Introduction to Accelerators

Helmut Burkhardt, CERN

ISEF 201324 June 2012

Contents

- Concepts: Energy Gain, E / B field. Units
- Types of accelerators : Ring, Collider, Linac, e+e-, pp ; Cosmic
- Components: Source, Magnets, resonant Cavities
- Basic machine optics
- Energy and Luminosity
- Synchrotron Radiation
- Limitations, current and future challenges
- Mixed with examples - mostly from CERN machines and in particular the LHC

General, introductory refs. and books on Accelerators :
E. D. Courant and H. S. Snyder, Theory of the Alternating-Gradient Synchrotron, pdf
M. Sands, Physics of Electron Storage Rings, SLAC Report No. 121; Wiedemann, Particle Accelerator Physics Bd. I,II
S.Y. Lee, Accelerator Physics, World Scientific; M. Conte, W. MacKay, Physics of Particle Accelerators, World Scientific CERN CAS yellow reports ; K. Wille, The physics of particle accelerators, Oxford University Press, 1996
Accelerators for Particle Physics, H. Burkhardt, in Handbook of Particle Detection and Imaging, Ed. C. Grupen, Oct. 2011 The Large Hadron Collider : O. Brüning, H. Burkhardt, S. Myers, 10.1016/j.ppnp.2012.03.001, CERN-ATS-2012-064 Accelerators and Colliders, Landolt-Börnstein New Series I/21C, Springer 2013

Accelerators at the Energy Frontier

Livingston plot

Exponential growth of E_{cm} in time

Starting in 60's with $\mathrm{e}^{+} \mathrm{e}^{-}$at about $1 \mathbf{G e V}$

Factor 4 every 10 y
$\mathrm{pp}, \mathrm{p} \overline{\mathrm{p}}: \mathrm{E}_{\mathrm{cm}} / 6$
still $5 \times$ above $\mathrm{e}^{+} \mathrm{e}^{-}$at same time
$\mathrm{pp}, \mathrm{p} \overline{\mathrm{p}}$: discovery $\mathrm{e}^{+} \mathrm{e}^{-} \quad$: precision both required machines

+ ep : hadron structure, QCD HERA, LHeC

The LHC is a major step forward Discovery machine : Higgs ...

Basic concepts and units

Electric field :
Acceleration or rather Energy gain 100 keV

Electric charge e and electric field \mathbf{E}

Special relativity, Lorentz transformation

$$
\begin{aligned}
& E=\gamma m c^{2} \quad p=\beta \gamma m c \quad \beta=\frac{v}{c} \quad \gamma=\frac{1}{\sqrt{1-\beta^{2}}} \\
& m_{e} \approx 0.511 \mathrm{MeV} / \mathrm{c}^{2} \quad m_{p} \approx 938 \mathrm{MeV} / \mathrm{c}^{2} \mathrm{e} \approx 1.602 \times 10^{-19} \mathrm{C} \\
& \text { For } E=10 \mathrm{GeV}: \\
& \text { Electron } \quad \beta=0.9999999987 \quad \gamma=19569.5 \\
& \text { Proton } \quad \beta=0.9955884973 \quad \gamma=10.6579
\end{aligned}
$$

Unit conversion

$$
\begin{aligned}
\frac{e^{2}}{4 \pi \epsilon_{0}} & =\alpha \hbar c=r_{\text {part }} m_{\text {part }} c^{2} \\
& =1.43996 \times 10^{-18} \mathrm{GeV} \mathrm{~m} \\
\hbar c \quad & =197.327 \times 10^{-18} \mathrm{GeV} \mathrm{~m} \\
(\hbar c)^{2} & =3.8938 \times 10^{-32} \mathrm{GeV}^{2} \mathrm{~m}^{2} \\
& =3.8938 \times 10^{5} \mathrm{GeV}^{2} \mathrm{nb}
\end{aligned}
$$

for precise numbers see PDG

Particle sources

Thermionic electron source principle same
 as cathode ray tube

Proton and ion sources

Various methods exist to produce $\mathbf{p}\left(\mathbf{H}^{+}\right), \mathbf{H}^{-}\left(\mathbf{p}\right.$ with $\left.2 \mathbf{e}^{-}\right)$and heavy ions heavier atoms, most electrons removed

