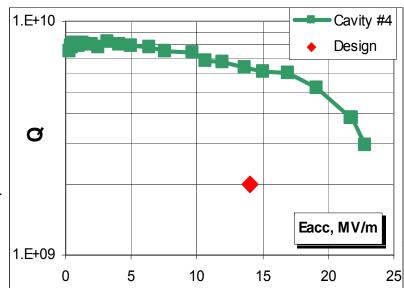
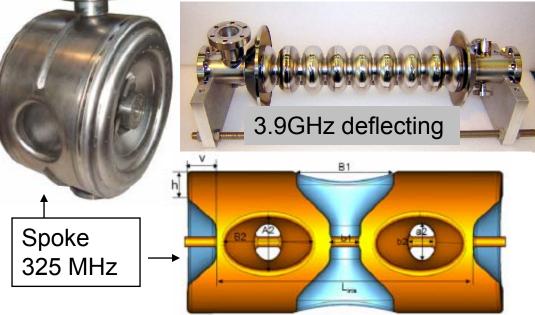


LHC CRAB CAVITY WITH REDUCED OUTER DIAMETER

I. Gonin, N. Solyak, and V. Yakovlev FNAL

LHC CC08 meeting, BNL, Feb. 25-26, 2008



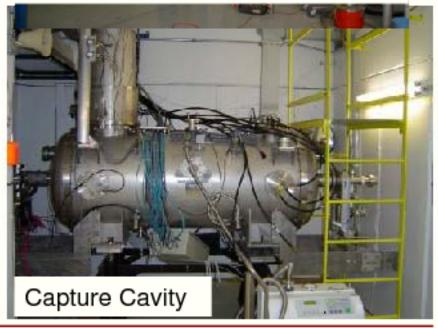

FNAL SRF infrastructure

FNAL SRF Projects:

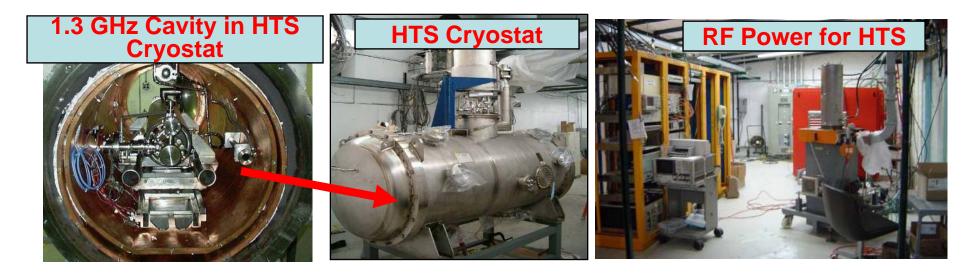
CKM – 3.9 GHz deflecting cavity -13 cells; 5MV/m (reached ~7.5 MV/m) □ 3.9 GHz accelerating cavity (3rd harm) -9-cells, 8 cavities built -Eacc=25MV/m; Epk=60 MV/m; Bpk~120mT □ 1.3 GHz ILC (TESLA) cavity 1.3 GHz beta=0.81 cavity design -built, tested by MSU □ 325 MHz spoke cavity -2 cavity built, under test Couplers, HOM couplers, tur Cryomodule (CM1, CM-3rd ha

Cavity Vertical Test Stand

Cavity Testing Infrastructure


RF Power for HTS

Cryogenics for HTS getting ready for 2 K


Cryogenics for HTS ready at 2 K

Horizontal Test System

- HTS facility is completed and commissioned
 - First test of the cavity with high pulsed RF power
 - R&D Test bed: tuners (slow), couplers, LLRF, etc
 - 1.3 GHz capture cavity
 - 3.9 GHz accelerating cavity,

TD-MP9 CRYOMODULE ASSEMBLY FACILITY

1.3GHz bare cavity hydrogen degas bake at CAF-IB4

• Cavity string and Cold mass Assembly Areas

• Fully Operational (June 2007)

1.3GHz dressed cavity

3.9GHz Cryomodule Mockup Assembly

Clean room technicians from FNAL & DESY working together during CM1 string assembly

Cryomodule #1 (CM1) string assembly in the cleanroom

CRYOMODULE ASSEMBLY FACILITY



CM1 -Assembly schedule

- String Assembly: mid-Sept.
- Cold Mass Assembly: mid Oct.
- Final Assembly: Nov.
- 3rd Harm Cryomodule: Jan 2008

3rd Harmonic SRF Cryomodule

Cryomodule design completed in May 2007.

