Z/γ^* +jets	338.2	74.7	50.4	55.0	16.1	1.0	0.8
$t\bar{t}$ + single top	74.9	8.1	14.2	42.6	5.3	2.1	1.6
		Fi	tted backgroun	d events			
Diboson	53 ± 23	18 ± 9	11 ± 6	6 ± 4	0.9 ± 0.6	-	_
Multi-jets	0.6 ± 0.6	0.1 ± 0.1	0.2 ± 0.2	_	_	_	_
W+jets	180 ± 140	33 ± 35	32 ± 34	40 ± 40	8 ± 8	1.2 ± 1.3	0.9 ± 1.1
Z/γ^* +jets	354 ± 21	81 ± 8	59 ± 6	67 ± 6	18.5 ± 3.0	2.0 ± 1.0	0.6 ± 0.5
$t\bar{t}$ + single top	67 ± 16	7.6 ± 3.5	14 ± 5	39 ± 7	5.3 ± 2.0	2.5 ± 0.9	2.0 ± 1.4
Total bkg	650 ± 130	140 ± 33	115 ± 30	155 ± 31	33 ± 8	5.7 ± 1.7	3.5 ± 1.7
Observed	643	111	106	156	31	9	7
p ₀	0.498	0.500	0.500	0.486	0.498	0.161	0.108
UL on N_{BSM}	224.8	33.9	43.8	65.7	17.9	10.4	9.9
UL on σ_{BSM} (fb)	38.8	5.84	7.55	11.3	3.09	1.79	1.71

Signal Region	A-tight	B-tight	C-tight	D-tight	E-tight
	M	C expected	events		
Diboson	3.3	0.2	0.0	0.8	2.6
W+jets	6.6	5.6	2.1	3.4	3.3
Z/γ^* +jets	7.4	4.5	1.9	1.3	1.3
$t\bar{t}$ + single top	1.0	1.1	0.6	1.8	2.7
	Fitte	d backgrour	nd events		
Diboson	3.3 ± 3.1	0.2 ± 1.4	_	0.8 ± 0.4	2.6 ± 2.0
Multi-jets	_	_	_	0.4 ± 0.5	0.1 ± 0.2
W+jets	3 ± 4	2.7 ± 3.4	0.3 ± 0.5	_	0.8 ± 1.3
Z/γ^* +jets	6.8 ± 2.2	5.1 ± 1.7	2.0 ± 1.1	2.5 ± 1.1	1.2 ± 0.7
$t\bar{t}$ + single top	0.8 ± 0.8	0.8 ± 0.9	0.6 ± 0.5	2.6 ± 1.6	5.1 ± 3.3
Total bkg	14 ± 5	8.7 ± 3.4	2.8 ± 1.2	6.3 ± 2.1	10 ± 4
Observed	10	7	1	5	9
p ₀	0.499	0.500	0.499	0.500	0.499
UL on N_{BSM}	8.9	7.3	3.3	6.0	9.3
UL on σ_{BSM} (fb)	1.53	1.26	0.57	1.03	1.60

CR	SR background	CR process	CR selection
CRY	$Z(\rightarrow \nu\nu)$ +jets	γ+jets	Isolated photon
CRQ	QCD jets	QCD jets	Reversed $\Delta\phi(\text{jet}, \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}}$ and $E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}(Nj)$ cuts
CRW	$W(\rightarrow \ell \nu)$ +jets	$W(\to \ell \nu)$ +jets	30 GeV $< m_T(\ell, E_T^{\text{miss}}) < 100$ GeV, <i>b</i> -veto
CRT	$t\bar{t}$ and single- t	$t\bar{t} \rightarrow bbqq'\ell\nu$	$30 \text{ GeV} < m_T(\ell, E_{\text{T}}^{\text{miss}}) < 100 \text{ GeV}, b\text{-tag}$

Common criteria: lepton veto, $p_{\mathrm{T}}^{f_1} > 90$ GeV, $E_{\mathrm{T}}^{\mathrm{miss}} > 150$ GeV, = 2 b-jets, $E_{\mathrm{T}}^{\mathrm{miss}} / \mathrm{m}_{\mathrm{eff}}^{4j} > 0.2$, $\Delta \phi_{\mathrm{min}}^{4j} > 0.4$

CR	$N_J (p_{\rm T} > 50 {\rm ~GeV})$	p _T b-jets	m _{eff}	corresponding SR
CR4	≥ 4 jets	> 50 GeV	$m_{\rm eff}^{4j} > 500~{ m GeV}$	SR4-L, SR4-M, SR4-T
CR6	≥ 6 jets	> 30 GeV	$m_{\rm eff}^{\rm incl} > 600~{ m GeV}$	SR6-L, SR6-M, SR6-T

Table 2: Definition of the two control regions used to estimate the $t\bar{t}$ background.