Typically involves : low pressure heated gas ionized gas / plasma, inject H_{2} to get protons, or surface sputtering and electric and magnetic fields to keep the electrons

special techniques
H- injection
RadioFrequency
Quadrupole

Linear Acceleration with Electrostatic Field

Cockcroft Walton voltage multiplier

Van de Graaff generator static electricity from belts

Oak Ridge Tandem Van de Graaff generator reached 25.5 MV using pressurised SF_{6}

Time Varying Fields

Radio-frequency or short RF acceleration

- allows for multiple passages
- bunched beams, reduced duty cycle
- higher RF frequencies allow for higher acceleration gradients no time for breakdown / flashover
LEP , SC
$\mathbf{8 M V} / \mathrm{m}$ at 352 MHz
Tesla / ILC, SC
$31.5 \mathrm{MV} / \mathrm{m}$ at 1.3 GHz
CLIC $100 \mathrm{MV} / \mathrm{m}$ at 12 GHz
little gain above 12 GHz
SC limit ~ $50 \mathrm{MV} / \mathrm{m}$, reached for single cell surface gradients higher then acceleration gradients, smooth structures
high f: shorter bunches - collective effects (peak current) and alignment more difficult

less energy stored in structure

Basic parameters, Lorentz Force

$$
\mathbf{F}=\mathrm{q}(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

charge q , normally $\mathrm{q}=\mathrm{e} ; \mathrm{q}=\mathrm{Ze}$ for ions

- Electric field \mathbf{E} provides the acceleration or rather energy gain
- The magnetic field \mathbf{B} keeps the particles on their path

Circular motion for
$\mathbf{E}=0$
$\mathbf{v} \perp \mathbf{B}$

ρ is the radius of curvature for motion perpendicular to the static magnetic field. Often called

- gyromagnetic or Larmor radius in astroparticle physics
- bending radius for accelerators
$\mathrm{B} \rho$ known as magnetic rigidity, units Tm

LHC

- Momentum p $=7 \mathrm{TeV} / \mathrm{c}$
- LHC bending radius $\rho=2804 \mathrm{~m}$
- Bending field $B=8.33$ Tesla
- magnets at 1.9 K , super-fluid He

Circular Accelerator

- Cyclotron : constant rf-frequency. Magnetic field radius $@$ increases with energy. Used for smaller machines

Cyclotron

- Synchrotron : $\varrho=$ const. B increased with energy. RF-frequency adjusted slightly ($\boldsymbol{\beta}=\mathbf{0 . 9 9 9} \mathbf{. .} \mathbf{1 . 0}$). Most HEP and all CERN ring accelerators PS, SPS, LEP, LHC of this type. Principle same for e, p, heavy-ion - PS, SPS - accelerate(d) all of these, in some cases switching within seconds

Phase stability I

acceleration, ramping up in energy :

- allow for enough RF-voltage
- ramp up magnets
- particle adjust themselves in radius and phase to gain on average the right amount of energy

LHC nominal RF parameters Voltage at injection 8 MV top energy 16 MV
Revolution frequency $f_{r f}=\mathbf{h} f_{\text {rev }}$

Magnets and Power Consumption

Why super conducting magnets ?

$$
\mathbf{P}=\mathbf{R} \mathbf{I}^{\mathbf{2}}
$$

LEP

$\mathbf{B}=0.1 \mathrm{~T} \quad \mathrm{LEP} 2 \sim 100 \mathrm{GeV}$
(half) cells with each three 11.55 m long dipole magnets
$I=4500 \mathrm{~A}$ together $R=1 \mathrm{~m} \Omega \quad P=20 \mathrm{~kW} /$ cell
488 cells

$$
P=10 \mathrm{MW}
$$

if we would have kept the same magnets for the LHC

LHC B \propto I B =8.38 T
would need now $I=280 \mathrm{kA}$ with LEP magnets $R=\mathbf{1} \mathbf{m \Omega}$
$P=78 \mathrm{MW} /$ cell $\times 488$ cells total power $P=38 \mathrm{GW}$

Magnet technology

warm

- field quality given by pole face geometry
- field amplified by Ferromagnetic material
- hysteresis and saturation $\sim 2 \mathrm{~T}$
- Ohmic losses for high magnet currents

cold

Dipole current distribution $\mathrm{I}(\Phi)=\mathrm{I}_{\mathrm{O}} \cos (\phi)$

