
Angular momentum and decay distributions 
in high energy physics:  
an introduction and use cases for the LHC 

• Basics of dilepton decay distributions. Examples: quarkonium and vector bosons 

• A general demonstration of an old and surprising “perturbative-QCD” relation, 
using only rotation invariance  

• Model-independent spin characterization of the Higgs-like di-photon resonance 

Pietro Faccioli, CERN, April 23th, 2013 
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Why should we study particle polarizations? 

• test of perturbative QCD [Z and W decay distributions]  

• constrain universal quantities [sinθW and/or proton PDFs from Z/W/ γ* decays] 

• accelerate discovery of new particles or characterize them 
[Higgs, Z’, anomalous Z+γ, graviton, ...] 

• understand the formation of hadrons (non-perturbative QCD) 



Example: formation of ψ and ϒ 3/34 

We want to know the relative contributions of the following processes, 
differing for how/when the observed Q-Qbar bound state acquires its quantum numbers 

• Colour-singlet processes: 
quarkonia produced 
directly as observable 
colour-neutral Q-Qbar pairs 

+ analogous colour 
combinations 

• Colour-octet processes: 
quarkonia are produced 
through coloured Q-Qbar 
pairs of any possible 
quantum numbers 

Transition to the 
observable state. 

Quantum numbers change! 
J can change! → polarization! 

colour-octet state 
J = 0, 1, 2, … 

colour-singlet state 
J = 1 red 

          antired 

anti
blue 

green 

red 

          antired 
J = 1 

perturbative 
⊗ 

non-perturbative 

purely perturbative 



Polarization of vector particles 
J = 1  → three Jz eigenstates  | 1, +1 〉,  | 1, 0 〉,  | 1, -1 〉  wrt a certain z 

Measure polarization = measure (average) angular momentum composition 

Method: study the angular distribution of the particle decay in its rest frame 

The decay into a fermion-antifermion pair is an especially clean case to be studied  

z' 

z 

| 1
, +

1 
〉 

| 1, +1 〉 +     | 1, −1 〉  −      | 1, 0 〉 1 
2 

1 
2 
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√2 

2)  rotational covariance 
of angular momentum 
eigenstates 

NO YES 
f 

1)  “helicity conservation” 

  γ* , Z
 
, 
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The shape of the observable angular distribution is determined by 
a few basic principles: 

= 

3)  parity properties 

? 



1: helicity conservation 
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EW and strong forces preserve the chirality (L/R) of fermions. 
In the relativistic (massless) limit,  chirality = helicity = spin-momentum alignment 
→ the fermion spin never flips in the coupling to gauge bosons: 

  γ* , Z
 
, 

g
 
, ... 

f 

NO 

NO 

YES 

YES 



example: dilepton decay of J/ψ 
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J/ψ angular momentum component along the polarization axis z: 
  MJ/ψ  =  -1,  0,  +1 

ℓ − 

c 

c 

ℓ + 

J/ψ   γ* 

z' 

z 

ℓ+ 

ℓ− 

+1/2 

0 is forbidden 

J/ψ rest frame: 

(–1/2) 

+1/2 
(–1/2) 

| 1, MJ/ψ 〉 

The two leptons can only have total angular momentum component  

  M’ℓ+ℓ−  =  +1  or  -1   along their common direction z’ 

(determined by production mechanism) 



2: rotation of angular momentum eigenstates 
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z' 

z 

| J, M 〉 

θ,φ 

change of quantization frame: 
  R(θ,φ): z  → z’ 
 y  → y’ 
 x  → x’ 

Jz  eigenstates  

Wigner D-matrices 

| J, M’ 〉  =         DMM’(θ,φ)  | J, M 〉 J Σ 
M = - J 

+ J 

z' 

z 
90° 

| 1
, +

1 
〉 

Example: 

Classically, we would expect  | 1, 0 〉 | 1, +1 〉 +       | 1, −1 〉  −       | 1, 0 〉 1 
2 

1 
2 

1 
√2 



example: M = 0 
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J/ψ rest 
frame 

z' 

z 

| 1, 0 〉 

θ 

ℓ+ 

ℓ− 

J/ψ (MJ/ψ = 0) → ℓ+ℓ−(M’ℓ+ℓ− = +1) 

