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Motivation: the missing link 

 
 
•  Garfield 

calculates the charge collection  
and charge breeding process 

 
•  Commercial codes (Multisim / Spice…) 

Allow to solve general electronics schemes 

•  Link between output of Garfield 
and input to Spice is missing: 

- Transformation of charge cloud into currents 
- Calculation of detector’s impedance 
  (capacity, series & parallel resistivity,…) 

e- 

ionization charge clusters arriving at the TPC endplate will
then often be confined to only one or two pads. This makes
the anode pad centroid determination difficult and results
in loss of resolution. Reducing the pad width to improve
resolution will require a larger number of readout channels
and increase the detector cost and complexity.

In an attempt to improve the charge centroid determina-
tion and hence the spatial resolution for wide pads, a novel
concept of position sensing from charge dispersion [9] has
been developed where the MPGD anode is made of a thin
high surface resistivity film. The resistive anode is bonded
to the readout plane with an insulating layer of glue, which
acts as a dielectric spacer between the two planes. The
composite anode-readout pad plane structure forms a
distributed 2-dimensional resistive-capacitive network.
Any localized charge arriving at the anode surface will be
dispersed with the RC time constant determined by the
anode surface resistivity and the capacitance per unit area,
the latter determined by the spacing between the anode and
readout planes and the dielectric constant of the glue. With
the avalanche charge dispersing and covering a larger
number of pads with time, wider pads can be used for
position determination. The charge dispersion process can
be completely described by material properties and
geometry and, in contrast to diffusion which is statistical
in nature, there is no loss of accuracy in determining the
centroid of a wider distribution. Fig. 1 shows the
schematics of the double GEM test cell used in our initial
tests of the charge dispersion readout concept.

The first proof of principle tests of charge dispersion for
the GEM were carried out using a collimated soft X-ray
source and have been previously published [9]. These were
followed by cosmic ray resolution studies of a prototype
TPC read out with GEM [10] and with Micromegas [11]
using the charge dispersion technique. In this paper, we
present the results of a detailed simulation of the charge
dispersion phenomenon based on the model described in
Ref. [9]. The charge dispersion effect is first calculated
for a single point-like charge cluster deposited instanta-
neously on the resistive anode. The finite extent of the
charge cluster due to longitudinal and transverse diffusion,
the effects of intrinsic rise-time of the MPGD charge pulse

and the rise- and fall-time effects in electronics are then
included. Track signals can be generated by summing
signals due to individual charge clusters along the
track. The simulation is in excellent agreement with the
observed features of charge dispersion and can be used to
optimize the charge dispersion readout system parameters
for TPC.

2. Modeling the charge dispersion phenomena

If a charge is deposited on the resistive anode, the
equation describing the time evolution of the surface
charge density function on the two-dimensional continuous
RC network is given by [9]:
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where h ¼ 1/RC.
The solution to Eq. (1) for a resistive anode of finite size

is an infinite Fourier series. A closed form solution
becomes possible, however, for the case of a delta function
point charge deposited at x ¼ y ¼ t ¼ 0 and when the
edges are at infinity:
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The true initial charge profile is not a delta function but has
a finite size and can be described by a Gaussian with a
width determined by transverse diffusion. For a cluster
with charge Nqe, the anode surface charge density as a
function of space and time is obtained by convoluting Eq.
(2) with the Gaussian describing the finite charge cluster of
width w:
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The charge on a pad can be found by integrating the charge
density function over the pad area:
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where xlow, xhigh, ylow, yhigh define the pad boundaries, and
sxy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2thþ w2
p

.
The charge is also not deposited instantaneously. The

detector pulse has a finite intrinsic rise time and the signal
is also affected by electron arrival time spread due to
longitudinal diffusion. To compare to experiment, the
characteristics of the front-end charge preamplifiers need
also to be included. The parameterization of these time
dependent effects is described below.