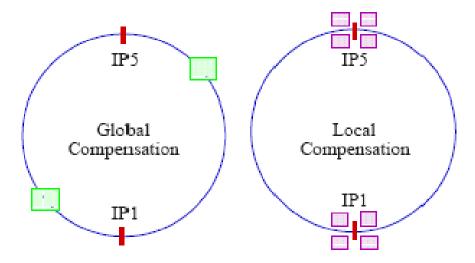
1st successful cavity test in Spring 2007!

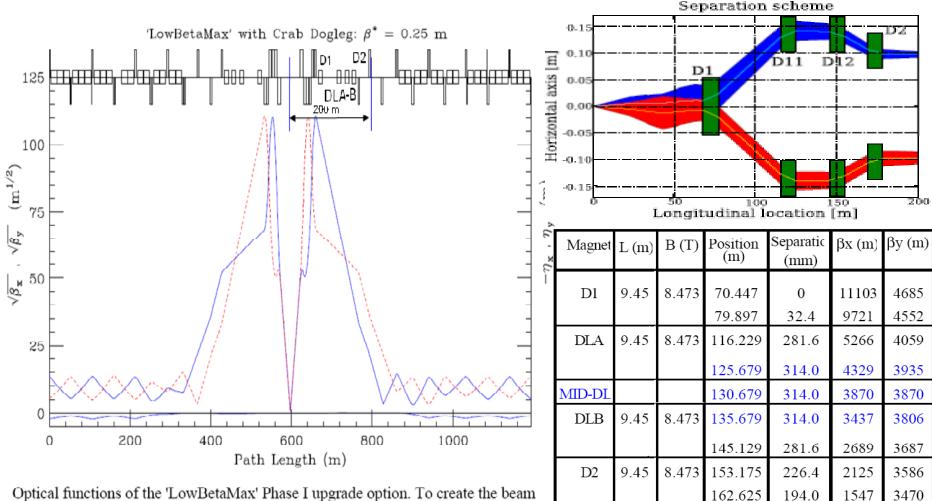
Fabrication in process at MP9.

2008 delivery to DESY.

LHC Crab Cavity: Design Constrains

- General:
 - Frequency 800 MHz; $Q_L \sim 10^6$ (beam transverse jitter)
 - Dipole HOM: Q_L~ 10²÷10³ TCBI (Transv. Coupled Bunch Instability)
 - Monopole modes: $Q_L \sim 10^2$ Power dissipation in load

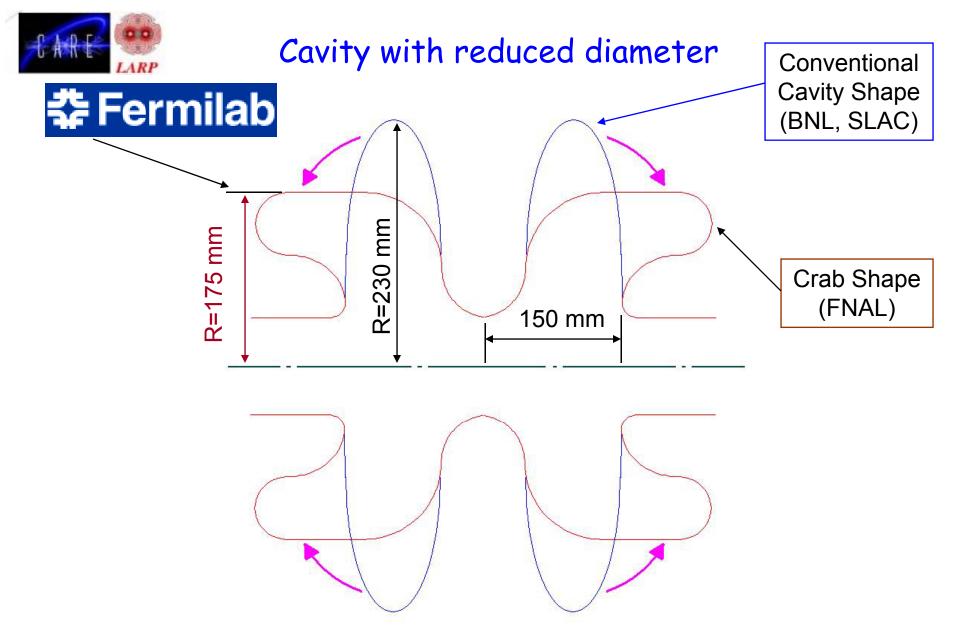



Figure 3: Schematic of global and local crab compensation at two IPs for LHC upgrade.

