Studying QCD modeling uncertainties on particle spectra from dark matter annihilation into jets

JUEID Adil

CERN Summer Student Programme Supervisor : Peter Skands

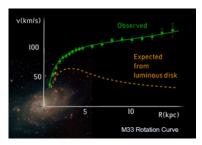
13 August 2013

CERN Summer Student ProgrammeSupervisor : Peter Skands

Jueid Adil and Peter Skands

Plan de la présentation

1 Introduction

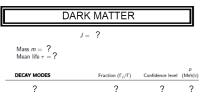

- 2 Altarelli-Parisi Equations
- 3 Hadronization Process
- 4 Results and Discussion
- 5 Summary and Conclusions

◆□ ▶ ◆□ ▶ ◆ ≧ ▶ ◆ ≧ ▶ ● ≧ ● りへの

Jueid Adil and Peter Skands

CERN Summer Student ProgrammeSupervisor : Peter Skands

Introduction



- Other observations lead to the hypothesis of a new type of matter : Dark Matter.
- The Dark Matter particles have to

be : neutral, Non Baryonic, Non-relativistic, Stable.

No Standard Model particle can be a candidate of Dark matter.

Dark Matter \implies Physics Beyond the Standard Model.

CERN Summer Student ProgrammeSupervisor : Peter Skands

イロン イロン イヨン イヨ

Jueid Adil and Peter Skands

Introduction

There exist three different methods to detect Dark matter :

- **Direct detection** : DM + $N \rightarrow DM + N'$
- Indirect detection : $DM + DM \rightarrow SM + SM$ or $DM \rightarrow SM + SM$
- Collider searches : e.g. $pp \rightarrow 2 \text{ DM} + X$

Dark matter can be annihilated, for example, into :

ZZ which can subsequently decay into $q\bar{q}$

Or to qq

Our Aim : Study and Model the uncertainties on spectra of particles coming from $Z \rightarrow q\bar{q}$ at $E_{cm} = 1$ TeV and $E_{cm} = 91.2$ GeV

Jueid Adil and Peter Skands

 < □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ < ○ </td>

 CERN Summer Student ProgrammeSupervisor : Peter Skands

Altarelli-Parisi equations

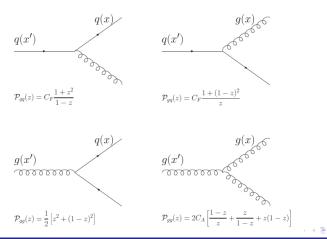
- Charged Particles radiate : quarks radiate gluons.
- After multiple emissions of gluons and also of quarks, the initial parton *a* is evolved.
- The evolution of a parton a is given by the set of Coupled integro-differential equations :

$$\frac{d}{dlogQ^2} f_g(x, Q) = \frac{\alpha_s(Q)}{\pi} \int_0^1 \frac{dz}{z} \left(P_{q \to g}(z) \sum_q \left(f_q(x/z, Q) + f_{\bar{q}}(x/z, Q) \right) + P_{g \to g}(z) f_g(x/z, Q) \right)$$

And

$$\frac{d}{dlogQ^2} f_q(x,Q) = \frac{\alpha_s(Q)}{\pi} \int_0^1 \frac{dz}{z} P_{q \to q}(z) f_q(x/z,Q) + P_{g \to q}(z) f_g(x/z,Q))$$
$$\frac{d}{dlogQ^2} f_{\bar{q}}(x,Q) = \frac{\alpha_s(Q)}{\pi} \int_0^1 \frac{dz}{z} P_{q \to q}(z) f_{\bar{q}}(x/z,Q) + P_{g \to q}(z) f_g(x/z,Q))$$

These are the Altarelli-Parisi equations

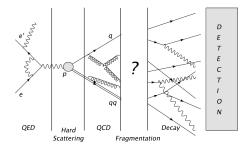

Jueid Adil and Peter Skands

 < □ > < □ > < □ > < ≡ > < ≡ > < ≡ > < ≡ < ○ <</td>

 CERN Summer Student ProgrammeSupervisor : Peter Skands

Altarelli-Parisi Equations

Where $P_{i \rightarrow j}$ are the splitting functions and $f_i(x/z, Q)$ are the distribution functions of a parton *i* carrying the momentum fraction x/z. The splitting functions are given by :

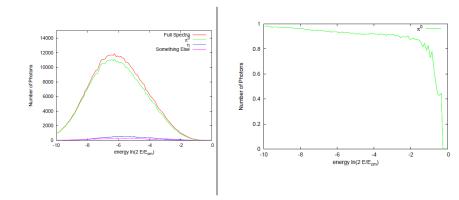

Jueid Adil and Peter Skands

CERN Summer Student ProgrammeSupervisor : Peter Skands

Jueid Adil and Peter Skands

Results and Discussion

Hadronization Process

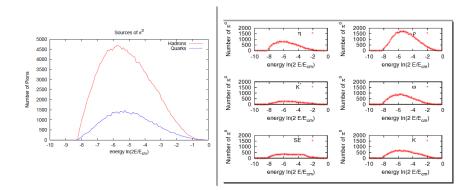

Quarks, after showering, collect with each other to give hadrons.

PYTHIA event generator is based on the string hadronization model.

CERN Summer Student ProgrammeSupervisor : Peter Skands

Results and Discussion

Results and Discussion


CERN Summer Student ProgrammeSupervisor : Peter Skands

★ E > ★ E

Jueid Adil and Peter Skands

Results and Discussion

Results and Discussion

Jueid Adil and Peter Skands

CERN Summer Student ProgrammeSupervisor : Peter Skands

★ E > ★ E >

Jueid Adil and Peter Skands

Summary and Conclusions

- There exist some interesting regions in the spectra of photons which can be subject to further studies for dark matter purposes.
- There exist some uncertainties on particle spectra obtained by various event generators.
- We will be interesting on the LEP data concerning the spectra of γ , π^0 and π^{\pm} and search how we can vary the parameters within the range allowed by LEP results, in order to estimate the uncertainties on the dark matter spectra.

 < □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ < ○ </td>

 CERN Summer Student ProgrammeSupervisor : Peter Skands