→ the  Jz’ eigenstate | 1, +1 〉  “contains” the  Jz  eigenstate | 1, 0 〉 
     with component amplitude D0,+1(θ,φ)  

| 1, +1 〉  =  D−1,+1(θ,φ)  | 1, −1 〉  +  D0,+1(θ,φ)  | 1, 0 〉  + D+1,+1(θ,φ)  | 1, +1 〉 1 1 1 

1 

1 
2 |〈 1, +1 |O | 1, 0 〉|2 ∝  |D0,+1(θ,φ)|2  =      ( 1 − cos2θ ) 1* 

z 

→ the decay distribution is 

ℓ+ℓ−   ←   J/ψ 



3: parity 
9/34 

z 

| 1, −1 〉 and | 1, +1 〉 
distributions 

are mirror reflections 
of one another 

Are they equally probable? 

z 

∝  1  +  cos2θ  + 2[P(+1)−P (−1)] cos θ dN 
dΩ 

z 

z 

z 
θ 

ℓ+ 

ℓ− 

| 1, −1 〉 

z 

z 
θ 

ℓ+ 

ℓ− 

| 1, +1 〉 

P (−1)  >  P(+1) P (−1)  =  P(+1) P (−1)  <  P(+1) 

∝  |D−1,+1(θ,φ)|2  dN 
dΩ ∝  1  +  cos2θ − 2cos θ 1* ∝  |D+1,+1(θ,φ)|2 dN 

dΩ ∝  1  +  cos2θ + 2cos θ 1* 



3: parity 
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z 

| 1, −1 〉 and | 1, +1 〉 
distributions 

are mirror reflections 
of one another 

Are they equally probable? 

z 

∝  1  +  cos2θ  + 2[P(+1)−P (−1)] cos θ dN 
dΩ 

z 

z 

z 
θ 

ℓ+ 

ℓ− 

| 1, −1 〉 

z 

z 
θ 

ℓ+ 

ℓ− 

| 1, +1 〉 

P (−1)  >  P(+1) P (−1)  =  P(+1) P (−1)  <  P(+1) 

∝  |D−1,+1(θ,φ)|2  dN 
dΩ ∝  1  +  cos2θ − 2cos θ 1* ∝  |D+1,+1(θ,φ)|2 dN 

dΩ ∝  1  +  cos2θ + 2cos θ 1* 

Decay distribution of | 1, 0 〉 state is always parity-symmetric: 

z 

∝  1 −  cos2θ dN 
dΩ ∝  |D0,+1(θ,φ)|2 1* 



“Transverse” and “longitudinal” 
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y 

x 

z 

| J/ψ 〉  =  | 1, 0 〉 

    ∝   1  –  cos2θ dN 
dΩ 

“Transverse” polarization, 
like for real photons. 
The word refers to the 
alignment of the field vector, 
not to the spin alignment! 

“Longitudinal” polarization 

y 

x 

z 

| J/ψ 〉  =  | 1, +1 〉 
or  | 1, −1 〉 

    ∝   1  +  cos2θ dN 
dΩ 

(parity-conserving case) 



Why “photon-like” polarizations are common 
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ϒ(2S+3S) 

Drell-Yan 

pT  [GeV/c] 0 1 2 
- 0 . 5 

1 . 0 

0 . 0 

0 . 5 

1 . 5 

E866, Collins-Soper frame 

dN 
dΩ     ∝  1  + λ cos2θ 

Drell-Yan is a paradigmatic case 
But not the only one 

The “natural” polarization axis in this case is 
the relative direction of the colliding fermions 
(Collins-Soper axis) 

q 

V 
z 

(             ) (             ) (–1/2) 
+1/2 

q 

q q 

q-q rest frame 
= V rest frame 

We can apply helicity conservation at the production vertex to predict that 
all vector states produced in fermion-antifermion annihilations (q-q or e+e–) at Born level 
have transverse polarization 

V = γ*, Z, W 
|V 〉  =  | 1, +1 〉 
           (| 1, −1 〉) 