Global scheme:

Beam separation ~ 40 cm Beta function ~ 100 m (?) Longitudinal space ~ 5-10 m Local scheme (preferable choice) Beam separation ~ 30 cm Beta function ~ 3-4 km Longitudinal space ~10 m

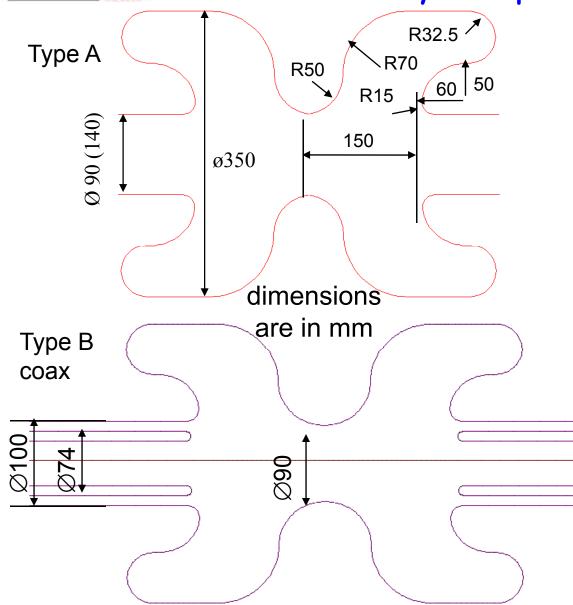
Local Scheme for Crab Cavity


Optical functions of the 'LowBetaMax' Phase I upgrade option. To create the beam separation for insertion of crab cavities the baseline D1 separation magnet comprising 6 conventional magnet modules must be replaced by a single SC dipole. The remaining 3 separation dipoles in the dogleg are all superconducting.

(J.Johnstone and P.Limon (FNAL))

Beam separation ~30cm at 10 m

D1 - single aperture. DLA,DLB, and D2 are all double bore.


In straight section $\beta x = \beta y$.

Idea of the LHC Crab cavity with reduced outer diameter to fit 30cm bunch separation. Conventional cavity (blue) vs. the cavity with reduced diameter (red)

Cavity Shape

ILC-like

- Few monopole and dipole modes are trapped in cavity
- Needs LOM, HOM and SOM couples to damp all these modes

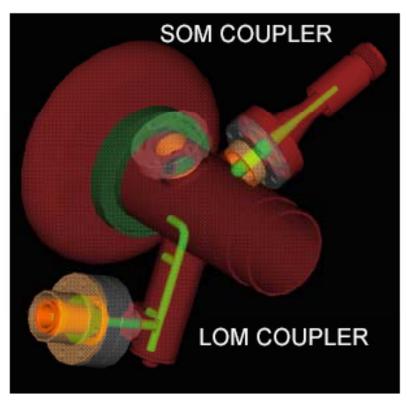
KEKB-like

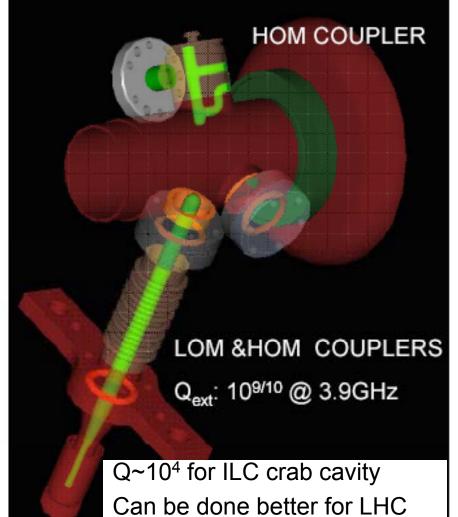
Coaxial coupler

All monopole modes are propagating in coaxial line

Only working dipole mode (800 MHz) are trapped in cavity.