- field quality given by coil geometry
- requires cooling to cryogenic temperatures
- persistent currents and snap back
- risk of magnet quenches

LHC dipole magnet

2-in-1 dipole magnet, 8.33 T field, 15 m long, mass 30 ton

alignment target main quadrupole bus-bars heat exchange pipe superinsulation superconducting coils beam pipe
vacuum vessel
beam screen
auxiliary bus bars
shrinking cylinder / He I-vessel thermal shield (55 to 75 K)
non-magnetic collars
iron yoke (cold mass, 1.9 K)
dipole bus-bars
support post

current distribution

LHC dipole magnet cross-section

LHC magnets installed in the tunnel

Operational margin of a superconducting LHC dipole

Fixed Target vs Collider

Fixed target, high energy collisions :

Energy "lost" as kinetic energy
High Energy e+e- and very high energy pp gain a lot from colliders

Gain for LHC is by $\mathbf{x} \mathbf{1 2 2}$
($14 \mathrm{TeV} / 114.6 \mathrm{GeV}$)

Primary cosmic ray spectrum

Nature has much larger and more powerful cosmic accelerators then we can ever built. With colliders we can get to these collision energies in clean laboratory conditions.
The LHC already gets us to within 1-2 orders of magnitude of the very highest cosmic rays.

Luminosity and collision rates

Event rate for process with cross section σ

$$
\dot{n}=\mathcal{L} \sigma
$$

Luminosity from bunch
crossings at frequency $\mathrm{f}=\mathrm{f}_{\text {rev }} \mathrm{n}_{\mathrm{b}}$

$$
\mathcal{L}=\frac{N_{1} N_{2} f}{A}
$$

Interaction region

for Gaussian bunches with rms sizes $\sigma_{x} \sigma_{y} \quad \mathbf{A}=4 \pi \sigma_{x} \sigma_{y}$

High Luminosity : $\mathrm{N} \uparrow$ collide many particles, $\mathrm{A} \downarrow$ squeezed in small bunches
LHC 1.15×10^{11} protons, $\mathrm{n}_{\mathrm{b}}=2808$ ($\mathrm{f} \uparrow$ crossings at 25 ns intervals)
Beams squeezed using strong large aperture quadrupoles around the interaction points from $\sim 0.2 \mathrm{~mm}$ to

$$
\sigma_{x}=\sigma_{y}=17 \mu \mathrm{~m}
$$

$$
<\beta_{\mathrm{arc}}>=80 \mathrm{~m}
$$

$$
\beta_{\mathrm{IP}}=0.5 \mathrm{~m}
$$

Rare new processes, like Higgs production can have very small cross section, like $1 \mathrm{fb}=10^{-39} \mathrm{~cm}^{2}$. LHC designed for very high Luminosity $\mathbf{L}=\mathbf{1 0}^{\mathbf{3 4}} \mathbf{c m}^{-\mathbf{2}} \mathbf{s}^{-1}$
Event rate for such rare processes : ~ 1 new particle every 28 h .
Instead pp $\sigma_{\text {tot }} \approx 0.1$ barn $30 /$ crossing

Alternate gradient focusing

Quadrupole lens

 focusing in x , defocusing in \mathbf{y} or vice versa$\mathbf{F}=\mathrm{e}(\mathbf{v} \times \mathbf{B})$
here

$$
\begin{aligned}
\mathbf{F} & =\mathrm{e}(0,0, \mathrm{v}) \times\left(B_{x}, B_{y}, 0\right) \\
& =\mathrm{e}\left(-\mathrm{v} B_{y},+\mathrm{v} B_{x}, 0\right)
\end{aligned}
$$

Combine F D
Defocusing when at small amplitude
Overall focusing
Normal (light) optics :
Focal length of two lenses
at distance D
$1 / \mathrm{f}=1 / \mathrm{f}_{1}+1 / \mathrm{f}_{2}-\mathrm{D} / \mathrm{f}_{1} \mathrm{f}_{2}$
is overall focusing
with $1 / \mathrm{f}=\mathrm{D} / \mathrm{f}^{2}$
for $\mathrm{f}=\mathrm{f}_{1}=-\mathrm{f}_{2}$

alternate gradient focusing

together with bending magnets FODO lattice

F D

N. C. Christofilos, unpublished manuscript in 1950 and patent

Courant, Snyder in 1952, Phys. Rev. 88, pp 1190-1196 + longer review in Annals of Physics 3 (1958)

