

Theory Uncertainty Task-Force - mandate and goal -

Chiara Mariotti (Torino), Reisaburo Tanaka (LAL) Giampiero Passarino (Torino), Sven Heinemeyer (IFCA)

April 12, 2013, LHC Higgs XS WG Meeting

1. Introduction

- After the Higgs boson discovery, now it turns out to precision measurements era !
- Theory uncertainties are not negligible and became important than ever before !
 - Experimental accuracy $\Delta \mu(\sigma/\sigma_{SM})=\pm 15\%$ (roughly $\pm 10\%$ for both stat.&syst.).
 - Theory uncertainty is O(±10-15%) dominated by QCD scale and PDF+ α_s in ggF
- LHC Higgs combination WG's prescription (ATL-PHYS-PUB-2011-011, CMS Note-2011/005)
 - Subdivide nuisance parameters until they become uncorrelated.
 - Take Gaissian/Log-normal for pdf. Practically Gaussian as κ~1.0 for QCD scale and PDF+α_s uncertainties.
- Need to update the prescription !
 - 1. QCD scale uncertainty
 - 2. PDF+ α_s uncertainty
 - 3. BR uncertainty

2. Higgs Cross Sections

Official numbers for Higgs cross sections at 7 and 8 TeV and spread sheet at

- https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageAt7TeV
- https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageAt8TeV ۲
- Now ggF and VBF cross sections with complex-pole-scheme (CPS) for entire mass ۲ range both at 7 and 8 TeV. WH/ZH and ttH in ZWA.
- Always compared with two independent calculations, ex. dFG vs ABPS for ggF.
- Assume factorization between QCD and EW radiative corrections.
- QCD scale uncertainties, ex. ggF $1/2M_{H} < \mu_{R}, \mu_{E} < 2M_{H}$ ($1/2 < \mu_{R}/\mu_{E} < 2$)

Higgs cross section theory uncertainties

M_H=125 GeV

K-factor, QCD scale and PDF uncertainties

	7 TeV				8	8 TeV			
	K _{NNLO/NLO} (K _{NLO/LO})	Scale	PDF+α _s	Scale +PDF	Scale	PDF+α _s	Scale +PDF		
ggF	+25% (+100%)	+7-8%	±8%	±15%	+7-8%	±8%	±15%		
VBF	<1% (+5-10%)	±1%	±4%	±5%	±1%	±4%	±5%		
WH/ ZH	+2-6% (+30%)	±1%	±4%	±5%	±1%	±4%	±5%		
ttH	- (+5-20%)	+3 -9%	±8%	+12 -18%	+4 -9%	±8%	+12 -17%		

- Renormalization and factorization scale uncertainty study by M. Cacciari et al. work in progress.
- Higher-order calculations, ex. ggF QCD scale: $\pm 8\%$ @NNLO $\rightarrow \pm 5\%$ @NNNLO in few years ?
- PDF+ α_s (PDF4LHC prescription): ±8% \rightarrow <5% with improvements with LHC data ?

• jets, top, prompt photons and Z p_T distributions contribute gluon PDF determination. (but paradoxically, ggF is the best measure to determine gg parton luminosity around M_H=125GeV!)

QCD scale uncertainty

- LHC Higgs combination WG's prescription (ATL-PHYS-PUB-2011-011, CMS Note-2011/005)
 - Subdivide nuisance parameters until they become uncorrelated.
 - Take Gaissian/Log-normal for pdf. Practically Gaussian as $\kappa \simeq 1.0$ for scale.
- New method by M. Cacciari and N. Houdeau. JHEP 09 (2011) 039
 - Preserves both characteristics of log-normal (tail) and flat-top.
 - Treats renormalization scale only, factorization scale is work in progress.
 - Questions are flat-top width and exponent. tail length. log-Caccia

log-Cacciari-Houdeau

PDF+ α_s uncertainty

- Currently assume separate gg-initiated ±8% and qq-initiated ±4%.
 - Assumes NO PDF+ α_s correlation between (ggF, ttH, tt, ...) and (VBF, VH, VV, ...).
- Full correlation study in CERN Report 2 (<u>https://cds.cern.ch/record/1416519</u>)
 - $ggF VBF \rho = -0.6$... due to sum rule of $\Sigma(gg+qq+qqbar)=1$.
 - $ggF WH \rho = -0.2$... due to small correlation between gg vs qqbar.
 - $ggF ttH \quad \rho=-0.2 \quad ... it's the different Bijorken-x.$