221 co sin2 coss sin cos2
dN
d

θ θθ ϕ ϕ∝ + + +
Ω θϕϕθλ λλ

The most general distribution 12/34 

θ θ ϕ+ + 22 sic cos n soθ ϕΑΑ

parity violating 

production 
plane 

θ 

φ 

chosen polarization axis 

ℓ + 

particle 
rest frame 

y x 

z z 

average 
polar anisotropy 

average 
azimuthal anisotropy 

correlation 
polar - azimuthal 



Polarization frames 

Helicity axis (HX): quarkonium momentum direction 

production plane 
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Gottfried-Jackson axis (GJ): direction of one or the other beam 
Collins-Soper axis (CS): average of the two beam directions 
Perpendicular helicity axis (PX): perpendicular to CS 



Frame dependence 
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For |pL| << pT , the CS and HX frames differ by a rotation of  90º 

y 

x 

z 

y′ 
x′ 

z′ 

0ψ =

21 cos
dN
d

θ−∝
Ω

221 cos sin cos2
dN
d

θ θ ϕ−+∝
Ω

1 1
1 1

2 2
ψ = + − −

90º 

(pure state) (mixed state) 

longitudinal “transverse” 



All reference frames are equal… 
but some are more equal than others 
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Gedankenscenario: 
• dileptons are fully transversely polarized in the CS frame 
• the decay distribution is measured at the ϒ(1S) mass 

by 6 detectors with different dilepton acceptances: 

CDF |y| < 0.6 

D0 |y| < 1.8 

ATLAS & CMS |y| < 2.5 

ALICE e+e− |y| < 0.9 

ALICE μ+μ− 2.5 < y < 4 

LHCb 2 < y < 4.5 

What do different detectors measure with arbitrary frame choices? 



The lucky frame choice 
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(CS in this case) 

ALICE μ+μ− / LHCb 
ATLAS / CMS 
D0 
ALICE e+e− 
CDF 

dN 
dΩ     ∝  1  +  cos2θ 



Less lucky choice 
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(HX in this case) 

λθ  = +0.65 

λθ  = −0.10 

+1/3 

−1/3 

ALICE μ+μ− / LHCb 
ATLAS / CMS 
D0 
ALICE e+e− 
CDF 

artificial (experiment-dependent!) 
kinematic behaviour 
→ measure in more than one frame! 



Frames for Drell-Yan, Z and W polarizations 18/34 

V 

V V 

q 

q q 

q* q* 

q 
_ 

V 

q 

q* 

V = γ*, Z, W 

• ...but with respect to a subprocess-dependent quantization axis 

z = relative dir. of incoming q and qbar 
      (∼ Collins-Soper frame) 

z = dir. of one incoming quark 
      (∼ Gottfried-Jackson frame) 

z = dir. of outgoing q 
      (= parton-cms-helicity      lab-cms-helicity) 

q 
_ 

q 

g 

g 

0( )SO α

1( )SO α
QCD 

corrections 

Due to helicity conservation at the q-q-V  (q-q*-V) vertex, 
Jz = ± 1  along the q-q (q-q*) scattering direction z 

_ 
_ 

z 

important only up to pT = O(parton kT) 

• polarization is always fully transverse... 

∼ ∼ 



“Optimal” frames for Drell-Yan, Z and W polarizations 
Different subprocesses have different “natural” quantization axes 

19/34 

For s-channel processes the natural axis is 
the direction of the outgoing quark 
(= direction of dilepton momentum) 

→ optimal frame (= maximizing polar anisotropy): HX 

V 

q 

q* 
q 

g 

HX 
CS 
PX 
GJ1 
GJ2 

example: Z 
y = +0.5 

(negative beam) 
(positive beam) 

(neglecting parton-parton-cms 
vs proton-proton-cms difference!) 

