Status of the ATLAS MM project

Jörg Wotschack (CERN) on behalf of the MAMMA Collaboration

ATLAS Small Wheel upgrade project

Build two new Small Wheels and equip them with sTGCs and micromegas detectors, to be installed in 2018

- Redundant system where each technology combines precision and 2nd coord. measurement as well as trigger functionality in a single device
- Eight active layers per detector technology, i.e., a total of 16 measurement points along tracks
- MM strip pitch is ≈0.45 mm
 - \Rightarrow 2M readout channels
 - \Rightarrow 1200 m² of MM detectors

Status of the New Small Wheel project

- Early May 2012 the ATLAS Muon Collaboration decided to equip the New Small Wheels with two detector technologies, each covering the full detector area: thin-gap MWPCs (sTGC) and micromegas (MM)
 - The decision was subject to a number of milestones that had to be fulfilled by end of 2012
- Initial Design Review took place 29/30 August 2012
- ATLAS Collaboration Board (CB) approval in Oct 2012
- Milestone review: 17/18 Jan. 2013 all milestones fulfilled
- Technical Design Report (TDR) due end of May 2012, to be submitted to the June LHCC
- NSW MoU in Fall 2013 (will settle who does what)

Where do we stand today?

- Detector structure is defined: MM r/o board and mesh separate
- MM board design is more or less settled
 - Readout board structure as for the 2 x 1 m² prototype chambers (see talk by M. Bianco in WG2, yesterday)
 - Some details to be settled, e.g. resistive strip deposition technology (screen printing or sputtering?, see talk by A. Ochi, WG6, tomorrow)
- Detector layout largely settled, module size still under discussion
 - Full sector or three modules/sector? to be decided in July
- Mechanical prototype construction underway in five consortia
 - CERN + Lecce + Saclay
 - CEA Saclay
 - INFN (Frascati, Pavia, Rome, et al.)
 - Boston (Harvard, BU, Brandeis)
 - LMU Munich

2 x 1 m² sketch (not to scale)

2 x 1 m² sketch (closed)

Detector layout

- Eight active layers, arranged in two quadruplets, separated by a spacer structure
- A quadruplet consists of two doublets, one with eta-strips ('parallel' to the drift tube wires) and one with 3° stereo strips)
- The MMs in each doublet are arranged back-toback

Large sector

PCB MM readout boards I

PCB sizes (small sectors)

Assembly procedure

The glueing of the drift electrodes

RD51 mini week, 23/04/2013

J. Wotschack (CERN)

The chamber assembly

RD51 mini week, 23/04/2013

The first 1x 2 m² MM chamber

- Dimension: 1 x 2.4 m² (0.92 x 2.12 m² active area)
- 2 x 2048 strips (0.45 mm pitch), separated in the middle
- Four PCBs (0.5 x 1.2 m², thickness 0.5 mm) glued to a 10 mm thick stiffening panel
- Floating mesh, integrated into driftelectrode panel (15 mm thick)

Construction plans for 2013+

- Jan Apr: Construct second 2 x 1 m² chamber
- Jan July:
 - Mechanical wedge prototypes with the goal to settle on a construction baseline in July (three modules/sector or full plane/sector)
 - Finalize PCB layout (2nd coordinate, production method, ...) & start transfer of know-how to industry
 - Define readout & services
- Jan May: TDR
- Aug Dec: Construction of functional prototype wedge (Mod-1) following the baseline design, including all features
- 2014: Construction of Module-0

Issues to be addressed during 2013

- Stiffening panel production, either in institutes or in industry; choice of materials, production method, etc ...
- Plane-plane alignment and external alignment instrumentation
- Development of quality control methods and tools, e.g. acceptance tests for PCBs, doublets, quadruplets, ...
- On-chamber electronics integration (readout & trigger)
 - Connectivity solutions (Zebra connectors)
- LV/HV
- Gas system

Time line for MM production

- By mid 2013 settle on a baseline detector design
- Full-size prototype wedge in fall 2013, involving industry
- Module_0 in 2014, i.e. a full MM sector (2 wedges) to be coupled with a full sTGC sector
- In 2014 setup of production and assembly sites and procedures
- Production in 2015/16
- Installation on NSW as of 2016 possible
- Installation in ATLAS during LHC shutdown 2018