	Common	criteria: lept	ton veto, $p_{\mathrm{T}}^{j_1} > 90$ G	eV,	
	\geq 3 <i>b</i> -jets, $E_{\rm T}^{\rm miss}/{\rm m_{eff}^{4j}} > 0.2$, $\Delta \phi_{\rm min}^{4j} > 0.4$				
VR	$N_J (p_{\rm T} > 50 {\rm GeV})$	p _T b-jets	$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	m _{eff} [GeV]	
VR4-1	≥ 4 jets	> 50 GeV	$150 < E_{\rm T}^{\rm miss} < 200$	$m_{\rm eff}^{4j} > 500$	

VR	$N_J (p_{\rm T} > 50 {\rm GeV})$	p_{T} b -jets	$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	m _{eff} [GeV]
VR4-1	≥ 4 jets	> 50 GeV	$150 < E_{\rm T}^{\rm miss} < 200$	$m_{eff}^{4j} > 500$
VR4-2	\geq 4 jets	> 50 GeV	$E_{\rm T}^{\rm miss} > 200$	$500 < m_{\rm eff}^{4j} < 900$
VR6-1	≥ 6 jets	> 30 GeV	$150 < E_{\rm T}^{\rm miss} < 200$	$m_{\rm eff}^{\rm incl} > 600$
VR6-2	≥ 6 jets	> 30 GeV	$E_{\rm T}^{\rm miss} > 200$	$600 < m_{\rm eff}^{\rm incl} < 1100$

channel	CR4	VR4-1	VR4-2
Observed events	2518	249	158
Total background events	2518±80	291 ± 50	176±30
(MC prediction)	(2400 ± 700)	(280 ± 100)	(170 ± 60)
$t\bar{t}$ + jets events	1936 ± 200	217±40	126±24
(MC prediction)	(1800 ± 600)	(210 ± 70)	(120 ± 40)
$t\overline{t} + b/b\overline{b}$ events	155 ± 150	46 ± 46	25 ± 25
single top events	125 ± 45	12 ± 5	8±3
$t\bar{t} + W/Z$ events	28 ± 15	3 ± 2	4±2
W/Z events	269 ± 120	12 ± 7	13 ± 8
diboson events	5 ± 3	-	-
Gbb: $m_{\tilde{g}} = 1000 \text{ GeV}$, $m_{\tilde{\chi}_1^0} = 600 \text{ GeV}$	39±16	12±2	29 ± 5
Gbb: $m_{\tilde{g}} = 1200 \text{ GeV}, m_{\tilde{\chi}_{1}^{0}} = 1 \text{ GeV}$	8.9 ± 5.5	0.1 ± 0.1	0.1 ± 0.1

channel	CR6	VR6-1	VR6-2
Observed events	255	52	34
Total background events	255 ± 20	55 ± 15	32±9
(MC prediction)	(255 ± 100)	(55 ± 26)	(32 ± 17)
\overline{tt} + jets events	205 ± 30	35 ± 8	20±5
(MC prediction)	(205 ± 80)	(35 ± 16)	(20 ± 11)
$t\overline{t} + b/b\overline{b}$ events	24 ± 24	16 ± 16	9±9
single top events	10 ± 4	2 ± 1	1 ± 1
$t\overline{t} + W/Z$ events	5±3	1 ± 1	1 ± 1
W/Z events	11 ± 6	1 ± 1	2 ± 1
diboson events	-	-	-
Gtt : $m_{\tilde{g}} = 1000 \text{ GeV}$, $m_{\tilde{\chi}_{1}^{0}} = 400 \text{ GeV}$	15±5	5.9 ± 0.6	8.6±0.8
Gtt : $m_{\tilde{g}} = 1200 \text{ GeV}, m_{\tilde{\chi}_{1}^{0}} = 1 \text{ GeV}$	3.6 ± 1.6	0.2 ± 0.1	0.1 ± 0.1

channel	SR4-L	SR4-M	SR4-T
Observed events	38	8	4
Total background events	46±10	10.7 ± 2.9	2.9 ± 1.0
(MC prediction)	(44 ± 17)	(10.3 ± 4.6)	(2.7 ± 1.3)
\overline{tt} + jets events	30±6	7.0 ± 1.8	2.4±0.9
(MC prediction)	(29 ± 11)	(6.6 ± 2.5)	(2.3 ± 1.1)
$t\overline{t} + b/b\overline{b}$ events	8.1 ± 8.3	2.5 ± 2.5	0.1 ± 0.2
single top events	3.5 ± 1.3	0.4 ± 0.5	0.2 ± 0.1
$t\bar{t} + W/Z$ events	1.4 ± 0.8	0.5 ± 0.3	0.2 ± 0.1
W/Z events	2.6 ± 1.9	0.4 ± 0.6	_
diboson events	-	-	-
Gbb: $m_{\tilde{g}} = 1000 \text{ GeV}, m_{\tilde{\chi}_{1}^{0}} = 600 \text{ GeV}$	30±7	11±3	3.8 ± 1.3
Gbb : $m_{\tilde{g}} = 1200 \text{ GeV}$, $m_{\tilde{\chi}_{1}^{0}} = 1 \text{ GeV}$	$17\!\pm\!2$	17 ± 2	15±2