The intrinsic rise-time of the detector charge pulse: From
Ramo’s theorem [12], the charge pulse on the GEM anode
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Fig. 1. Schematic of a double GEM test cell designed for charge
dispersion studies.
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Principle of Signal induction 

•  A point charge q at distance z0 
above a grounded metal plate 
induces a surface charge 

•  Different positions of q yield 
different charge distributions 

•  Here image charges can be used 

1 Some theory

n
Ge

=4.0 (1)

c=75m/µs (2)

v
drift

⇥ 10 cm/µs (3)

d⇥ 10 cm (4)

⇧B,D

⇧t
⇥ 0 (5)

Average energy per e/h pair: Ge 2.96 eV / Si 3.62 eV
�(1MeV) in germanium creates 3, 4 · 105 e/h pairs
Space charge (Ge) ⇥ 1010 charges/cm2

E
z

(x, y)=� qz0
2⇥⌅0(x2 + y2 + z20)3/2

(6)

E
x

, E
y

=0 (7)

(8)

⇤(x, y)= ⌅0Ez

(x, y) (9)

Q
ind

=
Z 1

�1

Z 1

�1
⇤(x, y)dxdy = �q (10)
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Principle of Signal induction 

If we segment the metal plate 
and keep individual strips grounded: 
 
•  Surface charge does not change 

compared to continuous plate 
•  The charge on each segment is 

now depending on position of q 
•  The movement of charge q 

induces a current 
 
Method for image charges created 
for irregular geometries is required 
 

1 Some theory
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The Shockley-Ramo theorem 
•  Consider the potentials Φ, Ψ corresponding to: 

•  Φ the “original problem” potential by charge q  
with all electrodes grounded. 
Of interest: the total induced charge Qind,i on electrode i  

•  Ψ the potential without charge q 
with all electrodes grounded, 
except for electrode i, put to 1V. 

 
•  What have both potentials in common? 

use Greens 2nd identity: 

•  Advantage: 
•  Ψ needs to be calculated only once, while 
Φ needs recalculation + integral for every position of q. 
 

Potential Φ 

Potential Ψ 

Table 1
default

potential X �X X|Sj
�X
�n |Sj

⇥ �q�(⇧x� ⇧x0)/⌅ 0 �⇥q,j/⌅

⇤ 0 �i,j �⇤j/⌅

Z

V
⇥�⇤�⇤�⇥ dV =

I

S
⇥
⇤⇤

⇤n
�⇤

⇤⇥

⇤n
dS (19)

(20)
Z

V
⇤ · q�(⌅x� ⌅x0) dV =�

X

j

I

Sj

�i,j · ⇥q,j dS (21)

(22)

q⇤(⌅x0)=�
I

Si

⇥q,i dS = �Qind,i (23)

(24)
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The Shockley-Ramo theorem 
•  The induced charge Qqi on electrode i  

by a point charge q located at position x0 is 

•  With weighting potential      defined by 

•  The current Iqi(t) to electrode i is then given by 

•  The function                              is called the weighting field 

3.1 The Shockley-Ramo theorem 16

The Schockley-Ramo theorem 3.1.1 The induced charge Qqi

on electrode i by a point charge q located at ⌫x0 is given by

Qqi = �q · ⇧i(⌫x0) (3.4)

with ⇧i defined by:

⌅2⇧i(⌫x) = 0 ⌅|Sj = �i,j (3.5)

The momentary current Iqi induced by the movement of q is:

Iqi(t) = q ⌫E�i(⌫x0(t)) · ⌫v(t) (3.6)

with ⌫v(t) the momentary drift velocity of q.

⇧i is called the weighting potential related to electrode i and ⌫E�i = �⌅⇧i

is the corresponding weighting field. The advantage compared to For. 3.3
is clear: the weighting potentials need to be calculated only once. State-
ment 3.6 follows directly from For. 3.5 by taking the time derivative of the
latter and using the chain rule: d

dt = ⇤
⇤x

dx
dt + ⇤

⇤y
dy
dt + ⇤

⇤z
dz
dt . An elegant way

to prove For. 3.5 is by making use of Green´s second identity:

Greens second identity 3.1.1 Between two arbitrary scalar fields
⇥, ⇤ and for an arbitrary volume V bounded by surface S, the follow
identity holds:

⇤

V
⇥�⇤�⇤�⇥dV =

�

S
⇥

�⇤
�n
�⇤

�⇥
�n

dA (3.7)

Let us now take as a special case ⇥ = ⌅q as defined by For. 3.2 and
⇤ = ⇧i as defined by For. 3.5. Further select the volume V as the volume
excluding any electrode interior (The volume is bounded by and includes
the electrode surfaces). For this special case, we thus obtain:

(⇥|Sj , �⇥,
�⇥
�n

|Sj ) = (0, �q�(⌫x� ⌫x0)/⇥, �⇤q,j/⇥) (3.8)