$M_{\rm H} = 120 {\rm GeV}$	ggH	VBF	WH	$t\overline{t}H$	Table 10
ggH	1	-0.6	-0.2	-0.2	
VBF	-0.6	1	0.6	-0.4	
WH	-0.2	0.6	1	-0.2	
$\mathrm{t}\overline{\mathrm{t}}H$	-0.2	-0.4	-0.2	T	
W	-0.2	0.6	0.8	-0.6	
WW	-0.4	0.8	1	-0.2	
WZ	-0.2	0.4	0.8	-0.4	
$W\gamma$	0	0.6	0.8	-0.6	
$Wb\overline{b}$	-0.2	0.6	1	-0.2	
$t \overline{t}$	0.2	-0.4	-0.4	1	
$t \overline{b}$	-0.4	0.6	1	-0.2	
$t(\rightarrow \overline{b})q$	0.4	0	0	0	

All these issues should be handled correctly.

Apr. 12, 2013

3. Higgs Decay Branching Ratios

- Use HDECAY and Prophecy4f for best estimate.
- $\Gamma_{\rm H} = \Gamma^{\rm HDECAY} \Gamma^{\rm HDECAY}_{\rm WW} \Gamma^{\rm HDECAY}_{\rm ZZ} + \Gamma^{\rm Prophecy4f}_{\rm 4f}$
 - What are the theory (THU) + parametric (PU) uncertainties ?
 - Relatively large uncertainties for H \rightarrow TT, µµ, γγ, Zγ/WW/ZZ at low M_H.
 - Smaller uncertainties relative to scale and PDF+α_s uncertainties in Higgs production.

Separation of BR THU and PU are in progress (prescription how to classify exists). Stick to THU+PU **±5-10%** conservative uncertainty.

Updated numbers in CERN Report 2. 10^{2} <u>https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR2</u> Major change was BR(H \rightarrow ss) due to quark mass definition.

Will be updated in CERN Report 3 again (small THU change).

THU PU Decav **Total** M 120GeV H→bb ±1.3% ±1.5% ±2.8% Н⊸тт $\pm 3.6\%$ $\pm 2.5\%$ ±6.1% H→µµ ±3.9% $\pm 2.5\%$ ±6.4% Н→үү ±2.9% ±2.5% ±5.4% H→Zγ ±6.9% $\pm 2.5\%$ ±9.4% H→ZZ ±2.2% $\pm 2.5\%$ ±4.8% H→WW ±2.2% ±2.5% ±4.8%

A. Denner et al., Eur. Phys. J. C (2011) 71

4. Proposal for theory uncertainty statistical treatment

- Long debate on QCD scale + PDF+ α_s uncertainty handling.
- We suggest to separate either 1) theory uncertainty (THU) or 2) parametric uncertainty (PU).
- Statistical nature of THU behavior is unknown while PU is believed to behave as Gaussian (or log-normal) due to central limit theorem after many measurements. Such example is PDF+α_s uncertainty.

Source of theory uncertainties						
QCD scale	±8% for ggF, ±1% for VBF/VH, +4-9% for ttH	flat-prior				
PDF+α _s	±8% for gg-initiated and ±4% for qq-initiated	Gaussian				
BR uncertainty	±2-4% for THU ±2-3% for PU	flat-prior for THU Gaussian for PU				
Higgs p _T	mixture of missing higher-order correction (ex. NLO EW), QCD scale, PDF+ α_s , UE, etc.	flat-prior to be conservative				
jet-bin uncertainty	inclusive 0,1,2-jet bin uncertainty is $\sigma_{\geq 0}$ (±10%), $\sigma_{\geq 1}$ (±20%), $\sigma_{\geq 2}$ (±20-30%, NLO)	flat-prior				
underlying event	±10% for ggF+2j and ±3% for VBF	flat-prior				
shape uncertainty in bkg. estimation	ex. Z+jets bkg., WW/ZZ bkg. etc.	flat-prior				

Task-Force Mandate and Write-up

- Summarize the recent progress in theory in QCD scale, PDF+ α_s 1. and BR uncertainties
- Provide the concrete recommendation on the theory uncertainty 2 treatment (theoretical, parametric).
- Provide the tools for the theory uncertainty handling, so that 3. collaborations and any interested theorists can make use of it.
- Document the new prescription within one month time-scale. 4.