channel	SR6-L	SR6-M	SR6-T
Observed events	20	4	2
Total background events	18±6	6.3 ± 2.4	2.2 ± 1.3
(MC prediction)	(18 ± 9)	(6.3 ± 3.4)	(2.2 ± 1.8)
$t\bar{t}$ + jets events	12±4	4.3 ± 1.9	1.7 ± 1.0
(MC prediction)	(12 ± 6)	(4.3 ± 2.4)	(1.7 ± 1.5)
$t\overline{t} + b/b\overline{b}$ events	4.6 ± 5.0	1.3 ± 1.4	0.2 ± 0.3
single top events	0.6 ± 0.3	0.4 ± 0.2	0.2 ± 0.1
$t\bar{t} + W/Z$ events	0.8 ± 0.4	0.3 ± 0.2	0.1 ± 0.1
W/Z events	0.1 ± 0.1	_	-
diboson events	-	-	-
Gtt: $m_{\tilde{g}} = 1000 \text{ GeV}, m_{\tilde{\chi}_{1}^{0}} = 400 \text{ GeV}$	18±3	8.8 ± 2.2	3.6 ± 1.2
Gtt : $m_{\tilde{g}} = 1200 \text{ GeV}, m_{\tilde{\chi}_{1}^{0}} = 1 \text{ GeV}$	8.2 ± 0.4	7.8 ± 0.5	6.8 ± 0.6

SS - dilepton

SS-dilepton

7 /

SS leptons - background estimation

- Background processes:
 - Prompt leptons: ttV, diboson→MC used
 - "Fake lepton" (e.g. tt, Z) estimated with matrix method
 - charge flip (for electrons): estimated with SS to OS ratio on the Z→ee peak

- Prompt lepton background validated in VR:
 - dibosons: 2 jets, no b-tags, intermediate E_T^{miss}
 - ttW: 2 SS leptons, 2 b-tags, intermediate E_T^{miss}
 - ttZ: 3 leptons (SF, OS pair compatible with Z), 1 or 2 b-tags, intermediate E_T^{miss}

Event classes	VR-diboson	VR-ttW	VR-ttZ
Observed events	54	9	4
Expected background events	74 ± 13	4.2 ± 1.9	8.0 ± 2.0
Expected tī+V events	1.6 ± 0.8	2.7 ± 1.5	3.2 ± 1.1
Expected diboson events	60 ± 7	0.4 ± 0.1	3.9 ± 1.3
Expected fake lepton events	12 ± 11	1.1 ± 1.1	0.9 ± 0.5
Expected charge mis-meas. events	0	0	0

direct sbottom

Signal region definition

SR1:

- 2 b-jets (130, 50) GeV
- veto 3rd jet (above 50 GeV)
- ▶ m_{CT}> 150, 200, 250, 300 GeV

SR2:

- 2 b-jets (60, 60)
- veto 3rd jet (above 50 GeV)
- ► E_T^{miss} > 200 GeV
- ▶ m_{CT}> 100 GeV
- ► HT,2 < 50 GeV

$$HT,2 = \sum_{j = t>2}^{j = t N} p_T$$

SR3 (a):

- ► ISR jet 130 GeV, anti b-tagged
- 2 b-jets (30, 30) GeV
- $\qquad \Delta \Phi(E_{\rm T}^{\rm miss}, jet1) > 2.5$
- ▶ p_T b-jet 1 < 110 GeV</p>
- ► HT,3 < 50 GeV</p>

SR3 (b):

- ► all SR3(a) cuts
- ► *E*^{miss} >250
- ▶ p_T jet1 > 150 GeV

- top/W control region:
 - 2 b-jets
 - 1-lepton, 40 GeV < M_T < 100 GeV, similar selection as SR
 - At high M_{CT} W and top both relevant

- top/W control region:
 - 2 b-jets
 - 1-lepton, 40 GeV < M_T < 100 GeV, similar selection as SR
 - At high M_{CT} W and top both relevant

- Z control region:
 - 2 b-jets
 - 2-lepton same flavour, select the Z peak
 - "Mimic" MET by "neutrinising" the leptons

- top/W control region:
 - 2 b-jets
 - 1-lepton, 40 GeV < M_T < 100 GeV, similar selection as SR
 - At high M_{CT} W and top both relevant

- Z control region:
 - 2 b-jets
 - 2-lepton same flavour, select the Z peak
 - "Mimic" MET by "neutrinising" the leptons

- top control region:
 - 2 b-jets
 - 2-lepton different flavour
 - Very pure top control region