(⇤|Sj , �⇤,
�⇤
�n

|Sj ) = (�i,j , 0, �⇤i,j/⇥) (3.9)

With ⇤q,j , ⇤i,j the surface charge distributions on electrode j due to the
potentials ⌅q and ⇧i, respectively. With this result, we obtain for Greens
second identity:

⇤

V
⇧i · q�(⌫x� ⌫x0)dV = �

⇥

j

�

Si

�i,j · ⇤q,jdA

Which leads immediately to statement 3.5.
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dt
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⇤⇤i

⇤z0

dz0
dt

!

(25)

= q ⌅E�i(⌅x0) · ⌅vdrift (26)

(27)
⌅E�i =�⇥⇤i (28)
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Weighting field properties 
For a set of electrodes completely enclosing the detector volume V: 

•  The sum of weighting potentials is 1 everywhere on V 

•  The total current is 0 at any time 

•  The total induced charge is 0 at any time 
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⇤(⌅x)=
X

i

⇤i(⌅x) ⇥ 1 (29)

(30)

(31)

Itot(t)=
X

i

Iq,i ⇤ ⌅⇤ ⇥ 0 (32)

(33)

(34)

Qtot(t)=
X

i

Qq,i ⇥ 0 (35)
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Extended Ramo theorem 
•  Describes detectors in a realistic electronic network. 

•  In 3 steps: 
•  1) Apply the Ramo theorem: 

Calculate the ideal induced currents in each electrode 

•  2) Equivalent electronics scheme: 
Proof: see Gatti and Padivini, NIM 193 (1982) 651-653 
-Determine the capacitances of your detector, 
-Add the current sources found from 1) 

 
•  3) Realistic electronics scheme: 

Change the above simplified scheme 
into a realistic model. 

 
•  Result = realistic signals, 

    (e.g. including cross talk) 

1) 

2) 

3) 



THE example: AGATA 
•  AGATA = Advanced Gamma Tracking Array 
•  Detector Simulation Software “ADL” 
•  Weighting potential - solution to Laplace equation 

 

10 … 90% 
1   … 9% 
0.1 … 0.9% UNCORRECTED P

ROOF
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180 hexagons. For a maximum size of the crystals this geometry
allows an efficient use of the valuable Ge crystal. It provides
enough space for an ancillary detector device inside AGATA. The
AGATA detectors are arranged in 60 identical triple cluster units
which contain three crystals with different shapes. At the moment
the 12 regular pentagons are not included in the detector
configuration, after evaluation of the cost for development and
the contribution to the overall performance of the array.

The full AGATA spectrometer will comprise 180 asymmetric
hexagonal shaped, electronically segmented, tapered, encapsu-
lated HPGe detectors. Three slightly different asymmetric detec-
tors are combined into a triple cluster detector unit. The AGATA
array will consist of 60 identical cryostats, each housing three
encapsulated detectors with an individual semi-hexagonal shape
shown in Fig. 1.Q2 The detector configuration allows a 9 cm thick
germanium shell with up to 82% of solid angle coverage. This
configuration for AGATA was selected on basis of its modularity
and symmetry as well as for its inner radius of 23.5 cm (to crystal
face) which allows the use of various ancillary detectors.

The detectors are produced by the company Canberra,
Lingolsheim (Strasbourg), France. The three types of detectors
used in one AGATA triple cryostat are built out of 36-fold
segmented, coaxial HPGe crystals (see Fig. 1). The different

detector shapes are assigned a letter and a color: A/red, B/green
and C/blue. The crystals each have a length of 9071mm and a
diameter of 80+0.7

!0.1mm at the rear. At the front they are tapered to
an irregular hexagonal shape with an 81 tapering angle. The
crystal’s central hole has a diameter of 10mm and extends to
13mm from the front end. The sixfold sector-wise segmentation
goes through the middle of each flat hexagonal side. The sixfold
longitudinal segmentation forms rings of 8, 13, 15, 18, 18 and
18mm starting from the hexagonal front face of the detector (see
Fig. 2). Monte Carlo simulations have been done in order to
optimize the size of the individual segments. The widths of the
rings have been optimized by GEANT4 calculations for uniform
distribution of the g- ray interactions and optimal pulse-shape
sensitivity [10]. The AGATA labeling convention assigns the letters
A–F to the six sectors around the detector axis, while the numbers
1–6 are used in conjunction with the six rings, with 1 being at the
front end and 6 at the back (closest to the dewar).