All other dipole modes are well damped. Fc>1097MHz

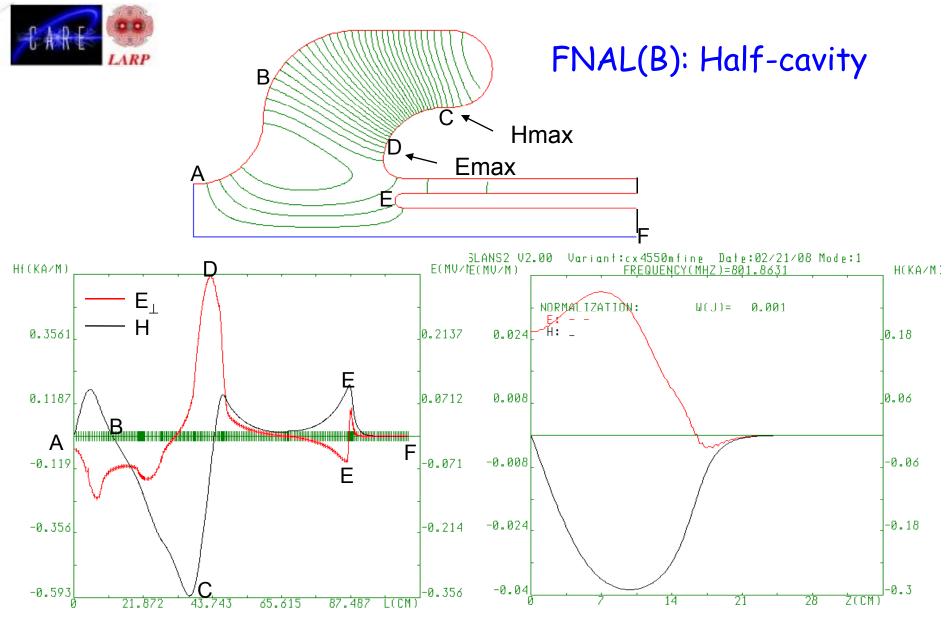



LOM, SOM, HOM COUPLERS

HOM coupler a modification of DESY design

SOM coupler will be mechanically adjusted to find the node of the ${\rm TM}_{\rm 110}$ mode

LOM at opposite end of input coupler



Notch filter: TEM-coupled Crab mode rejection

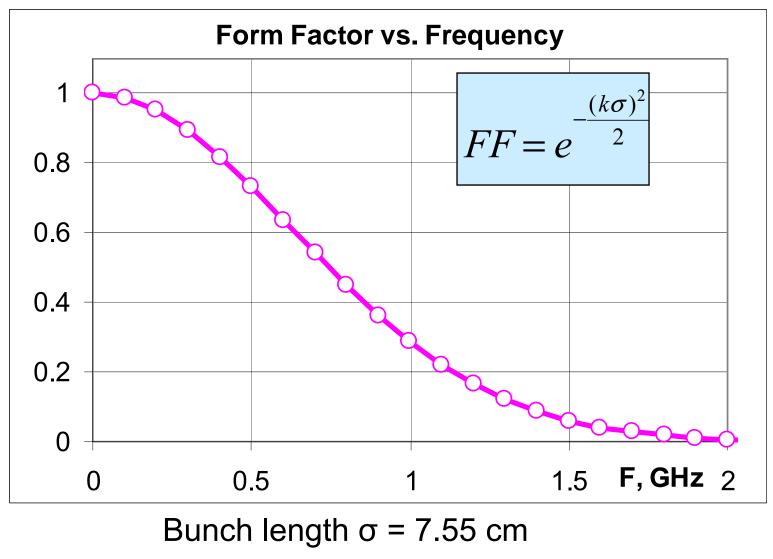
Stub support: support for inner conductor

Distribution of electric and magnetic fields along cavity surface (left) and at the axis (right).

Main parameters of the crab cavities

	BNL	SLAC	FNAL(A)	FNAL(B)
V _⊥ , MV	5	5	5	5
B _{peak} , mT	386	189	150	152.1
E _{peak,} MV/m	66.2	47.5	68.6	72.4
r⊥/Q, Ohms**	41	56	61	58.7
Ø iris, mm	160	140	90	100x74 (coax)
Ø cavity, mm	460	460	350	350

• Crab frequency 800 MHz


* V_⊥= $\Delta p_{\perp}c/e$;

- All cavities in simulations not squashed
- SLAC squashed cavity: Hs=165.5 mT; Es=49.4 MV/m

**(R_{\perp}/Q) = $V_{\perp}^2/2\omega W$

(Form factor not included)

 $(R/Q)_{eff} = FF^*(R/Q)$

Monopole modes in Crab Cavities

	BNL		SLAC		FNAL(B)	
	0 - π r	nodes	0- π r	nodes	0- π m	nodes
Beam pipe \emptyset (mm)	160		140		100	
F _{cut-off} , MHz	1435.4		1640.4		0	
TM010: Freq, MHz	582	590	556	560	520.5	520.6
FF*(R/Q), Ω	12	6	16.5	63	20	73
TM020: Freq, MHz	1219	1256	1242	1264	1087.2	1087.8
FF*(R/Q), Ω	0.15	0.04	0.6	0.4	6.8	2.1
TM011: Freq, MHz	1384	1429	1440	1453	1675	1680
FF*(R/Q), Ω	0.06	0.6	0.08	0.7	. 0.02	0.3
TM030: Freq, MHz	1454	1457	1660	1661	1844.3	1843.6
FF*(R/Q), Ω	1.9	1.3	0.88	80.0	0.2	0.02

In squashed cavity (ratio=0.8) TM010 moves up 30 MHz

Three monopole modes need to be damped in BNL, SLAC designs.