Control region counts and systematics

ATLAS-CONF-2012-165

Channel	CR1L_SR1	CR2L_SR1	CR2LDF_SR1
Observed events	104	102	51
Fitted bkg events	104 ± 11	102 ± 11	51 ± 7
Top production	70 ± 16	18 ± 4	50 ± 7
Z production	1.5 ± 0.4	82 ± 12	_
W production	25 ± 19	_	_
Others	8 ± 4 .	2.4 ± 1.3	0.8 ± 0.4

- Systematic uncertainties:
 - b-tagging uncertainties (~15%)
 - jet energy scale uncertainty (~10%)
 - Z production theoretical uncertainties (5%)

 Normalisation factors for the backgrounds in control regions close to 1 for top, to 1.2 for Z

 Results compatible with SM background predictions in all signal regions

Channel		SR1, m_{CT} selection				SI	R3
	150 GeV	200 GeV	250 GeV	300 GeV		SR3a	SR3b
Observed	172	66	16	8	104	207	21
SM Total	176 ± 25	71 ± 11	25±4	7.4 ± 1.7	95±11	203 ± 35	27±5
Top production	45 ± 13	17±6	7±3	1.6 ± 0.6	15±4	146±40	15±5
Z production	85 ± 15	36±6	12±2	4.0 ± 0.9	60±9	27±9	7±2
W production	28 ± 23	12 ± 10	4±3	1 ± 1	15±5	22±7	4±1
Others	6±3	4±2	1.4 ± 0.8	0.7 ± 0.4	4±2	4±2	1.5 ± 0.9
Multijet production	12 ± 12	2±2	0.2 ± 0.2	0.01 ± 0.01	0.6 ± 0.6	4±4	_

0-lepton, 2-b jets stop searches

• 95% C.L. model independent upper limits on BSM event yield and σ_{vis}

Signal region	Bkg. estimate	Obs. data	95% CL U	L on BSM event yield	95% CL UL on σ_{vis} (fb)		
			expected	observed	expected	observed	
SR1 ($m_{\rm CT} > 150 {\rm GeV}$)	176±25	172	55	54	4.2	4.1	
SR1 ($m_{\rm CT} > 200 \; {\rm GeV}$)	71±11	66	25	22	1.9	1.7	
SR1 ($m_{\rm CT} > 250 {\rm GeV}$)	25 ± 4	16	12.5	7.9	0.96	0.61	
SR1 ($m_{\rm CT} > 300 {\rm GeV}$)	7.4±1.7	8	7.5	8.0	0.58	0.62	
SR2	95±11	104	32	39	2.5	3.0	
SR3a	203 ± 35	207	54	54	4.2	4.2	
SR3b	27 ± 5	21	13.1	9.6	1.0	0.74	

0-lepton, 2-b jets stop searches

• 95% C.L. model independent upper limits on BSM event yield and σ_{vis}

Signal region	Bkg. estimate	Obs. data	95% CL UI	L on BSM event yield	95% CL UL on σ_{vis} (fb)		
			expected	observed	expected	observed	
SR1 (m _{CT} > 150 GeV)	176±25	172	55	54	4.2	4.1	
SR1 ($m_{\rm CT} > 200 {\rm GeV}$)	71±11	66	25	22	1.9	1.7	
SR1 ($m_{\rm CT} > 250 {\rm GeV}$)	25±4	16	12.5	7.9	0.96	0.61	
SR1 ($m_{\rm CT} > 300 {\rm GeV}$)	7.4 ± 1.7	8	7.5	8.0	0.58	0.62	
SR2	95±11	104	32	39	2.5	3.0	
SR3a	203 ± 35	207	54	54	4.2	4.2	
SR3b	27 ± 5	21	13.1	9.6	1.0	0.74	

- 95% C.L. limit very similar for the sbottom and the stop case if $\Delta m(\widetilde{X}_1^{\pm}, \widetilde{X}_1^{0})$ = 5 GeV
- A clear loss of acceptance (because of lepton and jet veto) if $\Delta m(\widetilde{X}_1^{\pm}, \widetilde{X}_1^{0}) = 20 \text{ GeV}$
- t→bX₁± (BR 100%) excluded up to mt ~ 600 GeV for nearly degenerate chargino and neutralino masses

0-lepton stop

Signal region	$\langle arepsilon \sigma angle_{ m obs}^{95} [{ m fb}]$	$S_{ m obs}^{95}$	$S_{ m exp}^{95}$	CL_B
SR1	0.49	10.0	10.6+5.5	0.39
SR2	0.17	3.6	$5.3^{+3.2}_{-1.7}$	0.20
SR3	0.19	3.9	$4.5^{+1.9}_{-0.7}$	0.27