A picture of a bare Ge crystal is shown in Fig. 3(a). The typical
weight of a Ge crystal amounts to about 2 kg (see Table 2). All
crystals are made of n-type HPGe material. The impurity concen-
tration is specified to be between 0.4 and 1.8 "1010 cm!3. The
surfaces of these crystals are very delicate. To allow handling
without clean room condition each crystal is encapsulated into an
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Fig. 2. Drawing of segmentation and encapsulation for an AGATA detector. Dimensions are given in mm.
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180hexagons.Foramaximumsizeofthecrystalsthisgeometry
allowsanefficientuseofthevaluableGecrystal.Itprovides
enoughspaceforanancillarydetectordeviceinsideAGATA.The
AGATAdetectorsarearrangedin60identicaltripleclusterunits
whichcontainthreecrystalswithdifferentshapes.Atthemoment
the12regularpentagonsarenotincludedinthedetector
configuration,afterevaluationofthecostfordevelopmentand
thecontributiontotheoverallperformanceofthearray.

ThefullAGATAspectrometerwillcomprise180asymmetric
hexagonalshaped,electronicallysegmented,tapered,encapsu-
latedHPGedetectors.Threeslightlydifferentasymmetricdetec-
torsarecombinedintoatripleclusterdetectorunit.TheAGATA
arraywillconsistof60identicalcryostats,eachhousingthree
encapsulateddetectorswithanindividualsemi-hexagonalshape
showninFig.1. Q2Thedetectorconfigurationallowsa9cmthick
germaniumshellwithupto82%ofsolidanglecoverage.This
configurationforAGATAwasselectedonbasisofitsmodularity
andsymmetryaswellasforitsinnerradiusof23.5cm(tocrystal
face)whichallowstheuseofvariousancillarydetectors.

ThedetectorsareproducedbythecompanyCanberra,
Lingolsheim(Strasbourg),France.Thethreetypesofdetectors
usedinoneAGATAtriplecryostatarebuiltoutof36-fold
segmented,coaxialHPGecrystals(seeFig.1).Thedifferent

detectorshapesareassignedaletterandacolor:A/red,B/green
andC/blue.Thecrystalseachhavealengthof9071mmanda
diameterof80

+0.7
!0.1mmattherear.Atthefronttheyaretaperedto

anirregularhexagonalshapewithan81taperingangle.The
crystal’scentralholehasadiameterof10mmandextendsto
13mmfromthefrontend.Thesixfoldsector-wisesegmentation
goesthroughthemiddleofeachflathexagonalside.Thesixfold
longitudinalsegmentationformsringsof8,13,15,18,18and
18mmstartingfromthehexagonalfrontfaceofthedetector(see
Fig.2).MonteCarlosimulationshavebeendoneinorderto
optimizethesizeoftheindividualsegments.Thewidthsofthe
ringshavebeenoptimizedbyGEANT4calculationsforuniform
distributionoftheg-rayinteractionsandoptimalpulse-shape
sensitivity[10].TheAGATAlabelingconventionassignstheletters
A–Ftothesixsectorsaroundthedetectoraxis,whilethenumbers
1–6areusedinconjunctionwiththesixrings,with1beingatthe
frontendand6attheback(closesttothedewar).

ApictureofabareGecrystalisshowninFig.3(a).Thetypical
weightofaGecrystalamountstoabout2kg(seeTable2).All
crystalsaremadeofn-typeHPGematerial.Theimpurityconcen-
trationisspecifiedtobebetween0.4and1.8"10

10
cm

!3
.The

surfacesofthesecrystalsareverydelicate.Toallowhandling
withoutcleanroomconditioneachcrystalisencapsulatedintoan
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Example: AGATA 
•  Signal shapes from an AGATA detector  

as function of position 
•  Simulation using ADL  

using weighting potentials and 
drift velocities of electrons and holes 
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So far: 
Homogeneous dielectric 

media only 

Now: 
Inhomogeneous media, 

including resistive layers 

Introduction: 
§  Motivation 
§  The principle of Signal induction 
§  The Shockley-Ramo theorem 
§  An example: AGATA 

Latest developments: 
§  Time dependent weighting potentials 
§  First results: Clas12 / Astrobox 
§  (Laplace transforms) 
§  Dixit vs. Riegler 
 
Prospects 

CALCULATION OF  
TIME DEPENDENT WEIGHTING POTENTIALS 

 FOR MICROMEGAS. 