−1/3 



“Optimal” frames for Drell-Yan, Z and W polarizations 
Different subprocesses have different “natural” quantization axes 
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For t- and u-channel processes the natural axis is 
the direction of either one or the other incoming parton 
(∼ “Gottfried-Jackson” axes) 

→ optimal frame: geometrical average of GJ1 and GJ2 axes = CS (pT < M) and PX (pT > M) 

V V q q 

q* q* 
q 
_ 

g 

HX 
CS 
PX 
GJ1 = GJ2 MZ 

example: Z 
y = +0.5 

−1/3 



A complementary approach: 
frame-independent polarization 
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3

1
ϑ ϕ

ϕ

λ λ
λ

λ
+

=
−



→ it can be characterized by frame-independent parameters: 

λθ  = +1 
λφ  = 0 

λθ  = –1/3 
λφ  = +1/3 

λθ  = +1/5 
λφ  = +1/5 

λθ  = –1 
λφ  = 0 

λθ  = +1 
λφ  = –1 

λθ  = –1/3 
λφ  = –1/3 1λ = + 1λ = −

z 

rotations in the production plane 

The shape of the distribution is (obviously) frame-invariant (= invariant by rotation) 

3
1
ϑλλ

∗
∗

∗

− Λ
=

+ Λ ( )ϑ ϕ ϑ ϕ ϑϕλ λ λ λ λ∗  
Λ = − ± − + 

 

2
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4
4 ϑ

ϕϑ

λ+

+
=

3
~ 22 AA
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Reduces acceptance dependence 22/34 

Gedankenscenario: vector state produced in this subprocess admixture: 
•  60% processes with natural transverse polarization in the CS frame 
•  40% processes with natural transverse polarization in the HX frame 

CDF |y| < 0.6 
D0 |y| < 1.8 
ATLAS/CMS |y| < 2.5 
ALICE e+e− |y| < 0.9 
ALICE μ+μ− 2.5 < y < 4 
LHCb 2 < y < 4.5 

assumed indep. 
of kinematics, 
for simplicity 

• Immune to “extrinsic” 
kinematic dependencies 

→ less acceptance-dependent 
→ facilitates comparisons 
• useful as closure test 

M = 10 GeV/c2 
CS HX 

polar 

azimuthal 

rotation- 
invariant 



Physical meaning: Drell-Yan, Z and W polarizations 23/34 

V 

V V 

q 

q q 

q* q* 

q 
_ 

V 

q 

q* 

“natural” z = relative dir. of q and qbar 
 → λθ(“CS”) = +1 

z = dir. of one incoming quark 
→ λθ(“GJ”) = +1 

z = dir. of outgoing q 
   → λθ(“HX”) = +1 

q 
_ 

q 

g 

g 

0( )SO α

1( )SO α
(LO) QCD 

corrections 

wrt any axis: λ = +1 ~ 

λ = +1 ~ 

λ = +1 ~ 

λ = +1 ~ 
any frame 

In all these cases the q-q-V lines are in the production plane (planar processes); 
The CS, GJ, pp-HX and qg-HX axes only differ by a rotation in the production plane 

V = γ*, Z, W 

• ...but with respect to a subprocess-dependent quantization axis 

Due to helicity conservation at the q-q-V  (q-q*-V) vertex, 
Jz = ± 1  along the q-q (q-q*) scattering direction z 

_ 
_ 

z 

• polarization is always fully transverse... 

N.B.: λ = +1 in both 
pp-HX and qg-HX frames! 

~ 



λθ  vs  λ ~ 24/34 

λ  is constant, maximal and 
independent of process admixture 
~ 

Example: Z/γ*/W polarization (CS frame) as a function of contribution of LO QCD corrections: 

0 

0 . 5 

1 

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 

W by CDF&D0 λ θCS
  

pT [GeV/c] 

• depends on pT , y and mass 
→ by integrating we lose significance 

• is far from being maximal 
• depends on process admixture 

→ need pQCD and PDFs 

λθ 

“unpolarized”? 
No,  λ = +1 ! ~ 

λ = +1 ~ 

fQCD 

(indep. of y) 

M = 150 GeV/c2  

Case 1: dominating q-qbar QCD corrections 

λ = +1 ~ 

fQCD 

M = 150 GeV/c2  

Case 2: dominating q-g QCD corrections 

λ = +1 ~ 

fQCD 

(indep. of y) 

M = 80 GeV/c2  

λ = +1 ~ 

fQCD 

M = 80 GeV/c2  mass dependent! 