Number of events	SR1	SR2	SR3
Observed	15	2	1
Expected background	17.5 ± 3.2	4.7 ± 1.5	2.7 ± 1.2
Expected tī	9.8 ± 2.6	1.9±1.3	0.9±0.7
Expected $t\bar{t} + W/Z$	1.7 ± 1.0	0.7 ± 0.4	0.51 ± 0.30
Expected Z+jets	2.1 ± 1.0	1.2 ± 0.5	0.8 ± 0.4
Expected W+jets	1.2 ± 0.8	0.32 ± 0.29	$0.19^{+0.23}_{-0.19}$
Expected single-top	1.5 ± 0.9	0.5 ± 0.4	$0.19^{+0.23}_{-0.19} \ 0.3^{+0.5}_{-0.3}$
Expected multijet	0.12 ± 0.12	0.01 ± 0.01	< 0.01
Expected diboson	1.2 ± 1.2	< 0.22	< 0.22
Fit input expectation tī	9.9	1.7	0.6

Uncertainty	SR1	SR2	SR3
Total	18%	33%	45%
Background sample sizes (data and simulation)	10%	17%	21%
Jet energy scale and resolution	10%	10%	25%
tī theory	10%	19%	22%
Z+jets theory	4%	8%	8%
$t\bar{t} + W/Z$ theory	5%	8%	10%

Z in stop decays

	CR2L1		CR2L2				
lepton flavour	ее, µµ	еµ	ee, μμ	еµ			
$N^{b ext{-jets}}$		≥ 1					
$\Delta \phi^{\ell\ell}$		< 1.5 rad					
Njets	3, 4		≥ 5				
$ m_{\ell\ell}-m_Z $	≥ 10 GeV, < 50 GeV	< 50 GeV	≥ 10 GeV, < 50 GeV	< 50 GeV			
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 160 GeV > 120 GeV						
$p_{\mathrm{T}}(\ell\ell)$	> 80 GeV						

	SR2L1A	SR2L1B	SR2L2	SR3L1	SR3L2
Data	10	1	2	4	2
Total SM	12.4 ± 2.3	2.7 ± 1.2	3.8 ± 1.4	5.8 ± 2.0	1.2 ± 0.6
Diboson	1.4 ± 1.2	0.8 ± 0.7	0.3 ± 0.3	1.0 ± 0.6	0.3 ± 0.2
$t\bar{t} + V$	0.9 ± 0.7	0.36 ± 0.09	1.4 ± 0.4	3.3 ± 1.4	1.1 ± 0.5
Fake-lepton	0.3 ± 0.5	0.0 ± 0.02	0.0 ± 0.03	1.5 ± 1.0	-0.2 ± 0.3
tī	8.6 ± 2.2	1.1 ± 0.7	1.9 ± 1.3		
Z+jets	0.9 ± 0.3	0.13 ± 0.07	0.2 ± 0.1		
Single top	0.09 ± 0.06	0.4 ± 0.6	< 0.2		
tī (before fit)	8.2 ± 3.3	1.0 ± 0.7	2.7 ± 2.7	Oh	s (exn)

Obs. (exp.) upper limit	its SR2L1A	SR2L1B	SR2L2	SR3L1
N _{non-SM}	7.5 (9.0)	3.5 (4.1)	4.2 (5.2)	5.5 (6.4)
$\sigma_{ m vis}$ [fb]	0.36 (0.43)	0.17 (0.20)	0.20 (0.25)	0.27 (0.31)

Z in stop decays

Z in stop decays

- Natural GMSB limit (2L) Higgs mass set to 126 GeV; tanβ = 5; maximal mixing for stop;
- \widetilde{X}_1^0 , \widetilde{X}_1^\pm and \widetilde{X}_2^0 assumed to be higgsinolike

2-leptons stop searches

- A dedicated two-lepton analysis addresses best the case $t_1 \rightarrow bX_1^{\pm}$ (BR 100% and $X_1^{\pm} \rightarrow W^{\pm}X_1^{0}$) if $\Delta m(t_1, X_1^{\pm})$ not too small
- Same and different flavour leptons considered
- Main SM background: tt, WZ
- Basic variable used to reject tt, WW: M_{T2}

The exclusion limit concentrated in regions with small $\Delta m(t_1, X_1^{\pm})$

1-lepton

		$L_{\mathrm{int}} = 20$	7 ft	o^{-1} $\sqrt{s} =$	= 8 ′	TeV ATLAS Preliminary	
	1	Ì				Total Fitted Background Data	
						Signal $(m_{\text{stop}}, m_{\text{LSP}}) = (350, 150)$	
		250 ± 57		174 ± 28		262 ± 34	
		253	16	165	10	235 41	
	140	290 ± 60	10	145 ± 23	10	101 ± 26	
\subseteq	100	268	8	119	8	110	≥1 b-jet
m _T (GeV)	120	1535 ± 260)	760 ± 120		695 ± 151	7
) I		1521		721		663	
Ħ	90		16		13	22	;
	50	3122 ± 116	3	1962 ± 60		2591 ± 104	
		3122		1962		2591	
	60		14		10	19	;
	00						
	90	1289 ± 85		005 1 56		1441 + 109	
		1289 ± 85 1289		825 ± 56 825		1441 ± 103 1441	b-jet veto
		1209	1	020	1	4	P.je
	60					•	
	10	00	15	25	18	50	
				$\mathbf{E}_{\mathbf{i}}$	niss r	(GeV)	