Time dependent weighting potentials 

•  Homogeneous dielectric medium: 

•  Inhomogeneous medium: 

•  Including resistivity : 

    = Time dependent weighting potential 
  

Equation to solve: 
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Laplace Transform 

(for details on theory see e.g.  W. Riegler,  NIM A 491 (2002) 258 / NIM A 535 (2004) 287) 



The Laplace Transform 
•  Laplace Transform of f(t):                                          with complex frequency 

•  Fourier transform is for periodic functions, while 
Laplace transform for signals “switching on” at time t=0 :  f(t<0) = 0   

 
•  Transforms differential equations into algebraic equations: 

L, R, C circuits easily solved with impedances 
 
 
 

•  Convolution becomes multiplication 

The Laplace transform

we’ll be interested in signals defined for t ≥ 0

the Laplace transform of a signal (function) f is the function F = L(f)
defined by

F (s) =
∫ ∞

0
f(t)e−st dt

for those s ∈ C for which the integral makes sense

• F is a complex-valued function of complex numbers

• s is called the (complex) frequency variable, with units sec−1; t is called
the time variable (in sec); st is unitless

• for now, we assume f contains no impulses at t = 0

common notation convention: lower case letter denotes signal; capital
letter denotes its Laplace transform, e.g., U denotes L(u), Vin denotes
L(vin), etc.

The Laplace transform 3–4

The Laplace transform

we’ll be interested in signals defined for t ≥ 0

the Laplace transform of a signal (function) f is the function F = L(f)
defined by

F (s) =
∫ ∞

0
f(t)e−st dt

for those s ∈ C for which the integral makes sense

• F is a complex-valued function of complex numbers

• s is called the (complex) frequency variable, with units sec−1; t is called
the time variable (in sec); st is unitless

• for now, we assume f contains no impulses at t = 0

common notation convention: lower case letter denotes signal; capital
letter denotes its Laplace transform, e.g., U denotes L(u), Vin denotes
L(vin), etc.

The Laplace transform 3–4

1 Some theory

i(t) = C du(t)
dt � I(s) = C · s · U(s) or

U(s)
I(s) = 1

sC

References
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Part IB Paper 6: Information Engineering

LINEAR SYSTEMS AND CONTROL

Glenn Vinnicombe

HANDOUT 2

“Impulse responses, step responses and transfer

functions.”

G(s)

transfer function

!

g(t)

impulse response

ū(s)

u(t)

!

Laplace transform
pair

ȳ(s)= G(s)ū(s)

!

y(t)=

∫ t

0
u(τ)g(t − τ)dτ

= u(t)∗ g(t)
= g(t)∗u(t)

1



Time dependent weighting potentials 
An example: 
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•  Infinite short times: 
directly induced charges, 
time independent fraction of weighting potential 

•  q also charges the interface at z=0 : 
indirectly induces charges 
time evolution of the charges at interface   

 
•  Total Weighting potential 

•  Time integrated charge:          
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Example: Astrobox 

Astrobox	   d	  [μm]	   εr	   σ	  [1/Ωm]	  
layer	  3	   80	   1	   0	  
layer	  2	   25	   4.5	   0.5	  
layer	  1	   75	   4	   0	  

x 

Explicit solution for x<d3: 
see e.g.  W. Riegler,  NIM A 491 (2002) 258  
define 

a= ⌅1⌅2d3 + ⌅2⌅3d1 + ⌅3⌅1d2 (14)

b= ⌅3⇥2d1 + ⌅1⇥2d3 (15)

c(x)= ⌅1⌅2x/a (16)

⇤2 = ⌅2/⇥2 (17)

⇤ = a/b (18)

(19)

V3(x, s)= c(x)
s+ 1/⇤2
s+ 1/⇤

(20)

(21)

V3(x, t)= c(x) [�t + (1/⇤2 � 1/⇤) exp(�t/⇤)] (22)