Betatron motion

Equation of motion of particles in a ring (with bending fields) and quadrupoles (field gradients $\propto \partial \mathrm{B} / \partial \mathrm{r}$) In both transverse planes, here written with x for $\mathrm{x}, \mathrm{y}: \quad$ known as Mathieu-Hill equation $x^{\prime \prime}(s)+k(s) x(s)=0$, derived in 1801 to describe planetary motion

Generalised oscillator equation with position dependent, periodic restoring force $k(L+s)=k(s)$ given by the quadrupole gradients (+ the small weakly focusing bending term in the ring plane)
Solution: $\quad x(s)=\sqrt{\epsilon \beta(s)} \cos (\mu(s)+\phi)$
Phase advance
Lyapunov-Floquet Transformation
Tune \# of betatron oscillations

$$
\begin{aligned}
\mu(s) & =\int_{0}^{s} \frac{d s}{\beta(s)} \\
Q & =\mu / 2 \pi
\end{aligned}
$$

motion $\mathrm{x} / \sqrt{ } \beta$ plotted with phase advance normalised coordinates - becomes simple cos
$\boldsymbol{\beta}(\boldsymbol{s})$ beta function, describes the focusing properties of the magnetic lattice $\boldsymbol{\varepsilon} \quad$ invariant, together with $\beta(s)$ amplitude. "single particle emittance"

Motion conveniently described in phase space ($\mathrm{x}, \mathrm{x}^{\prime}$) where $\mathrm{x}^{\prime}=\mathrm{p}_{\mathrm{x}} / \mathrm{p}$ and linear optics elements as matrices ; with simple case for M, applies for IP to IP

$$
\binom{x(s)}{x^{\prime}(s)}=\mathbf{M}\binom{x\left(s_{0}\right)}{x^{\prime}\left(s_{0}\right)} \quad \mathbf{M}=\left(\begin{array}{cc}
\cos 2 \pi Q & \beta \sin 2 \pi Q \\
-\frac{1}{\beta} \sin 2 \pi Q & \cos 2 \pi Q
\end{array}\right)
$$

Accelerator design : starts with magnet lattice based on linear beam optics; MAD program

Orbit stability and tune

Misalignments and dipole field errors \rightarrow orbit perturbations
would add up on successive turns for integer tune $\mathbf{Q}=\mathbf{N}$

Higher order field errors, Quad., Sext. perturbations. Avoid simple fractional tunes $n Q_{x}+m Q_{y}+m Q_{s}=$ int.

Minimise field and alignment errors

\mathbf{Q}_{x}
stable working area

Orbit, tune measurement and peak beam current

Beam Pickup Monitor
vertical orbit, June 2011, 1st half of LHC shown

$\left\langle\mathrm{I}_{\mathrm{b}}\right\rangle$ average ring and Î local peak current

Bunch peak currents are many Amperes : Strong signals, used to monitor beam position and oscillations

Also source of undesirable effects : wake fields, heating, instabilities we fell her

Typical numbers, for a single bunch
$\left\langle\mathrm{I}_{\mathrm{b}}\right\rangle=\mathrm{nef} \mathrm{f}_{\mathrm{rev}}$ LEP $\mathrm{n}=4 \times 10^{11} \quad\left\langle\mathrm{I}_{\mathrm{b}}\right\rangle=0.72 \mathrm{~mA} \quad \sigma_{\mathrm{z}}=2 \mathrm{~cm} \quad \hat{\mathrm{I}}=960 \mathrm{~A}$ $\mathrm{LHC} \mathrm{n}=1.15 \times 10^{11}\left\langle\mathrm{I}_{\mathrm{b}}\right\rangle=0.21 \mathrm{~mA} \sigma_{\mathrm{z}}=7.55 \mathrm{~cm} \quad \hat{\mathrm{I}}=73.2 \mathrm{~A}$

$$
\mathrm{f}_{\mathrm{rev}}=11245 \mathrm{kHz}, \quad \mathrm{~L}=26658.9 \mathrm{~m}
$$