λθ  vs  λ ~ 25/34 

Example: Z/γ*/W polarization (CS frame) as a function of contribution of LO QCD corrections: 

λ = +1 ~ 

fQCD 

(indep. of y) 

M = 150 GeV/c2  

Case 1: dominating q-qbar QCD corrections 

λ = +1 ~ 

fQCD 

M = 150 GeV/c2  

Case 2: dominating q-g QCD corrections 

λ = +1 ~ 

fQCD 

(indep. of y) 

M = 80 GeV/c2  

λ = +1 ~ 

fQCD 

M = 80 GeV/c2  mass dependent! 

Measuring λθ(CS) as a function of rapidity gives information on the gluon content 
of the proton 

~ On the other hand, λ forgets about the direction of the quantization axis. 
This information is crucial if we want to disentangle the qg contribution, 
the only one resulting in a rapidity-dependent λθ  



The Lam-Tung relation 
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A fundamental result of the theory of vector-boson polarizations (Drell-Yan, directly 
produced Z and W) is that, at leading order in perturbative QCD, 

3
4 11

1
ϑ ϕ

ϕ
ϑ ϕλ λ

λ λ
λ

λ
+

= = + ⇒ +
−

=

Today we know that it is only a special case of general frame-independent polarization 
relations, corresponding to a transverse intrinsic polarization: 

Lam-Tung relation, PRD 18, 2447 (1978) 

It is, therefore, simply a consequence of 
1) rotational invariance 
2) properties of the quark-photon/Z/W coupling 

Experimental tests of the LT relation are not tests of QCD! 

ϑ ϕλ λ+ =4 1 independently of the polarization frame 

This identity was considered as a surprising result of cancellations in the calculations 



Beyond the Lam-Tung relation 
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1λ = + → Lam-Tung. New interpretation: only vector boson – quark – quark 
couplings (in planar processes) → automatically verified in DY at QED & 
LO QCD levels and in several higher-order QCD contributions 

1
1

λ
λ

+
> +











1 (0.1)

1 fo 0r Tp

λ = + −

→ + →

 O → vector-boson – quark – quark couplings in 
     non-planar processes (higher-order contributions) 

→ contribution of different/new couplings or processes 
 (e.g.: Z from Higgs, W from top, triple ZZγ coupling, 
  higher-twist effects in DY production, etc…) 

λ can always be defined and is always frame-independent 
Even when the Lam-Tung relation is violated, 



Spin characterization of the Higgs-like di-photon resonance 
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g 

g   γ 

  γ 

Usual approach to “determine” the J of T: 
comparison between J=0 hypothesis and ONE alternative hypothesis. Example: 

T rest frame 
±1 

±1 

OR OR 

T 

z' 

z 

Mgg = 0, ±1, ±2 Mγγ = 0, ±1, ±2 

graviton with minimal-couplings to SM 
bosons (∼ “boson helicity conservation”) 

+ OR OR 

Mgg = 0 Mγγ = 0 

+ 

SM Higgs boson 

θ 

Decay distribution calculated case-by-case 

J=0 J=2 



Spin characterization of the Higgs-like di-photon resonance 
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g 

g   γ 

  γ 

Usual approach to “determine” the J of T: 
comparison between J=0 hypothesis and ONE alternative hypothesis. Example: 

T rest frame 
T 

graviton with minimal-couplings to SM 
bosons (∼ “boson helicity conservation”) 

SM Higgs boson 

J=0 J=2 
Mgg = ±2 
Mγγ = ±2 

±1 

±1 

z' 

z 

θ 



• Method: 
• measure distribution of the likelihood ratio between hypothesis A and hypothesis B 
 

• here A = SM Higgs (JA = 0), B = a new-physics hypothesis (JB) 

Likelihood Ratio Approach 
30/34 

L   [B] / L   [A]  

• Ingredients (for each set of A and B hypotheses): 
• the angular momentum quantum numbers JA and JB 

• the coupling properties of A and B to initial and final particles (gluons and photons) 
• calculations of the helicity amplitudes for the production and decay processes 

L    ∝ decay angular distribution 

• Question addressed: 
• is the observed resonance more likely to be particle A or particle B? 