(23)
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Ex: Astrobox 

T=0 

T=500ps 

a= ⌅1⌅2d3 + ⌅2⌅3d1 + ⌅3⌅1d2 (14)

b= ⌅3⇥2d1 + ⌅1⇥2d3 (15)

c(x)= ⌅1⌅2x/a (16)

⇤2 = ⌅2/⇥2 (17)

⇤ = a/b (18)
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s+ 1/⇤2
s+ 1/⇤

(20)

(21)

V3(x, t)= c(x) [�t + (1/⇤2 � 1/⇤) exp(�t/⇤)] (22)

(23)
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Prompt w.- potential C(x)δt 

C(d3) = 0.767  
exact =  0.766 
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1

Φint(d3) = 0.810 
Exact   = 0.810 

w.- field for t>0 

Time integrated w.-potential 



Example: CLAS12 

Micromesh 
 
 
 
 Resistive layer 

Cupper Strips 
Coverlay 

PCB 

128µm 

75 µm 

800 µm 

100 µm 300 µm 

Air gap 

CLAS12	   d	  [μm]	   εr	   σ	  [1/Ωm]	  
air	  gap	   128	   1	   0	  
resis:ve	  layer	   7	   3.1	   8.5	  
coverlay	   75	   4	   0	  
cupper	  strips	   5	   inf	   inf	  
pcb	   800	   4.6	   0	  



Example: CLAS12 
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•  Prompt weighting potential Φ0(x): 

•  Charge sharing! 
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The Inverse Laplace Transform 
A line integral in the complex plane 

Good numerical approximations exist of the form: 
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1

With Ki, Zi complex constants 

e.g.: Zakian’s method, Stehfest’s method, Talbot’s method, Fourier series method,… 

 
•  Simple implementation 
•  Allows easy inversion of fields F(s,x) 
•  Does not work for t=0 
•  Goes wrong as t grows. 
•  High numerical precision required (see next slide) 



The Inverse Laplace Transform 
•  Error sensitivity: Astrobox problem solved using Zakian’s method: 

•  Adding more terms allows to calculate further in time 
•  But solution becomes more sensitive to calculation error 
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8 
 
10 

No error Only 10-6 relative error in 1st term   
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Time [ps] Time [ps] 



Dixit vs. Riegler 

Replacing e by eþ s=s and performing the inverse
Laplace transform we find the Green’s function for
a medium with constant conductivity s and
permittivity e as

Gð~rr; tÞ ¼
1

4pej~rrj
dðtÞ %

1

t
e%t=t

! "

; t ¼
e
s
: ð11Þ

E.g. putting at time t ¼ 0 a charge density rð~rrÞ into
the medium i.e. reð~rr; tÞ ¼ rð~rrÞYðtÞ the time-depen-
dent potential is given by

Fð~rr; tÞ ¼
Z

V

Z t

0
Gð~rr %~rr0; t% t0Þrð~rr0ÞYðt0Þ dt0 d3r0

¼
e%t=t

4pe

Z

V

rð~rr0Þ
j~rr %~rr0j

d3r0: ð12Þ

The potential is equal to the electrostatic one, but
‘destroyed’ with the time constant t ¼ e=s:

2.2. Point charge in an infinite half-space

Let us assume two infinite half-spaces with
different constant s; e and a point charge Q at the
boundary (Fig. 2). The electrostatic solution ðs ¼
0Þ is given by [3]

%Fð~rrÞ ¼
Q

4p
2

ðe1 þ e2Þ
1

j~rrj
: ð13Þ

This has the same form as the above solution (10),
so the potential for a point charge Q created at
t ¼ 0 we have

Fð~rr; tÞ ¼
2Q

4pðe1 þ e2Þj~rrj
e%t=t; t ¼

e1 þ e2
s1 þ s2

: ð14Þ

If we set e1 ¼ e0; s1 ¼ 0; e2 ¼ ere0 and s2 ¼ s; the
geometry is similar to a charge sitting on the

resistive plate in a Resistive Plate Chamber (RPC).
With typical numbers of 1=s ¼ 1010 O cm and
er ¼ 5 we find a time constant of t ¼ 4:4 ms; so the
charge is ‘removed’ very slowly compared to the
RPC signal duration of a few nanoseconds.