Executive Editor	ATLAS	Michael Duehrssen (CERN)
	CMS	André Tinoco Mendes (CERN)
	ТН	Giampiero Passarino (Torino)
Contributor		

Contributor

- 1. QCD scale uncertainty
- 2. PDF+ α_s uncertainty
- 3. BR uncertainty

ggF subgroup PDF subgroup (PDF4LHC WG) **BR** subgroup

+ Statistics experts (ATLAS+CMS)

backup

Higgs Physics Theoretical Issues

ggF, VBF, WH/ZH, ttH, BSM Higgs

PDF+α_s uncertainties Renormalization/Factorization scale dependence

Theory Uncertainty Task-Force

ggF, VBF, WH/ZH, ttH, BSM Higgs

How to take into account BR uncertainties

- 1. work with BR uncertainty
 - One has to take care of anti-correlation arising from $\Sigma BR=1$.
 - Current LHC Higgs combination framework does not allow partial anticorrelation but 100% +correlation or no-correlation only.
- 2. work with Higgs decay partial width
 - Work with the partial decay width uncertainty, just like BR = $\Gamma_i / \Sigma \Gamma_j$,
 - Correlations are automatically taken into account.
 - We need the full listings of partial decay width uncertainty.
- 3. work with Higgs coupling uncertainty
 - Live discusions now in Low Mass Higgs subgroup in LHC Higgs XS WG.
 - While partial widths are well-defined, this does not apply to couplings beyond LO.
 - One has to agree on a definition of the couplings. Then there are uncertainties that cannot be attributed to the couplings. etc. etc.
- Suggestion is to take approach 2. with partial decay width.
 CMS has already adopted this prescription for their SM4 resutls.

BR Uncertainty Prescription (A. Denner, A. K

1. Nuisance parameters

- a) Parametric Uncertainty (PU): only 1 nuisance parameter
 - $m_{c},\,m_{b},\,m_{t}$ and α_{s} uncertainties could be added in quadrature.
 - H \rightarrow bb PU is the dominant source of the uncertainty.
- b) Theory Uncertainty (THU): 5 (6) nuisance parameters
 - Classify to H \rightarrow ff, tt, gg, γ + γ , (Z γ) and WW/ZZ
- © Construct nuisance parameters in analogy to QCD scale and PDF uncertainties.

2. Tables

- 1. Prepare full list of Γ_i and $d\Gamma_i$ as a function of M_H .
- 2. Convert it into dBR_i/BR_i with $BR=\Gamma_i/\Sigma\Gamma_j$.
- 3. Symmetrize the uncertainty by either max|+err,-err| or $\sqrt{(1+err)/(1-err)} 1$.

Reference: BR paper Eur. Phys. J. C (2011) 71, Table 14.

Suggestion is to take into account BR uncertainties with this prescription AFTER ICHEP.

Table 14 SM Higgs branching ratios and their relative parametric (PU), theoretical (TU) and total uncertainties for a selection of Higgs masses. For PU, all the single contributions are shown. For these four columns, the upper percentage value (with its sign) refers to the posi-

tive variation of the parameter, while the lower one refers to the negative variation of the parameter. Results for the full mass range, including the total uncertainties, are listed in tables at the end of the document

