TCPD a Hybrid Cherenkov Detector

<u>G.Hamar</u>, D.Varga for the REGARD Group

Wigner RCP Budapest,

Eötvös University Budapest,

REGARD Group Budapest,

ALICE-Budapest and ALICE VHMPID Groups

Outline

- TCPD outline
- Reminder pages from the last TCPD presentaion
- Beam test in 2012.
- Applied gains
- Cluster size
- MIP Suppression
- Photon Yield
- Summary

TGEM, CCC

MWPC for photon detection

- (+) Full surface
- (-) Ion backflow
- (-) Feed-back photons

ThickGEM based photon detection

- (+) Ion backflow
- (+) Feed-back photons
- (-) Multi-layers (2-3) raise cost
- Close Cathode Chamber (CCC) [NIM A 648 (2011) 163]
 - (+) Mechanical tolerance, simple construction
 - (+) Low material budget

TCPD Outline (ThickGEM+CCC Photon Detector)

- A known configuration applied for photon detection
- UV-transparent quartz window
- Wire plane for cathode
- ThickGEM, upper surface could be coated with CsI
- Standard CCC wire layout
- Padplane on ground

Combines msot of the advantages of both technologies

TCPD-2 Chamber for Cherenkov photons

- TGEM 20x20 cm² active area (CERN, R.Oliveira, 2011)
- CsI cover (CERN, 2011)
- Humidity-free gas volume for the HV connection
- Large quartz window (20x20cm²)
- Small monitoring window
- Detachable frame for the liquid radiator
- Pad structure : HMPID-like (8x8, 4x8, 4x4 mm²)

5

2013. April

RD51 MiniWeek - G.Han

Constructior

First Photons with the 20cm Chamber

Beam Test Setup

- In the former beam test problem with the window :(
- New beam test in September 2012. at CERN PS **T10**
- Four small scintillators to define a nice beam spot, Two large scintillators for beam and for muons
- Additional 2+2 BeamPositionChambers (BPD) read out by the same DAQ system
- TCPD:pad readout DAQ,FEE : ALICE HMPID/VHMPID type
- Connected wires read out for scope monitoring and/or for simple data taking with CamacADC
- Radiator : C₆F₁₄ (standard HMPID),
 adjustable eff. thichness and changeable distance from TGEM
- Base gas for operation : CH₄
 - + few days with Ar-CO₂ to compare with former lab results
- Study of pad-size dependance as well two padplanes: standard 8x8; and a mix with 4x4,4x8,8x8.

It works !

• Cumulated Cherenkov rings from the firsts runs in Sept. 2012.

Applied Gains

- CCC and TGEM gains were measured independently
- Typical gains : TGEM : 10 100; Overall gain : 10⁴ 10⁵
- No need for high gain on TGEM ensured stable operation
- Even with gain $3x10^5$ no sparks have been observed

Single Events

RD51 MiniWeek - G.Hamar - TCPD as Cherenkov Detector

Cluster Size Distribution

- Cluster size on the 8.0 x 8.4 mm² pads were measured in the ring region with photo-electron candidates
- Cluster size is crucial for padsize optimization in small diameter rings

- Different gain distributions lies nearly on the same curve
- Even with gain 10⁵ the average cluster size is 2.5

G.Hamar - TCPD as Cherenkov Detector

MIP Suppression

RD51 MiniWeek - G.Hamar - TCPD as Cherenkov Detector

MIP Suppression

- Possibility for MIP suppression in MPGDs
- MIP signal in the order of the PE singal
- Small reversed cathode field is enough
- The cathode field approx. 0-100 V/cm is ideal for photon detection
- Suppressed MIP signal differs form the Landau curve due to the eventually deposited electron just above the TGEM

Photon Yield

- With TGEMs there are blind areas for photons
- Hole configuration needs to be optimized for this purpose (-> "Leopard" like studies)
- With nonoptimized setup the photon yield was approx.
 60-70 % of desired
- Consistent with Leopard meas.

Summary

- TCPD nice combination of micropattern and wire based technologies for photon detection
- Single photo-electron studies with a UvLed
- Real **Cherenkov applicability** was demonstrated
- Full Cherenkov ring detection with one TGEM
- Stable operation even with high gains
- Moderate cluster size without technical difficulties
- Natural **MIP suppression**
- The offline analysis is still ongoing
- Special thanks go to the test beam group
- And thanks to the Hungarian OTKA CK77719, CK77815 grants and the support of the REGARD, ALICE-Budapest and ALICE VHMPID Groups

Thank You for Your Attention

