

Stability tests of GEMs with cylindrical holes for ALICE upgrade

Behalf of the ALICE TPC upgrade collaboration

The ALICE TPC is the main device in the ALICE central barrel for tracking of charged particles and particle identification 2

Design of the present ALICE TPC

Requirement to gating grids: ion back flow is below 10⁻⁴

Running at 50 kHz Pb-Pb after LS2

- No GG triggering, continuous readout
- This leads to electric field distortions of the order of the electric field → space point distortions of order 1 m
- ΔE, (V/cm) ΔE_z (V/cm) 500 200-400 30 300-100-200 20 100--100 10 -100--200 27 28 1.8 1.6 1.4 1.2 1 24 23 1.8 1.6 1.4 1.2 00.20.40.60.8 11.21.4.60.8 2 (01 00.2.4.0.811.2.4.0.82

S. Rossegger

- MWPC are not an option
- Counting rate will be increased 100 times!

A very attractive option is GEM...

However

- R&D is needed to settle a few issues with GEMs
 - Ion back-flow typically few % (usually no need for a better figure)
- Gain stability charging up processes, rate dependence...
 - Position and momentum resolution not a show stopper
 - Stability under LHC conditions to be tested
 - New electronics needed (speed, signal polarity) profit from a common ALICE effort and existing prototypes

Experimental setup

Some related images...

Data acquisition

(J. Reinink)

Labview presentation

At what conditions the test should be done?

..."this is an important question. I ill try to answer it in terms of expected current per cm2 expected in Pb-Pb at 50 kHz at GEM gain of 1000. I put alice-tpc-upgrade in cc to make sure everybody agrees.

I start with the charge expected in the TDR era (dN/dy=8000) per central collisions event in the innermost region: 2.3 10^-13 mC/cm I correct for the expected true multiplicity (2200 per CC at 14 TeV) and convert into charge per Minimum Bias (not central collision) event: 1.2x10-12 mC/cm At 50 kHz event rate this results in: 6.2x10^-10 mA/cm This was for readout chamber with 2.5 mm pitch anode wires, so I divide by this and multiply by gain of 1000: 2.5x10^-6 mA/cm2 = 2.5 nA/cm2..."

Chilo

Results:

Measurements were performed with <u>single</u> and <u>double</u> and <u>triple</u> GEMs in Ne+10%CO₂ and Ar+10%CO₂ at p=1atm and humidity range 1000-50 ppm

A few examples are given below:

1. Single GEM

Gas gain 200 Current ≈2nA/cm2 Long-term runs as well as intensity and voltage variations were done

Intensity variations

Zoomed area of the corrected data

Various tests with intensity variations

Zoomed

GEM/SWC corrected

X-ray intensity modulations

Zoomed areas

GEM voltage variations

Summary of measurements with a singe GEM:

GEM stable within ±1-2% (continuous test time was 7 weeks) Humidity level was 500-50ppm

Will be interesting to compare with simulation

Discussion with Rob Veenhof:

His calculations show:

With real conical holes 70µm in diameter no charging up effect. Some short-term (10-30min) variation with time are predicted:

with 70 μ m holes having and inner diameter 60 μ m some initial gain loss is predicted,

with inner diameters less than 60 $\mu m\,$ gain may increases with time

2. Double GEM

The same type of measurements: long-term runs, intensity and voltage variations

An example of double GEM reaction on intensity variation

Conclusion from <u>double GEM</u> stability studies

double GEM, irradiated in its middle area (current ~1.8nA/cm2, gain 900) is stable within ~±2%. After the voltage variation it is still not so bad: ±2.6%

When the gain was increase 2 times (from 900 to \sim 2000) and intensity 4 times, so that the current range \sim 7-15nA/cm2, stability is ±3% (which is inside the expected V2 degradation)

Triple GEMthe most important case

Measurements were done at 180 and 70ppm

Results at humidity 180 ppm

Overview of raw data

180ppm

Corrected GEM data at gain 1200

±3%,If pikes excluded ± 2%-both are consistent with old measurements

Step by step gain increase from 1200 to 1800

27 hours

Region 1

Region 2

± 1.4%

Region 3

±1.3%

Region 4 (gain 1800)

...70 ppm

Zoomed area

0.7

± 1.4%

Various voltage variations

Conclusion for triple GEM:

Stability between ± 2% (gain 1200) and ± 1.4% (gain 1800) was observed with triple GEMs

General conclusions:

- Long-term measurements (total time more than 6 months) were performed with GEMs having cylindrical holes
- At expected LHC conditions (corresponding to GEM's current ~2nA a gain of ~ 1000) and humidity 100-50pp the gain variation were (over all tests performed) below ± 3%
- 3. Probably, better results could be achieved if we implement better compensation on environmental variations

Further plans:

- 1) Try to compensate on environmental variations even better (using a detector which has a working voltage and a gain vs. voltage close to our GEMs; in the case of the single wire detectors these parameters are very far away)
- 2) Perform tests very "dry" GEMs (in preparation by Leszek and Eraldo RD-51 Lab)

One of the possibilities is to use as a refernce detector Japanese GEMs:

Fig. 1. Cross-section of (a) RIKEN-140T-LCP and (b) RIKEN-80T-LCP obtained with a metallographic microscope.

Made of liquid crystal (LCP)

Fig. 5. Relative gain as a function of elapsed time after turning on of high voltage for RIKEN-80T-LCP and RIKEN-140-PI GEMs. The gain was normalized to 1 at the first measurement. For easier visibility, the gain of RIKEN-140-PI was offset by a value of -0.1. A correction for temperature and pressure was applied. The gain evolution of a CERN GEM (which had the same geometry as RIKEN-140-PI), as measured with our test setup, is shown in the figure. The effective gain of the measurements was around 10^3 , and the count rate of irradiated 5.9 keV X-rays was about 100 counts cm⁻² s⁻¹.

The geometry of them is exactly same as the standard CERN-GEM: hole diameter = 70 microns, hole pitch = 140 microns, thickness of LCP = 50 microns, thickness of Cu layers = 5 microns.

...hence, more adventures are coming