#### Measuring ATLAS Photon Trigger Efficiency

#### David Layden

#### McGill University – Montreal, Canada University of Waterloo – Waterloo, Canada

In collaboration with: B. Vachon, M. Stoebe, M. Stockton



#### **CERN** Student Sessions

August 14, 2013

### Outline

ATLAS Trigger System Why and how?

Motivation

Inclusive Photon Cross Section

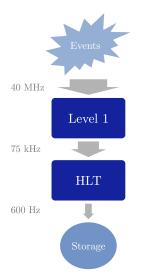
Trigger Efficiency

Key Concepts & Main Challenges

Methodology

Unbiased Samples & Bootstrapping

Results


David Layden

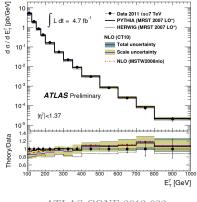
ATLAS Trigger Efficiency 2/10

## Why triggers?

- ▶ ~  $10^9$  collisions per second in the ATLAS detector
- ▶ DAQ system cannot keep up with the raw data rate
  - ▶ Need a way to reduce the amount of data!
- Most events are well-understood not of interest for our current studies
- ▶ Need to decide *in real time* which events could be interesting and which can be discarded

## ATLAS Trigger System




- ► 3 levels progressively reduce the data rate
- Can think of 2 distinct parts:

LVL1 hardware-based HLT LVL2 + EF: software

- Trigger menu contains *chains* which correspond to profiles of interest
- ► An event is recorded if it satisfies a trigger chain in the menu
  - ► E.g.,  $g20\_loose$  selects  $\gamma$  (hence g) with  $E_T > 20$  GeV meeting loose criteria

### Inclusive Photon Cross Section

- Probability of one or more γ being produced in a collision
- 2012 data provides test of SM in new energy regime
  - ▶ Can constrain PDFs
- Need to quantify the performance of the photon triggers used
- Identify photons offline, find efficiency for these photons

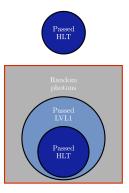


ATLAS-CONF-2013-022

# Trigger Efficiency



- ▶ Trigger efficiency is the probability of a  $\gamma$  passing the chain
- Consider a fixed value of  $E_T$


$$\epsilon = P(\gamma \text{ passes trigger}) = \frac{\# \text{ of } \gamma \text{ that pass}}{\text{total } \# \text{ of } \gamma}$$

• Repeat over a range of  $E_T$  and construct efficiency curve

David Layden

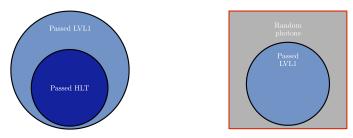
ATLAS Trigger Efficiency 6/10

## Complications...



- $\epsilon = P(\gamma \text{ passes trigger}) = \frac{\# \text{ of } \gamma \text{ that pass}}{\text{ total } \# \text{ of } \gamma}$
- Photons that don't pass the trigger are not normally recorded
  - We don't know the total # of  $\gamma$ !
- Certain events are recorded *regardless* of the trigger decision
- ► There aren't enough of these events to make an accurate measurement

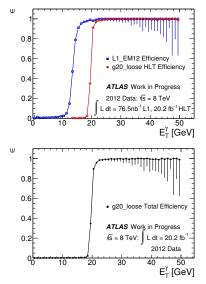
#### Bootstrap Method


► Conditional probability  $P(A|B) = \frac{P(A \& B)}{P(B)}$ , or

$$P(A \& B) = P(A|B) \cdot P(B) \tag{1}$$

▶ Passing a trigger chain *means* passing LVL1 and HLT

$$\epsilon = P(\text{chain}) = P(\text{HLT \& LVL1}) \tag{2}$$


$$= P(\text{HLT} \mid \text{LVL1}) \cdot P(\text{LVL1}) \qquad (3)$$



David Layden

ATLAS Trigger Efficiency 8/10

## Results & Next Steps



- Multiplying LVL1 and HLT efficiencies yields the full g20\_loose efficiency
- Consistent with 100%efficiency for  $E_T > 22$  GeV
- Uncertainties still large in high  $E_T$  region, must see if this is a limiting factor in the overall analysis

## Summary

- ► ATLAS requires a sophisticated trigger system to handle the enormous raw data rate
- ► To measure inclusive photon production cross section we need to know photon trigger efficiencies
- In order to get reduce uncertainties we employ the bootstrap method to decompose the efficiency
- ► The measured  $g20\_loose$  efficiency is consistent with 100% for  $E_T > 22$  GeV
- ▶ If necessary we may need to employ variable binning or conduct a complimentary radiative Z decay analysis to reduce high-E<sub>T</sub> uncertainties

David Layden

ATLAS Trigger Efficiency 10/10