Transverse beam size and emittance

consider : beam of many particles on stable orbit and simple case : dispersion and slope $\boldsymbol{\beta}^{\prime}=\mathbf{0}$ by default at IP - relevant for experiments

$$
\begin{array}{crl}
\text { beam size, r.m.s. } & \sigma(s) & =\sqrt{\varepsilon \beta(s)} \\
\text { beam divergence, r.m.s. } & \theta(s) & =\sqrt{\varepsilon / \beta(s)} \\
\text { product } & \varepsilon & =\sigma(s) \theta(s)
\end{array}
$$

β - function : local machine quantity - focusing of lattice
Emittance ε : beam quantity - the average action related to phase space density or kind of beam temperature given by initial conditions (injected beam)
or equilibrium of quantum excitation and damping - 2 nd lecture in ideal machine: $\mathrm{x}, \mathrm{y}, \mathrm{z}$ motion uncoupled, 3 emittances $\varepsilon_{\mathrm{x}}, \varepsilon_{\mathrm{y}}, \varepsilon_{\mathrm{z}}$

IP: squeeze $\boldsymbol{\beta}$ to a minimum, called $\boldsymbol{\beta}^{*} \Rightarrow$ maximum of divergence, needs aperture

> Quadrupole

Quadrupole

LHC $\varepsilon_{\mathrm{N}}=\varepsilon \beta \gamma=3.75 \mu \mathrm{~m}$, at top $\mathrm{E}_{\mathrm{b}}=7 \mathrm{TeV}: \varepsilon=0.503 \mathrm{~nm}, \beta^{*}=0.55 \mathrm{~m}, \sigma^{*}=16.63 \mu \mathrm{~m}, \theta^{*}=30 \mu \mathrm{rad}$

Standard Synchrotron Radiation

$$
\begin{gathered}
E_{c}=\frac{3}{2} \frac{\hbar c \gamma^{3}}{\rho}=2.96 \times 10^{-7} \mathrm{eVm} \frac{\gamma^{3}}{\rho} \\
U_{0}=\frac{e^{2}}{3 \varepsilon_{0}} \frac{\gamma^{4}}{\rho} \approx 6.0317 \cdot 10^{-9} \mathrm{eV} \mathrm{~m} \frac{\gamma^{4}}{\rho} \\
P_{b}=\frac{U_{0} I_{b}}{e}
\end{gathered}
$$

		$\begin{gathered} \boldsymbol{E} \\ \mathrm{GeV} \end{gathered}$	γ	@ m	$\begin{gathered} \boldsymbol{U}_{0} \\ \mathrm{MeV} \end{gathered}$	$\begin{gathered} \boldsymbol{E}_{\boldsymbol{c}} \\ \mathrm{keV} \end{gathered}$	$\tau_{\mathbf{d}}$ S	$\begin{gathered} N \\ 10^{12} \end{gathered}$	$\begin{gathered} \boldsymbol{I} \\ \mathrm{mA} \end{gathered}$	$\begin{gathered} \boldsymbol{P}_{b} \\ \text { MW } \end{gathered}$	\boldsymbol{B}
RHIC	Au	A×100	107.4	242.8	21×10^{-6}	1.5×10^{-6}	4.9×10^{6}	0.06	60	1.3×10^{-12}	3.42
LHC	p	7000	7460.5	2804	0.0067	0.044	61729	646	1163	0.0072	8.33
LEP1	e	45.6	89237	3026	126	69.5	23×10^{-3}	2.22	4	0.5	0.05
LEP2	e	104.5	204501	3026	3490	836	1.9×10^{-3}	2.8	5	18	0.115

Same beam energy E and radius ϱ : electron instead of proton $U_{0} \sim \gamma^{4}:\left(\mathrm{m}_{\mathrm{p}} / \mathrm{m}_{\mathrm{e}}\right)^{4}=1.13 \times 10^{13}$ Electrons, E > 100 GeV needs linear collider (ILC / CLIC)
Damping time E / U_{0} turns or $\tau_{d}=\operatorname{t}_{\mathrm{rev}} E / U_{0} \quad$ revolution time LEP/LHC $\mathrm{t}_{\mathrm{rev}}=88.9 \mu \mathrm{~s}$ Gold ions $\mathrm{Au}^{79+} \mathrm{A}=197 \quad<\mathrm{E}_{\gamma}>=8 /(15 \sqrt{ } 3) \mathrm{E}_{\mathrm{c}} \quad 8 /(15 \sqrt{ } 3) \approx 0.308$

Synchrotron light monitor

Picture from LEP. Typical transverse rms beam size 0.15 mm vertical 1.5 mm horiz.
Picture from
LEP. Typical
transverse
rms beam size
0.15 mm vertical
1.5 mm horiz.

