

Measurement of the Higgs Self-Coupling with the HL-LHC

Valère Lambert, Da An, Si Xie

California Institute of Technology

Motivation

Goal: Measure the self-coupling constant of the Higgs boson and infer the Higgs potential

- Infer the size and structure of the Higgs self-coupling from the cross section of the diHiggs production.
- Require higher luminosity to measure the small cross section for diHiggs production

Looking at the Phase II Upgrades for 2020 with the High Luminosity LHC with 3000 fb-1 at 14 TeV

Overview:

Produce Madgraph samples for HH \rightarrow bbyy signal and backgrounds Calculate the signal and background event yields

Examine methods for improving the measurement of the diHiggs cross section

Irreducible Backgrounds:	Reducible backgro	ounds:
QCD (bbγγ)	jjγγ	bbjγ
(H->γγ)bb	ссүү	ссјү
(Z->bb)(H->γγ)	bbjj	jjjγ
ttbar(H->γγ)	ccjj	
	jjjj	

Efficiencies calculated with:

Tagging Efficiencies

Study involves reducible bbyy backgrounds from fake photons and bjets

Produce background samples with generator level objects weighted with tagging efficiencies for reconstruction

numerator:real reconstructed objects passing ID cutsdenominator:fakeable gen-level objects

Tagging Efficiencies

- Photon Tagging

- B Tagging

Photon Mistags:

- gluon jets faking photons
- quark jets faking photons

Fake Photon Efficiencies: Gluons

Mistagging Efficiencies Bjet Mistags:

- charm jets faking B jets
- Light jets faking B jets

Fake Photon Efficiencies: Quarks

Background Selections

Generate Madgraph samples for HH->bbyy background at 14 TeV with 3000 fb-1

Cuts in sample generation: pT > 20 GeV on photons and b's, $M(\gamma, \gamma) \in [60, 200]$ GeV and $M(b, b) \in [60, 200]$ GeV

bbjj: 2 real bjets + 2 fake photons:

- Veto events with real photons and without real bjets (pT > 30 and $|\eta| <$ 2.4) using PDG identification
- Take remaining non-bjets and create all potential unique pairs in which jets passing cuts of
- pT > 20 and $|\eta| < 2.5$ are promoted to photons
- Weight the event with efficiencies corresponding to each fake photon and real bjet reconstruction.

Similar process for jjgg, ccjj, jjjj, jjjg, ccjg, and bbjg backgrounds

Estimate the number of expected background events by:

- -Normalizing the sample by its respective production cross section
- -Integrating over the weighted sample distributions

Backgrounds:	Cross Sections (fb):
<i>bbjj</i> : b jets + fake photons	214,000,000
<i>ccjj</i> :charm mistagging + fake photons	214,400,000
jjjj : light jet mistagging + fake photons	20,440,000,00

Sig/Bkgd Ratio = $\frac{\text{Events sig}}{\text{Events bkgd}}$

Significance = $\frac{\text{Events sig}}{\sqrt{\text{Events blogd}}}$

Scheme 0

 $\Delta R_{gg} < 2.0$ and min $\Delta R_{gb} > 1.0$

Scheme 0		
Sample Type	Expected Events	
jjjj	0.14	
ccjj	0.0002	
bbjj	0.06	
** jjgg	16.0	
** bbgg	15.3	
ttbar	0.8	
$ZH \rightarrow bb\gamma\gamma$	3.6	
$ttH,H \rightarrow \gamma\gamma$	2.9	
* HH \rightarrow bbyy	13.6	
Sig/Bkgd Ratio	0.4	
Significance	2.20	

Post – Object Selection Cuts

 $Pt_{bjet1}, Pt_{bjet2}, Pt_{pho1}, Pt_{pho2} > 25$ max (Pt_{pho1}, Pt_{pho2}) > 40 number of central jets ≤ 3 number of leptons ≤ 0

Integrate distributions for Expected Events within Mass Windows

120 < M_{γγ} < 130 105 < M_{bb} < 145

Scheme 1

Δ R _{ag} < 2.0, Δ R _{bb} <	2.0 and min $\Delta R_{gb} > 1.5$
--	-----------------------------------

Scheme 1	
Sample Type	Expected Events
jjgg	8.0
bbgg	9.6
$ttH,H \to \gamma\gamma$	1.7
$HH \rightarrow bb\gamma\gamma$	12.0
Sig/Bkgd Ratio	0.5
Significance	2.5

Scheme 1 Tight $\Delta R_{gg} < 1.6$, $\Delta R_{bb} < 1.6$ and min $\Delta R_{gb} > 1.5$

Scheme 1 Tight	
Sample Type	Expected Events
jjgg	2.7
bbgg	3.7
$ttH, H \rightarrow \gamma\gamma$	1.1
$HH \rightarrow bb\gamma\gamma$	9.0
Sig/Bkgd Ratio	1.0
Significance	2.9

8/13/2013

Valère Lambert

γγ + 2 mistag

- γγ + bjets

HH→ bbyy

— ttH,H→γγ

3.5

4

4.5 5

 $\Delta R(\gamma, \gamma)$

3

Mass Fitting

• Confirm that the optimizations do not skew the shape of the diphoton and dibjet masses for fitting

•Float the signal and background event yields and perform maximum likelihood fits on the masses to extract the signal and its cross section

Conclusions

The reducible backgrounds from fake photons are under control and the dominant background sources appear to be QCD ($bb\gamma\gamma$) and the mistagged bjets ($jj\gamma\gamma$).

These backgrounds may be reduced with stricter angular cuts on the photons and b quarks to increase the signal to background ratio.

In progress and for the future:

- We are fitting the diphoton and dibjet Higgs invariant masses to attempt to extract the cross section for the diHiggs production

- Will prepare various scenario studies to examine these results under differing detector conditions (pile up, improved bjet resolution, degraded photon resolution, etc.)