session 1: introduction & overview

welcome & program – Ilan Ben-Zvi

crab history & motivation – Robert Palmer

LHC crab scheme – Rama Calaga

SBIR phase-1 for 800 MHz prototype – Mike Cole

Welcome LHC-CC08

Bob Palmer: Two-in-one magnet Crab crossing

Ilan Ben-Zvi Collider-Accelerator Department BNL

goals (llan) learn from KEKB roadmap for LHC crab cavities time line, time scales work packages + distribution of tasks

decisions

global or local?, optics, small-angle strawman? requirements for local scheme? exotic cavities?, choice of rf frequency, D1 magnet parameters?, engneering challenges, R&D plan, AES cavity

how do we get started? installation in IR4?

Crab-Super-Disruption

One needs two more electron lenses after the IP to match back into the ring. Not shown here for simplicity. But you get the idea. **R. Palmer**

Conclusion

R. Palmer

- Crab crossing was invented for linear colliders
- I never thought it would work in a ring
- Super-disruption was also invented for linear colliders
- I never thought it would work in a ring
- Perhaps I could be wrong twice
- Anyway, I wanted to say something you probably did not know

References

- 1. Crab Crossing: R.B.Palmer; Snowmass Proceedings p 631 (1988), and SLAC-PUB 4708 Dec 1988
- 2. Super Disruption: R.B.Palmer; SLAC-PUB 3688 (1985)
- 3. Linear Colliders: R.B.Palmer; Annual Rev. Nuclear Science (1990) 40: p529

Phased Upgrades

- Phase 0 (Nominal LHC):
 - One crab structure/beam (global cavities @IP4, circa 2010-11)
 - Test SRF limits in deflecting mode & beam testing in LHC/SPS/?
- Phase I (Minimal β^* IR Upgrade, circa 2012-13)
 - New IR optics & magnet parameters to accommodate local cavities (800 MHz)
 - VV crossing scheme favorable, engineering details...
- Phase II (Complete IR Redesign, circa 2016 or beyond)
 - Larger transverse beam separation (>30cm) envisioned
 - Exotic schemes available ? Perhaps separate quad channels ?

Geometric Luminosity

X-Angle Reduction Factor:
$$\frac{L}{L_o} \approx \left[1 + \left(\frac{\sigma_z}{\sigma_x^*} \tan\left(\theta_c/2\right)\right)^2\right]^{1/2}$$

factor 2-3 gain in luminosity

Par	Unit	Nominal [G]		Upgrade [L]	
$\operatorname{IP}_{\{1,5\}}eta^*$	[cm]	55		25 (8 _{ES})	
β_{CC}	[km]	0.13	0.38	3.0	4.5
CC Volt	[MV]	2.0	5.8	5.4 (9.5)	3.7 (6.4)

Local Scheme: Space Challenge

- ge **R. Calaga**
- Longitudinal Space \sim 10-15 m (Local, staggered cavities, common cryostat)
- Transverse for nominal \sim 19 cm, tight margin (VV Crossing)
- Require clever He vessel + integrated cryostat design to accommodate two beams

Phase jitter introduces random offset:

$$\left(\frac{\Delta\epsilon_x}{\Delta t}\right)_{BB} \approx n_{IP} f_r \frac{8\pi^2 \xi^2}{\beta_x^*} (\Delta x)^2 \qquad \left\{\Delta x_{IP} = \frac{c\theta_c}{\omega_{RF}} \delta\phi\right\}$$

Random Dip Kicks:

 $\frac{1}{\epsilon} \frac{\Delta \epsilon_x}{\Delta t} \approx \frac{f_r(1-s_0)}{4\sigma_x^* \left(1+\frac{g}{2\pi|\xi|}\right)^2} (\Delta x)^2 \qquad [Y. \text{ Alexahin}]$

R. Calaga

For 1% Emittance Growth/Hr, gain=0.2 (Random turn-to-turn)

Jitter Estimate	Amp.	Phase		
		Beam-Beam	Dip. Kicks	
Analytical	$\sim 0.04\%$	$0.01^{\circ} (0.006^{\circ})$	0.006° (0.003°)	
Simulation (WS)		0.002°	-	
Simulation (SS, K. Ohmi)		$< 0.001^{\circ}$		
Feasible Today	0.01%	0.003°		

Advanced Energy Systems, Inc.

- The overall technical objective of our project over phase I and II is to design, fabricate, and test an 800 MHz prototype crab cavity.
- We will also generate a preliminary design for a cryomodule for this cavity.
- The Phase I objective is to perform the preliminary design of the crab cavity including; physics design, RF design, initial analysis, and the preliminary mechanical design.
- We will also perform the conceptual design of cryomodule which includes selection of the configuration and the initial layout.

phased SBIR program over 2.5 years, BNL-AES collaboration

discussion

phase-0 benefit for both IPs? (Ralph); sqrt(2) higher voltage & 45/135deg phase advance can be used to crab in both IPs (with same crossing plane) – Katsunobu Oide

crab-cavity wake fields \rightarrow "banana effects" – Bob Palmer, H.P. collimator wake fields for global scheme wake fields excited by tilted bunches passing through collimators \rightarrow self-consistent calculation needed – H. Padamsee, F. Z.

crab-cavity parameters similar for local & global scheme

noise issues possibly relaxed for local scheme – H.P., F.Z.

crab super disruption – could it be applied to LHeC?

dispersion at rf cavity instead of crab cavity? - John Byrd

passive operation for crab cavity test? – John Byrd

separate cooling for easier exchange? – Joachim, Hassan,...