3. Generalized Green’s theorem and impedance
matrix

In order to apply the quasi-static approximation
to the problem of induced signals we need a
generalization of Green’s theorem and the capaci-
tance matrix. If we have N insulated electrodes on
potentials Vi (Fig. 3a), the charges on the electro-
des are given by

Qi ¼
X

j

cijVj ð15Þ

Q
 ε1,  σ1

ε2,  σ2

Fig. 2. Point charge on the boundary between two infinite half-
spaces of constant s and e:
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Fig. 3. (a) The voltages Vi and charges Qi on insulated
electrodes are connected through the capacitance matrix cij :
(b) The voltages Vi and currents Iexti flowing onto electrodes
embedded in a general conducting medium are connected by the
impedance matrix ZijðsÞ:

W. Riegler / Nuclear Instruments and Methods in Physics Research A 491 (2002) 258–271260

 
 
•  M.S. Dixit, A. Rankin - NIM A 566 (2006) 281–285 

Telegraph equation in the limit L->0: 
charges spread but are conserved 

•  W. Riegler – NIM A 491 (2002) 258–271  
Quasi static approximation for weak conductive media 
immobile charge fades away exponentially 

…unification of both theories needed… 
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charge is ‘removed’ very slowly compared to the
RPC signal duration of a few nanoseconds.

3. Generalized Green’s theorem and impedance
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In order to apply the quasi-static approximation
to the problem of induced signals we need a
generalization of Green’s theorem and the capaci-
tance matrix. If we have N insulated electrodes on
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des are given by
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initial charge dispersed and covering a larger area
with time, wider pads can be used for signal pickup
and position determination.

This spatial dispersion, which can be explained
by a simple physical model described below,
does not attenuate the pad charge signal. As the
initial charge cluster diffuses, the electron density
on the resistive surface, varying with time, is
capacitively mirrored on the readout pads below.
Since the readout pads are directly connected
to the preamplifiers, there is no charge signal
amplitude loss.

2.1. A model for charge dispersion in a micro-
detector with a resistive anode

The resistive anode and the readout plane
together can be looked upon to form a distributed
two dimensional RC network in the finite element
approximation. Consider first the one dimensional
problem of a point charge arriving at t ¼ 0 at the
origin in the middle of an infinitely long wire
grounded at both ends. For small inductance, the
space–time evolution of the charge density r on
the wire is given by the well-known Telegraph
equation:

@r
@t

¼ h
@2r
@x2

where h ¼ 1=RC: ð1Þ

Here R is resistance per unit length and C the
capacitance per unit length for the wire.

The solution for charge density is given by

rðx; tÞ ¼

ffiffiffiffiffiffiffiffiffiffi

1

4pth

r

expð$x2=4thÞ: ð2Þ

In analogy with the one dimensional case, we can
write the Telegraph equation for the case of a
resistive surface. At time t ¼ 0; a point charge
is collected at the origin by a resistive anode
surface of infinite radius (for simplicity). The two-
dimensional Telegraph equation for the charge
density is

@r
@t

¼ h
@2r
@r2

þ
1

r

@r
@r

" #

ð3Þ

where in this case, R is the surface resistivity and C
is capacitance per unit area.

The solution for the charge density function in
this case is given by

rðr; tÞ ¼
1

2th
expð$r2=4thÞ: ð4Þ

The charge density function (Eq. (4)) for the
resistive anode varies with time and is capacitively
sampled by the readout pads. Fig. 2 shows the time
evolution of the charge density for an initially
localized charge cluster for our detector. The
charge signal on a pad can be computed by
integrating the time dependent charge density
function over the pad area. The shape of the
charge pulse on a pad depends on the pad
geometry, the location of the pad with respect to
the initial charge and the RC time constant of the
system.

2.2. Charge dispersion signal in micro-detectors
with long readout strips

The charge dispersion measurements were car-
ried out with a modified GEM detector with long
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Fig. 2. The evolution of the two-dimensional charge density
function (Eq. (4)) on the resistive anode with a resistivity of
2:5 MO per square and anode-readout plane separation of
100 mm: For the model calculation the initial charge was point-
like and localized at the origin at time = 0.
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ionization charge clusters arriving at the TPC endplate will
then often be confined to only one or two pads. This makes
the anode pad centroid determination difficult and results
in loss of resolution. Reducing the pad width to improve
resolution will require a larger number of readout channels
and increase the detector cost and complexity.