Last Sample		Over 10 Samples
Std, Dev, X	B, 8\%\%	6,8\%7 $\ddagger 8.685$
Std, Dew, Y	8, 6.21	B, E22 $~ 8,094$

Mirror, small slit, telescope and camera : beams continuously visible. Now also used for protons in the LHC.

Power Spectrum, Free space, Cutoff and CSR

Effects which can modify the low energy, long wavelength spectrum :
i) Coherent Synchrotron Radiation CSR
ii) Boundary conditions - cutoff by conducting chamber Energy Loss of Gold Ions in RHIC, EPAC 2008
increases radiation and loss
decreases radiation and loss

Vacuum, beam Gas - lifetime

> Beam blow up, core + halo Background to experiments loss, radiation, beam and Luminosity lifetime

Minimize effect :
Good vacuum
O(nTorr or $\mathbf{1 0}^{-9} \mathrm{mb}$)
Collimation

$$
\frac{\mathbf{1}}{\boldsymbol{\tau}}=-\frac{\mathbf{1 d n}}{\mathbf{n d t}} \quad \begin{aligned}
& \text { beam lifetime } \boldsymbol{\tau} \quad \begin{array}{l}
\text { general expression } \\
\text { average time between collisions leading to beam loss } \\
\text { inverse normalised loss rate }
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
p=1 \text { ntorr }=1.33 \times 10^{-7} \mathrm{~Pa} \\
\rho_{m}=\frac{p}{k T}=3.26 \times 10^{13} \text { molecules } / \mathrm{m}^{3}
\end{gathered}
$$

typical cross section $\sigma=6$ barn $=6 \times 10^{-28} \mathrm{~m}^{2}$
collision probability $P_{\text {coll }}=\sigma \rho_{m}=1.96 \times 10^{-14} / \mathrm{m}$

$$
\tau=\frac{1}{P_{\text {coll } c}}=1.7 \times 10^{5} \mathrm{~s}=47 \text { hours } \quad \text { for } v \approx c
$$

Examples from CERN with the LHC

The CERN accelerator complex : injectors and transfer

 Beam size largest at injection, using the full aperture

10 September 2008

LHC status

- main LHC challenge : damage potential --- increase safely (slowly) the intensity
- enormous stored energy : nominal is 10 GJ in magnets, 362 MJ in beam; 0.7 MJ melts 1 kg Cu
- currently 3.3 GJ in magnets, 130 MJ in beam

LHC :
2009 first collisions, mostly at injection energy $2 \times 450 \mathrm{GeV}$
$20102 \times 3.5 \mathrm{TeV}, \beta^{*}=3.5 \mathrm{~m}, \quad \mathrm{~L}_{\text {peak }}=\mathbf{0 . 2 \times 1 0 ^ { 3 3 } \mathbf { ~ c m } ^ { - 2 } \mathbf { s } ^ { - 1 } \quad \int \mathrm { L } \mathbf { d t } = \mathbf { 0 . 0 4 4 } \mathbf { f b } ^ { - 1 } \quad 3 6 8 \text { bunches } , ~}$
$20112 \times 3.5 \mathrm{TeV}, \beta^{*}=1.0 \mathrm{~m}, \quad \mathrm{~L}_{\text {peak }}=\mathbf{3 . 5 \times 1 0 ^ { 3 3 }} \mathbf{~ c m}^{-2} \mathbf{s}^{-1} \quad \int \mathbf{L} \mathbf{d t}=\mathbf{6 . 1} \mathbf{f b}^{-1} \quad 1380$ bunches
$20122 \times 4.0 \mathrm{TeV}, \beta^{*}=0.6 \mathrm{~m}, \quad \mathrm{~L}_{\text {peak }}=7.7 \times 10^{33} \mathbf{~ c m}^{-2} \mathrm{~s}^{-1} \quad \int \mathrm{~L} \mathbf{d t}=\mathbf{2 3 . 3} \mathbf{f b}^{-1} \quad 1380$ bunches $2013 \mathbf{~ P b}-$ p run, shutdown, magnet interconnects, restart in 2015 at $\mathbf{2 \times 6 . 5} \mathbf{~ T e V}$, increase \#bunches