$N_{\rm nor}$	ı-SM	$\sigma_{ m vis}$	[fb]
Obs.	Exp.	Obs.	Exp.
10.7	10.0	0.5	0.5
8.5	6.7	0.4	0.3
83.2	97.6	4.0	4.7
19.5	15.7	0.9	0.8
7.6	7.6	0.4	0.4
85.7	89.8	4.1	4.3
49.8	45.0	2.4	2.2
38.9	55.5	1.9	2.7
	Obs. 10.7 8.5 83.2 19.5 7.6 85.7 49.8	10.7 10.0 8.5 6.7 83.2 97.6 19.5 15.7 7.6 7.6 85.7 89.8 49.8 45.0	Obs. Exp. Obs. 10.7 10.0 0.5 8.5 6.7 0.4 83.2 97.6 4.0 19.5 15.7 0.9 7.6 7.6 0.4 85.7 89.8 4.1 49.8 45.0 2.4

Regions	WCR-SRbC1	TCR-SRbC1	TVR-SRbC1	SRbC1
Observed events	2358	2944	785	456
Total background (fit)	2358 ± 151	2944 ± 119	806 ± 123	482 ± 76
tt	440 ± 180 (440)	2160 ± 210 (2170)	630 ± 100 (630)	400 ± 90 (400)
$t\bar{t} + V$	2.8 ± 1.6	14 ± 8	5.9 ± 3.4	14 ± 7
W+jets	$1780 \pm 240 (2080)$	$540 \pm 170 (630)$	$120 \pm 40 (140)$	$45 \pm 17 (52)$
Z+jets, VV, multijet	100 ± 80	37 ± 28	5 ± 5	5 ± 4
Single top	39 ± 25	190 ± 90	46 ± 31	19 ± 10
Regions	WCR-SRbC2	TCR-SRbC2	TVR-SRbC2	SRbC2
Observed events	1139	264	76	25
Total background (fit)	1139 ± 45	264 ± 19	75 ± 26	18 ± 5
tt	130 ± 80 (150)	204 ± 29 (240)	61 ± 25 (71)	9 ± 5 (11)
$t\bar{t} + V$	1.3 ± 0.9	2.5 ± 1.5	1.0 ± 0.7	2.4 ± 1.3
W+jets	$940 \pm 100 (1000)$	$26 \pm 12 (28)$	5.8 ± 2.7 (6.2)	$3.3 \pm 2.0 (3.4)$
Z+jets, VV, multijet	50 ± 40	1.3 ± 1.2	0 ± 0	0 ± 0
Single top	16 ± 13	30 ± 14	7 ± 5	3.4 ± 1.5
Regions	WCR-SRbC3	TCR-SRbC3	TVR-SRbC3	SRbC3
Observed events	665	144	39	6
Total background	665 ± 33	144 ± 17	42 ± 9	7 ± 3
tt	60 ± 40 (80)	106 ± 23 (141)	31 ± 8 (42)	2.4 ± 1.5 (3.1)
$t\bar{t} + V$	0.8 ± 0.6	1.8 ± 1.1	0.6 ± 0.5	0.8 ± 0.6
W+jets	$560 \pm 60 (610)$	$17 \pm 8 (19)$	$4.7 \pm 2.0 (5.2)$	$1.7 \pm 1.7 (1.9)$
Z+jets, VV, multijet	33 ± 26	$0.5^{+1.2}_{-0.5}$	0 ± 0	0 ± 0
Single top	10 ± 7	18 ± 9	6 ± 4	2.0 ± 1.0

Regions	WCR-SRtN2	TCR-SRtN2	TVR-SRtN2	SRtN2
Observed events	165	204	23	14
Total background (fit)	165 ± 15	204 ± 16	29 ± 10	13 ± 3
tt	31 ± 18 (30)	139 ± 26 (138)	22 ± 8 (22)	$7.5 \pm 2.9 (7.5)$
$t\bar{t} + V$	0.4 ± 0.3	1.4 ± 0.8	0.4 ± 0.3	2.2 ± 1.2
W+jets	$122 \pm 28 (157)$	$44 \pm 19 (57)$	$4.6 \pm 2.6 (5.9)$	1.5 ± 0.8 (1.9)
Z+jets, VV, multijet	11 ± 9	5 ± 4	$0.1^{+0.3}_{-0.1}$	0.4 ± 0.3
Single top	$1.3^{+2.4}_{-1.3}$	14 ± 10	2.1 ± 1.9	1.1 ± 0.5
Regions	WCR-SRtN3	TCR-SRtN3	TVR-SRtN3	SRtN3
Observed events	149	175	22	7
Total background (fit)	149 ± 25	175 ± 19	28 ± 14	5 ± 2
tt	20 ± 15 (24)	96 ± 33 (118)	19 ± 12 (24)	1.8 ± 1.0 (2.2)
$t\bar{t} + V$	0.3 ± 0.3	1.5 ± 0.9	0.48 ± 0.35	1.0 ± 0.7
W+jets	$117 \pm 29 (131)$	55 ± 25 (61)	$5.3 \pm 2.6 (5.9)$	1.5 ± 1.3 (1.6)
Z+jets, VV, multijet	10 ± 8	3.8 ± 3.5	$0.1^{+0.6}_{-0.1}$	$0.14^{+0.19}_{-0.14}$
Single top	$1.6^{+1.8}_{-1.6}$	19 ± 11	2.6 ± 1.9	0.53 ± 0.24