In an attempt to improve the charge centroid determina-
tion and hence the spatial resolution for wide pads, a novel
concept of position sensing from charge dispersion [9] has
been developed where the MPGD anode is made of a thin
high surface resistivity film. The resistive anode is bonded
to the readout plane with an insulating layer of glue, which
acts as a dielectric spacer between the two planes. The
composite anode-readout pad plane structure forms a
distributed 2-dimensional resistive-capacitive network.
Any localized charge arriving at the anode surface will be
dispersed with the RC time constant determined by the
anode surface resistivity and the capacitance per unit area,
the latter determined by the spacing between the anode and
readout planes and the dielectric constant of the glue. With
the avalanche charge dispersing and covering a larger
number of pads with time, wider pads can be used for
position determination. The charge dispersion process can
be completely described by material properties and
geometry and, in contrast to diffusion which is statistical
in nature, there is no loss of accuracy in determining the
centroid of a wider distribution. Fig. 1 shows the
schematics of the double GEM test cell used in our initial
tests of the charge dispersion readout concept.

The first proof of principle tests of charge dispersion for
the GEM were carried out using a collimated soft X-ray
source and have been previously published [9]. These were
followed by cosmic ray resolution studies of a prototype
TPC read out with GEM [10] and with Micromegas [11]
using the charge dispersion technique. In this paper, we
present the results of a detailed simulation of the charge
dispersion phenomenon based on the model described in
Ref. [9]. The charge dispersion effect is first calculated
for a single point-like charge cluster deposited instanta-
neously on the resistive anode. The finite extent of the
charge cluster due to longitudinal and transverse diffusion,
the effects of intrinsic rise-time of the MPGD charge pulse

and the rise- and fall-time effects in electronics are then
included. Track signals can be generated by summing
signals due to individual charge clusters along the
track. The simulation is in excellent agreement with the
observed features of charge dispersion and can be used to
optimize the charge dispersion readout system parameters
for TPC.

2. Modeling the charge dispersion phenomena

If a charge is deposited on the resistive anode, the
equation describing the time evolution of the surface
charge density function on the two-dimensional continuous
RC network is given by [9]:

qr
qt
¼ h

q2r
qx2
þ

q2r
qy2

! "
, (1)

where h ¼ 1/RC.
The solution to Eq. (1) for a resistive anode of finite size

is an infinite Fourier series. A closed form solution
becomes possible, however, for the case of a delta function
point charge deposited at x ¼ y ¼ t ¼ 0 and when the
edges are at infinity:

rdðx; y; tÞ ¼
1

2
ffiffiffiffiffiffiffi
pth
p

! "2

exp % x2 þ y2
$ %&

4th
' (

. (2)

The true initial charge profile is not a delta function but has
a finite size and can be described by a Gaussian with a
width determined by transverse diffusion. For a cluster
with charge Nqe, the anode surface charge density as a
function of space and time is obtained by convoluting Eq.
(2) with the Gaussian describing the finite charge cluster of
width w:

rðx; y; tÞ ¼
Nqe

2pð2htþ w2Þ
exp % x2 þ y2

$ %&
2 2htþ w2
$ %$ %' (

.

(3)

The charge on a pad can be found by integrating the charge
density function over the pad area:

QpadðtÞ ¼
Nqe

4
erf

xhighffiffiffi
2
p

sxy

 !

% erf
xlowffiffiffi
2
p

sxy

 !" #

& erf
yhighffiffiffi
2
p

sxy

 !

% erf
ylowffiffiffi
2
p

sxy

 !" #

, ð4Þ

where xlow, xhigh, ylow, yhigh define the pad boundaries, and
sxy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2thþ w2
p

.
The charge is also not deposited instantaneously. The

detector pulse has a finite intrinsic rise time and the signal
is also affected by electron arrival time spread due to
longitudinal diffusion. To compare to experiment, the
characteristics of the front-end charge preamplifiers need
also to be included. The parameterization of these time
dependent effects is described below.

The intrinsic rise-time of the detector charge pulse: From
Ramo’s theorem [12], the charge pulse on the GEM anode
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Fig. 1. Schematic of a double GEM test cell designed for charge
dispersion studies.
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(see also F. Rapetti : Electromagnetic quasi-static models applied to transmission lines  
 



Prospects 
• Get the theory straight. 

• Multi grid methods for 
acceleration of calculation 

 
• Different length scales: 

Cubic è rectangular grid 

•  Laplace inversion limitations: 
Time stepping method? 