	LHC design	achieved
Momentum at collision, TeV/c	7	4
Luminosity, $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$	$1.0 \mathrm{E}+34$	$7.7 \mathrm{E}+33$
Dipole field at top energy, \mathbf{T}	8.33	4.8
Number of bunches, each beam	2808	1380
Particles / bunch	$1.15 \mathrm{E}+11$	$1.70 \mathrm{E}+11$
Typical beam size in ring, $\mu \mathrm{m}$	$200-300$	~ 300
Beam size at IP, $\mu \mathrm{m}$	17	20

Damage potential : confirmed in controlled SPS experiment

controlled experiment with beam extracted from SPS at 450 GeV in a single turn, with perpendicular impact on $\mathbf{C u}+$ stainless steel target 450 GeV protons
r.m.s. beam sizes $\sigma_{x / y} \approx \mathbf{1} \mathbf{~ m m}$

SPS results confirmed :
8×10^{12} clear damage
2×10^{12} below damage limit
for details see V. Kain et al., PAC 2005 RPPE018

For comparison, the LHC nominal at 7 TeV :
$2808 \times 1.15 \times 10^{11}=3.2 \times 10^{14} \mathrm{p} /$ beam
at $\left\langle\sigma_{\mathrm{x} / \mathrm{y}}\right\rangle \approx 0.2 \mathrm{~mm}$
over 3 orders of magnitude above damage level for perpendicular impact

Dumping the LHC beam

First high energy 3.5TeV+3.5TeV collisions, 30 March 2010

LHC running very well

peak Luminosity $7.8 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

LHC typical week, Oct. '12, 1.2 pb-1

Precision front - high quality of LHC beams

- absolute luminosity normalization
- low, well understood backgrounds
- precision optics for ATLAS-ALFA and TOTEM
$\beta^{*}=1000 \mathrm{~m}$, Oct. ${ }^{\prime} 12$

precise measurement of the luminous region + beam intensity --> absolute luminosity and cross section calibration
currently ~ $\mathbf{3} \%$ level (Tevatron had~15 \%)

HL-LHC Timeline

The LHC is still a rather young machine
 Operation planning + upgrade studies (HL-LHC) extend to $\boldsymbol{\sim} 2030$

Further ideas already exist (HE-LHC, LHeC, TLEP)
We also study other machines, and in particular CLIC \rightarrow

CLIC

Overview of the CLIC layout at $\sqrt{s}=3 \mathrm{TeV}$
The machine requires only one drive beam complex for stages 1 and 2 .

- The largest flag-ship accelerator is the LHC here at CERN
- By now many more accelerators outside particle physics \#Accelerators in the world : O (30000) mostly smaller for medical and industrial applications
- Broad range of particle accelerator types and applications

Large research facilities for :
Synchrotron light, UV, X-Ray (electron accelerators)
High intensity proton accelerators + neutron spallation sources
condensed matter, material science and biology research, accelerator driven subcritical fission (energy production \& radioactive waste incineration)

Yearly international accelerator conferences IPAC, last one in May'13 in Shanghai
Some of the hot-subjects and keywords :

- Free electrons lasers FEL, X-FEL, Laser induced coherent SR
- Advanced LINACS -- including recirculation and energy recovery ERL
- New acceleration techniques :
- Dieletric, LASER, Plasma driven

Reserve

Schematic layout of beam dump system in IR6

Radiation of an accelerated Charge

General concept - power radiated by an accelerated charge. Relativistic version of Lamor's formula, derived by Lienard in 1898, before relativity was known.
Photon spectrum : J. Schwinger Phys. Rev. 75 (1949) pp. 1912-1925
Here written with formulas in SI units. More info + references in my paper on MC generation of SynRad CERN-OPEN-2007-018
power radiated by an
accelerated charge

$$
P=\frac{e^{2} \gamma^{2}}{6 \pi \epsilon_{0} m^{2} c^{3}}\left[\left(\frac{d \mathbf{p}}{d t}\right)^{2}-\beta^{2}\left(\frac{d p}{d t}\right)^{2}\right] \quad \begin{aligned}
& \text { relativistic } \\
& \text { Lamor formula }
\end{aligned}
$$