Higher frequencies (>1.5 GHz) are suppressed by form-factor

Dipole modes in Crab Cavities

	BNL		SLAC		FNAL(B)	
	0π modes		$0 \pi \text{ modes}$		$0 \pi \text{ modes}$	
Beam pipe \emptyset (mm)	160		140		Coax: 74x100	
F _{cut-off} MHz	1098		1255		1097	
TM110: Freq, MHz	828	800	811	800	801.3	800
FF*(R/Q), Ω	0.36	18.6	0.08	25	0.17	26.4
TM111: Freq, MHz	980	877	1069	981	1142	1145
FF*(R/Q), Ω	1.0	0.86	0.98	0.2	0.6	0.01
TM120: Freq, MHz	1185	1164	1353	1309	1291	1286
FF*(R/Q), Ω	0.003	0.009	0.07	0.0002	1.4	1.3
Freq, MHz	1355	1293	1495	1426	1309	1302
FF*(R/Q), Ω	0.004	0.003	0.06	0.1	0.22	0.05

In squashed cavity SOM (800MHz) moved up ~89 MHz

In FNAL(B) design squashing can move up frequency of other polarization (800MHz), higher than cut-off frequency in coaxial line

Dipole modes

Monopole modes

Freq	FF*(R/Q)	Q
псч		S S
MHz	Ohm	
520.6	20	440
520.7	73	420
1087.2	2.1	330
1087.2	6.8	350
1675.1	0.3	120
1679.6	0.02	115

Freq	FF*(R/Q)	Q
MHz	Ohm	
800	26.4	
801.3	0.17	
1144.6	0.01	61
1144.9	0.6	60
1285.5	1.3	509
1291.4	1.4	150
1302	0.05	18.8
1309	0.22	18.4
1412.3 1434.9	0.5 0.5	28 32

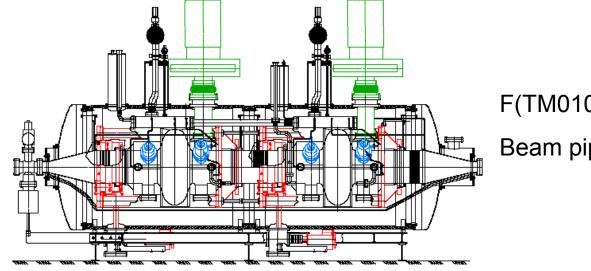
Stronger damping is possible changing position of the coaxial. Crab mode is attenuated in coaxial line -136 dB/m

Requirements for HOM damping

HOM impedances should not be worse than for the acceleration cavity (?). For LHC acceleration cavity:

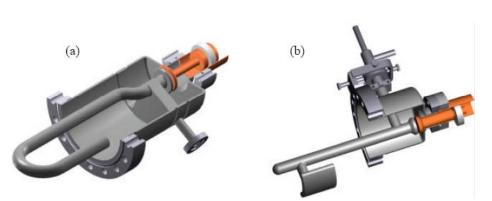
- □ The total power of monopole HOMs dissipated < 800 W.
- □ Impedance of the two lowest dipole modes should not be $1.5 k\Omega$
 - Total transverse impedance is dominated by collimators

Table 2: Estimated impedance budget for the LHC in the vertical plane.


Element	Inner radius	β/β_{av}	Z_T
	[mm]		$[k\Omega/m]$
Beam screen			
pumping holes	18	1.25	500
200 MHz cavities	50	3	155
400 MHz cavities	150	2.9	11
Shielded bellows	20	1.25	265
Vacuum valves	40	1.25	35
Collimators	8	4.3	2300
BPMs [6]	25	1.25	300
BI instruments	40	2.15	12
Total			3578

(D. Boussard, et al, "The LHC Superconducting Cavities, PAC 1999.)