aly	= 0b-jet	$\geq 1b$ -jet			
100 < E _T ≤ 25 GeV	$60 < m_{\rm T} < 90 {\rm GeV}$	$60 < m_{\rm T} < 90 {\rm GeV}$	$90 < m_{\rm T} < 120{\rm GeV}$	$120 < m_{\rm T} < 140 {\rm GeV}$	$m_{\rm T} > 140{\rm GeV}$
Observed everils Total background (fit)	1289 1289 ± 85	3122 3122 ± 116	1521 1535 ± 260	268 291 ± 61	253 250 ± 57
$t\bar{t}$ $t\bar{t} + V$ W +jets Z +jets, VV , multijet Single top	480 ± 140 (430) 2.0 ± 1.0 730 ± 170 (880) 39 ± 35 31 ± 18	2720 ± 170 (2410) 9 ± 4 230 ± 120 (270) 35 ± 35 130 ± 70	1350 ± 249 (1200) 5.6 ± 2.8 110 ± 50 (130) 7 ± 6 60 ± 40	$260 \pm 60 (230)$ 1.9 ± 0.9 $22 \pm 11 (26)$ $1.4^{+2.3}_{-1.4}$ 8 ± 6	$230 \pm 50 (200)$ 2.8 ± 1.3 $12 \pm 10 (14)$ $0.6^{+0.9}_{-0.6}$ 6 ± 4
125 < E _T < 5 50 GeV	$60 < m_{\rm T} < 90 {\rm GeV}$	$60 < m_{\rm T} < 90 {\rm GeV}$	$90 < m_{\rm T} < 120{\rm GeV}$	$120 < m_{\rm T} < 140 {\rm GeV}$	$m_{\rm T} > 140{\rm GeV}$
Observed events Total background (fit)	825 825 ± 56	1962 1962 ± 60	721 755 ± 119	119 145 ± 23	165 174 ± 28
tt	330 ± 120 (290)	1740 ± 100 (1510)	670 ± 110 (590)	135 ± 21 (118)	162 ± 27 (141)
$t\overline{t} + V$	1.4 ± 0.9	7.0 ± 3.5	3.9 ± 2.2	1.3 ± 0.7	2.9 ± 1.3
W+jets	$450 \pm 130 (640)$	$130 \pm 60 (180)$	$47 \pm 25 (68)$	$5 \pm 5 (7)$	$3^{+5}_{-3}(5)$
Z+jets, VV, multijet	30 ± 24	16^{+27}_{-16}	3.4 ± 3.4	0.4 ± 0.4	$0.8^{+1.0}_{-0.8}$
Single top	19 ± 12	78 ± 35	27 ± 19	$3.4^{+3.5}_{-3.4}$	5.7 ± 1.9
$E_{\rm T}^{\rm miss} > 150{\rm GeV}$	$60 < m_{\rm T} < 90 {\rm GeV}$	$60 < m_{\rm T} < 90 {\rm GeV}$	$90 < m_{\rm T} < 120{\rm GeV}$	$120 < m_{\rm T} < 140 {\rm GeV}$	$m_{\rm T} > 140 {\rm GeV}$
Observed events	1441	2591	663	113	235
Total background (fit)	1441 ± 103	2591 ± 104	695 ± 151	101 ± 26	262 ± 34
tt	430 ± 180 (420)	2100 ± 180 (2030)	590 ± 120 (570)	88 ± 23 (85)	220 ± 40 (210)
$t\overline{t} + V$	2.7 ± 1.7	14 ± 8	5.7 ± 3.5	2.2 ± 1.2	10 ± 5
W+jets	$920 \pm 210 (1110)$	$310 \pm 120 (380)$	$59 \pm 28 (72)$	$6.0 \pm 3.5 (7.3)$	$24 \pm 14 (29)$
Z+jets, VV, multijet	60 ± 60	24 ± 22	2^{+5}_{-2}	$0.4^{+0.6}_{-0.4}$	2.1 ± 1.8
Single top	27 ± 20	140 ± 80	37 ± 26	4 ± 4	7 ± 5

1-lepton

EW production

- SRZa populated almost only by WZ events
- Similar region was used with 2013 fb⁻¹ as a control region for WZ, finding a scale factor of 1.0 ± 0.1