results in a major energy loss for a ring at high γ
$\mathbf{v} \perp \dot{\mathbf{v}} \quad\left(\frac{d \mathbf{p}}{d t}\right)^{2}-\beta^{2}(\underbrace{\frac{d p}{d t}}_{0})^{2}=\dot{\mathbf{p}}^{2} \quad P=\frac{e^{2}}{6 \pi \epsilon_{0} m^{2} c^{3}} \gamma^{2} \dot{\mathbf{p}}^{2} \quad \begin{aligned} & \text { Perpendicular acceleration, B-field (or } \\ & \mathrm{E}_{\perp} \text { field). Motion in circular machine. }\end{aligned}$

$$
\begin{gathered}
\mathbf{v} \| \dot{\mathbf{v}} \quad\left(\frac{d \mathbf{p}}{d t}\right)^{2}=\left(\frac{d p}{d t}\right)^{2} \quad\left(\frac{d \mathbf{p}}{d t}\right)^{2}-\beta^{2}\left(\frac{d p}{d t}\right)^{2}=\dot{p}^{2}\left(1-\beta^{2}\right)=\frac{\dot{p}^{2}}{\gamma^{2}} \quad \begin{array}{l}
\text { Parallel acceleration, } \\
\begin{array}{l}
\text { E-field, Linac case } \\
\text { cancellation, } 1 / \gamma^{2}
\end{array} \\
P=\frac{e^{2}}{6 \pi \epsilon_{0} m^{2} c^{3}} \dot{p}^{2}
\end{array}
\end{gathered}
$$

The energy loss for linear acceleration is very small.
Example: CLIC gradient $100 \mathrm{MV} / \mathrm{m}$. Loss is $11 \mathrm{keV} / \mathrm{s}$ or only 0.4 eV for a 1 TeV 10 km Linac

LHeC

ILC

ILC TDR Handover, 12 June 2013

- 200-500 GeV centre-of-mass, 31 km long
- Luminosity: $2 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- Based on accelerating gradient of $31.5 \mathrm{MV} / \mathrm{m}$ 1.3 GHz superconducting RF

CLIC

Compact Linear Collider

Two Beam Scheme

Drive Beam supplies RF power

- 12 GHz bunch structure
- low energy ($2.4 \mathrm{GeV}-240 \mathrm{MeV}$)
- high current (100A) warm (not superconducting) RF

Drive beam - $100 \mathrm{~A}, 240 \mathrm{~ns}$
decelerated from 2.4 GeV to 240 MeV

ACCELERATING STRUCTURES

Power Extraction Structure

Main beam-1.2 A, 156 ns bunch trains accelerated from 9 GeV to 1.5 TeV

ILC and CLIC parameters

	ILC: Superconducting RF 500 GeV	CLIC: normal conducting copper RF 3 TeV
accelerating gradient:	: $31.5 \mathrm{MV} / \mathrm{m}$	$100 \mathrm{MV} / \mathrm{m}$
	$35 \mathrm{MV} / \mathrm{m}$ target	
RF Peak power: 0.37	0.37 MW/m, $1.6 \mathrm{~ms}, 5 \mathrm{~Hz}$	$275 \mathrm{MW} / \mathrm{m}, 240 \mathrm{~ns}, 50 \mathrm{~Hz}$
RF average power:	$2.9 \mathrm{~kW} / \mathrm{m}$	$3.7 \mathrm{~kW} / \mathrm{m}$
total length:	31 km	48.4 km
site power :	230 MW	392 MW
	Beam structure:	
particles per bunch:	20×10^{9}	3.7×10^{9}
2625 bunches / pulse of	of $\quad 0.96 \mathrm{~ms}$	312 bunches / pulse of 156 ns
bunch spacing	369 ns	0.5 ns

The main 2013-14 LHC consolidations

1695 Openings and final reclosures of the interconnections

Complete reconstruc. tion of 1500 of these splices

Consolidation of the 10170 13kA splices, installing 27000 shunts

Installation of 5000 consolidated electrical insulation systems

300000 electrical resistance measurements

18000 electrical Quality Assurance tests

10170 leak tightness tests
4 quadrupole magnets to be replaced

Installation of 612 pres. sure relief devices to bring the total to 1344

10170 orbital welding of stainless steel lines

Consolidation of the 13 kA circuits in the 16 main electrical feedboxes