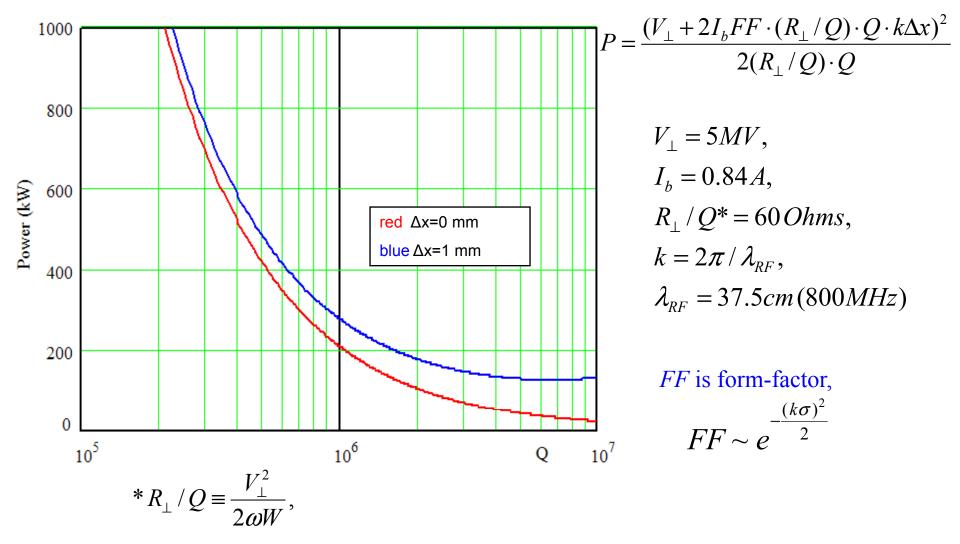
For 800 MHz crab cavity if the same requirements: Monopole modes: $FF^*(R/Q)_{max} \sim 70$ Ohms $\rightarrow Q \sim 30$ Dipole HOMs: $FF^*(R/Q)_{max} \sim 1$ Ohms $\rightarrow Q \sim 100$ ($\beta \sim 4$ km)


HOM damping in the LHC accelerating cavities.

F(TM010) = 400 MHz

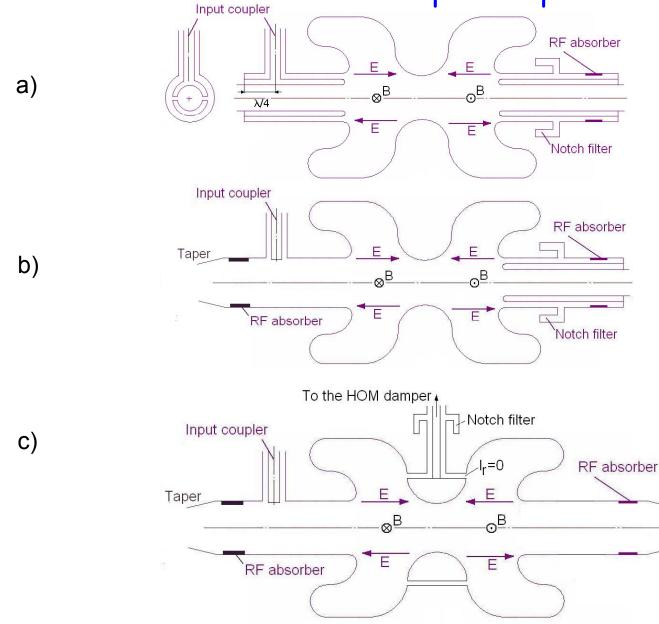
Beam pipe = 300mm

The cryomodule with two cavities. HOM couplers are shown in blue.


	Undamped	Damped
Frequency (MHz)	Q	Q
$500 (TE_{111})$	38000	137
$534 \ (TM_{110})$	40000	93
779 (TM_{011})	50000	270
1184	50000	1000
1238	50000	400

- (a) Narrow band dipole mode HOM coupler;
- (b) Broad band HOM coupler

HOM damping on a single-cell cavity by one dipole mode and one broadband coupler


Power requirements. Beam jitter

 ω is cyclic frequency, W is stored energy.

Different options for the HOM damping and the input coupler

Conclusions

- Preliminary results of R&D
 - Crab-like shape for crab cavity to reduce cavity outer diameter
 - Coaxial damping works for all modes
- Next to do:
 - Requirements (Q_{load}, beam-pipe diameter, etc.)
 - Optimize cavity shape
 - Squashed cavity design
 - Input coupler design
 - Study other options