4-leptons

Sample	VR0noZ	VR1noZ	VR0Z	VR1Z
ZZ	7.2 ± 3.6	1.45 ± 0.30	167 ± 38	8.0 ± 1.2
ZWW	0.031 ± 0.031	0.027 ± 0.027	0.35 ± 0.35	0.10 ± 0.10
tīZ	0+0.05	$0^{+0.10}_{-0}$	1.5 ± 0.7	0.18 ± 0.14
Higgs	0.17 ± 0.05	0.23 ± 0.05	4.5 ± 0.9	0.64 ± 0.16
Irreducible Bkg.	7.4 ± 3.6	1.70 ± 0.34	173 ± 39	8.9 ± 1.4
Reducible Bkg.	$0.3^{+0.7}_{-0.3}$	7.9 ± 3.6	$2.0^{+2.6}_{-2.0}$	28 ± 10
Total Bkg.	7.7 ± 3.4	9.6 ± 3.6	175 ± 37	37 ± 10
Data	3	10	201	31
CL_b	0.10	0.54	0.51	0.30

VR	$\mathrm{N}(\ell=e,\mu)$	$N(\tau)$	Z Candidate	$E_{\mathrm{T}}^{\mathrm{miss}}[\mathrm{GeV}]$		$m_{\rm eff} [{ m GeV}]$	Dominant Background
VR0noZ	≥4	≥0	extended veto	<50	and	<400	Z*Z*
VR1noZ	=3	≥1	extended veto	<50	and	<400	Z^*Z^* , WZ^* , Z^* +jets
VR0Z	≥4	≥0	request	<50			ZZ
VR1Z	=3	≥1	request	<50			ZZ, WZ , Z +jets

4-leptons - results

- Left: \widetilde{X}_3^0 and \widetilde{X}_2^0 nearly mass degenerate. $\Delta m(\widetilde{X}_3^0, \widetilde{X}_1^0) = 80$ GeV. Plot $\Delta m(\widetilde{X}_3^0, \widetilde{I})$ Vs. $m(\widetilde{X}_1^0)$
- Right: X_3^0 and X_2^0 mass degenerate. m(l) = $(m(\widetilde{X}_3^0) + m(\widetilde{X}_1^0))/2$. Plot $\Delta m(\widetilde{X}_3^0, \widetilde{X}_1^0)$ Vs. $m(\widetilde{X}_1^0)$

Sample	SR0noZa	SR0noZb	SR1noZ	SR0Z	SR1Z
ZZ	0.6 ± 0.5	0.50 ± 0.26	0.19 ± 0.05	1.2 ± 0.4	0.49 ± 0.10
ZWW	0.12 ± 0.12	0.08 ± 0.08	0.05 ± 0.05	0.6 ± 0.6	0.13 ± 0.13
tīZ	0.73 ± 0.34	0.75 ± 0.35	0.16 ± 0.12	2.3 ± 0.9	0.29 ± 0.24
Higgs	0.26 ± 0.07	0.22 ± 0.07	0.23 ± 0.06	0.58 ± 0.15	0.14 ± 0.05
Irreducible Bkg.	1.7 ± 0.8	1.6 ± 0.6	0.62 ± 0.21	4.8 ± 1.8	1.1 ± 0.4
Reducible Bkg.	$0^{+0.16}_{-0}$	$0.05^{+0.14}_{-0.05}$	1.4 ± 1.3	$0^{+0.14}_{-0}$	0.20+0.97
Total Bkg.	1.7 ± 0.8	1.6 ± 0.6	2.0 ± 1.3	4.8 ± 1.8	$1.3^{+1.0}_{-0.5}$
Data	2	1	4	8	3
p_0 -value	0.29	0.5	0.15	0.08	0.13
N _{signal} excluded (exp)	3.9	3.6	5.3	6.7	4.5
N _{signal} excluded (obs)	4.7	3.7	7.5	10.4	6.5
$\sigma_{ m visible}$ excluded (exp) [fb]	0.19	0.17	0.26	0.32	0.22
$\sigma_{ m visible}$ excluded (obs) [fb]	0.23	0.18	0.36	0.50	0.31

Prospects for SUSY searches at 13/14 TeV

- LHC is foreseen to run at 13/14 TeV after 2015 and integrate about 300 fb⁻¹.
- Increased energy and pileup conditions (highly dependent on the bunch spacing)
 - Impact mainly on trigger conditions:
 - Short term: improve on trigger strategy trigger on topologies
 - Long term: dedicated hardware/software upgrades: improved calorimeter readout at early trigger stages, single track trigger, etc.
- Expect to deal with increased p_T thresholds at the beginning, especially for leptons (lowest unprescaled lepton trigger of p_T > 33 GeV w.r.t. current 25 GeV

Prospects with 13/14 TeV

- Project the sensitivity of the analyses to 13/14 TeV
- ...assuming realistic running conditions and no improvement on the analyses (!)
- A lot still to be said about EW scale SUSY