Channel	$M_{ m H} [{ m GeV}]$	BR	$\Delta m_{\rm c}$	Δm_{b}	$\Delta m_{\rm t}$	$\Delta \alpha_{\rm s}$	PU	TU	Total
$H \rightarrow b\bar{b}$	120 150 200	6.48E-01 1.57E-01 2.40E-03	-0.2% +0.2% -0.1% +0.1% -0.0% +0.0% -0.0%	+1.1% -1.2% +2.7% -2.7% +3.2% -3.2% +3.2%	+0.0% -0.0% +0.1% -0.1% -0.1% -0.1% +0.1%	-1.0% +0.9% -2.2% +2.1% -2.5% +2.5% -2.8%	+1.5% -1.5% +3.4% -3.5% +4.1% -4.1% +4.3%	+1.3% -1.3% +0.6% -0.6% +0.5% -0.5% +3.0%	+2.8% -2.8% +4.0% -4.0% +4.6% -4.6% +7.2%
$H \! \rightarrow \! \tau^+ \tau^-$	500 120 150 200	1.09E-04 7.04E-02 1.79E-02 2.87E-04	+0.0% -0.2% +0.2% -0.1% +0.1% -0.0%	-3.2% -2.0% +2.1% -0.5% +0.5% -0.0% +0.0%	-0.1% +0.1% +0.1% -0.1% +0.1% +0.0% -0.1%	+2.8% +1.4% -1.3% +0.3% -0.3% +0.0% -0.0%	-4.3% +2.5% -2.4% +0.6% -0.6% +0.0% -0.1%	-1.1% +3.6% -3.6% +2.5% -2.5% +2.5% -2.5%	-5.4% +6.1% -6.0% +3.0% -3.1% +2.5% -2.6%
$H \to \mu^+ \mu^-$	500 120 150 200	1.53E-05 2.44E-04 6.19E-05 9.96E-07	-0.0% +0.0% +0.2% -0.0% +0.0% -0.0% -0.0% -0.0%	-0.0% +0.0% +2.1% -0.5% +0.5% +0.0% +0.0%	+0.1% -0.1% +0.1% +0.1% -0.1% +0.1% -0.1% +0.1% -0.1%	-0.1% +0.0% +1.4% -1.3% +0.3% -0.3% +0.0% -0.0% -0.0%	+0.1% -0.1% +2.5% -2.5% +0.6% -0.6% +0.1% -0.1% +0.1%	+5.0% -3.1% +3.9% -3.9% +2.5% -2.5% +2.5% -2.5% +2.5% -2.5%	+5.0% -3.2% +6.4% -6.3% +3.1% -3.2% +2.6% -2.6% +5.1%
$H \to c \bar{c}$	500 120 150 200 500	5.31E-08 3.27E-02 7.93E-03 1.21E-04 5.47E-06	+0.0% +6.0% -5.8% +6.2% -6.0% +6.2% -6.1% +6.2% -6.1%	+0.0% -2.1% +2.2% -0.6% +0.6% -0.2% +0.1% -0.1%	+0.1% +0.1% -0.1% +0.1% -0.1% +0.1% -0.2% +0.1% -0.1%	+0.0% -5.8% +5.6% -6.9% +6.8% -7.2% -7.6% +7.6%	-0.1% +8.5% -8.5% +9.2% -9.2% +9.5% +9.5% +9.8% -9.7%	-3.1% +3.8% -3.7% +0.6% -0.6% +0.5% -0.5% +3.0% -1.1%	-3.1% +12.2% -12.2% +9.7% -9.7% -10.0% +10.0% +12.8% -10.7%
$H \to t \bar{t}$	350 360 400 500	1.56E-02 5.14E-02 1.48E-01 1.92E-01	$\begin{array}{c} +0.0\% \\ +0.0\% \\ -0.0\% \\ -0.0\% \\ +0.0\% \\ +0.0\% \\ -0.0\% \\ +0.0\% \end{array}$	$\begin{array}{c} -0.0\% \\ +0.0\% \\ -0.0\% \\ +0.0\% \\ -0.0\% \\ +0.0\% \\ -0.0\% \\ +0.0\% \end{array}$	-78.6% +120.9% -36.2% +35.6% -6.8% +6.2% -0.3% +0.1%	+0.9% -0.9% +0.7% -0.7% +0.4% -0.3% +0.1% -0.2%	+120.9% -78.6% +35.6% -36.2% +6.2% -6.8% +0.1% -0.3%	+6.9% -12.7% +6.6% -12.2% +5.9% -11.1% +4.5% -9.5%	+127.8% -91.3% +42.2% -18.4% +12.2% -17.8% +4.6% -9.8%

Numbers are the nuisance parameter #.

-0.0%

+0.1%

-0.1%

+2.5%

-2.5%

+0.6%

-0.6%

+0.0%

-0.0%

+0.1%

-0.0%

-0.0%

+2.3%

-1.1%

+2.2%

-2.2%

+0.3%

-0.3%

+0.0%

-0.0%

+2.3%

-1.1%

 $H \rightarrow ZZ$

500

120

150

200

500

+0.0%

-0.0%

+0.0%

-2.0%

+2.1%

-0.5%

+0.5%

-0.0%

+0.0%

-0.0%

+0.0%

+0.0%

+0.1%

-0.0%

-0.0%

+0.0%

+0.0%

+0.0%

+0.0%

-0.0%

+0.0%

+0.0%

-0.0%

-0.0%

+0.0%

+1.4%

-1.4%

+0.3%

-0.3%

+0.0%

-0.0%

-0.0%

+0.0%

-0.0%

-0.0%

+0.0%

-0.2%

+0.2%

-0.1%

+0.1%

-0.0%

+0.0%

+0.0%

-0.0%

5.46E-01

1.59E-02

8.25E-02

2.55E-01

2.61E-01

-0.0%

+2.4%

-1.1%

+4.8%

-4.7%

+0.9%

-0.8%

+0.0%

-0.0%

+2.3%

-1.1%