• The answer 
• may be given unhesitatingly, i.e. L   [A] >> L   [B], even when neither A nor B coincide 

with the correct hypothesis 
• is never conclusive until the whole set of possible models for A and B is explored. 

Do we know this set of models in a totally model-independent way? 
As a matter of fact, a very restricted set of “B” models is currently considered 



• Method: 
• measure the angular distribution 

MPC approach 
31/34 

• Ingredients: 
• angular momentum conservation 
• initial gluons and final photons are transversely polarized 
• no hypothesis on J nor on couplings, no explicit calculations of helicity amplitudes 

dN 
dΩ ∝  1  +  λ2 cos2θ  +  λ4 cos4θ  +  λ6 cos6θ  + … +  λN cosNθ 

[J=1 hypothesis forbidden by Landau-Yang theorem] 
 
 
The general physical parameter domains of the J=2, 
3 and 4 cases are mutually exclusive! 

MPC = Minimal Physical Constraints 



• Method: 
• measure the angular distribution 

MPC approach 
31/34 

• Ingredients: 
• angular momentum conservation 
• initial gluons and final photons are transversely polarized 
• no hypothesis on J nor on couplings, no explicit calculations of helicity amplitudes 

dN 
dΩ ∝  1  +  λ2 cos2θ  +  λ4 cos4θ  +  λ6 cos6θ  + … +  λN cosNθ 

[J=1 hypothesis forbidden by Landau-Yang theorem] 
 
 
The general physical parameter domains of the J=2, 
3 and 4 cases are mutually exclusive! 

And do not include the origin (J=0)! 

MPC = Minimal Physical Constraints 



• Method: 
• measure the angular distribution 

MPC approach 
32/34 

• Ingredients: 
• angular momentum conservation 
• Initial gluons and final photons are transversely polarized 
• no hypothesis on J nor on couplings, no explicit calculations of helicity amplitudes 

dN 
dΩ ∝  1  +  λ2 cos2θ  +  λ4 cos4θ  +  λ6 cos6θ  + … +  λN cosNθ 

J = 0 J = 2 J = 3 J = 4 
The cosθ distribution discriminates the spin univocally: 

MPC = Minimal Physical Constraints 



• Method: 
• measure the angular distribution 

MPC approach 
33/34 

• Ingredients: 
• angular momentum conservation 
• Initial gluons and final photons are transversely polarized 
• no hypothesis on J nor on couplings, no explicit calculations of helicity amplitudes 

dN 
dΩ ∝  1  +  λ2 cos2θ  +  λ4 cos4θ  +  λ6 cos6θ  + … +  λN cosNθ 

• This method directly addresses the question: 
• how much is J? 

• The answer 
• is model-independent and can be compared to any theory 
• is always conclusive, if the measurement is sufficiently precise 

MPC = Minimal Physical Constraints 



LR vs MPC 
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J = 0 
(SM Higgs) 

J = 2 
minimally-
coupling 
graviton 

The binary strategy of the LR approach aims at discriminating between two hypotheses: 



LR vs MPC 
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J = 0 
(SM Higgs) 

J = 2 
minimally-
coupling 
graviton 

The binary strategy of the LR approach aims at discriminating between two hypotheses: 

From this point of view, 
this measurement 
would correspond to a 
J=0 characterization 

99% C.L. 



LR vs MPC 
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J = 0 
(SM Higgs) 

J = 2 
minimally-
coupling 
graviton 

The binary strategy of the LR approach aims at discriminating between two hypotheses: 

From this point of view, 
this measurement 
would correspond to a 
J=0 characterization 

In the MPC approach it 
would exclude all 
models lying outside the 
ellipse, but it would not 
exclude J=2, nor J=3! 

99% C.L. 

J=2 

J=3 



LR vs MPC 
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J = 0 
(SM Higgs) 

J = 2 
minimally-
coupling 
graviton 

The binary strategy of the LR approach aims at discriminating between two hypotheses: 

In the MPC approach 
this measurement 
would represent an 
unequivocal spin-0 
characterization 

99% C.L. 

J=2 

J=3 
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