Fast evaluation of $p[\gamma]p[\gamma] \rightarrow \ell^+\ell^- + X$ cross-section with APPLGRID

R. Sadykov and V. Kolesnikov JINR, Dubna

HERAFitter User's meeting, 23.04.2013

Motivation

Photon-induced $\gamma\gamma\to\ell^-\ell^+$ process is an irreducable background to neutral current Drell-Yan-like process $q\bar{q}\to\gamma/Z\to\ell^-\ell^+$ and should be considered as part of NLO EW contribution to the production of charged lepton pair.

Cross-section

3-differential cross-section of the process $p[\gamma]p[\gamma] \to \ell^+\ell^- + X$ at LO:

$$\begin{split} &\frac{d\sigma_{\gamma\gamma}}{dx\,dy\,dz} = \\ &= \frac{4\pi\alpha^2}{s_0} f_\gamma \left(\frac{M_{min}}{\sqrt{s_0}} e^{\mathbf{x}+\mathbf{y}}, \mu_F^2\right) f_\gamma \left(\frac{M_{min}}{\sqrt{s_0}} e^{\mathbf{x}-\mathbf{y}}, \mu_F^2\right) \left(1 + \tanh^2 z\right), \end{split}$$

where
$$x=\ln \frac{M_{\ell^+\ell^-}}{M_{min}}$$
, $y=Y_{\ell^+\ell^-}$, $z=-\ln \tan \frac{\hat{\theta}}{2}$.

 f_{γ} — photon PDF (photon is considered as parton within proton).

Correction factors at LHC ($\sqrt{s_0} = 14$ TeV)

$M_{\ell^+\ell^-}>$, GeV	$\sigma_{\gamma\gamma}$ (SANC), pb	$\sigma_{\gamma\gamma}$ DH, pb arXiv:0911.2329v2	$\delta_{\gamma\gamma}$, %
50 100 200 500 1000 2000	$1.29(1)$ $0.378(1)$ $6.39(1) \times 10^{-2}$ $3.98(1) \times 10^{-3}$ $3.54(1) \times 10^{-4}$ $1.88(1) \times 10^{-5}$	$1.26(5)$ $0.376(1)$ $6.39(1) \times 10^{-2}$ $3.98(1) \times 10^{-3}$ $3.54(1) \times 10^{-4}$ $1.87(1) \times 10^{-5}$	0.17 1.15 4.30 4.92 5.21 6.19

 $\delta_{\gamma\gamma}=rac{\sigma_{\gamma\gamma}}{\sigma_0}$, where σ_0 — cross-section of single Z production at LO.

Some features of implementation

 SANC generator produces unweighted events which are saved to file. Each event i is assigned a weight

$$w_i = \frac{\sigma_{tot}}{N} \cdot \frac{1}{f_{\gamma}(x_{1_i}, Q_i^2) f_{\gamma}(x_{2_i}, Q_i^2)},$$

where $\sigma_{tot}=\int d\sigma$, N - total number of events. We use MRST2004qed pdf set to evaluate photon pdf.

- These events are used to fill grids for different observables with help of APPLGRID interface.
- These grids can be used for fast convolution with arbitrary photon PDF to get the cross-section (for the moment we use MRST2004qed pdfs for convolution)
- The standard APPLGRID package was modified so one can handle one extra pdf (photon) in addition to 13 standard pdfs (gluon and quarks).

Test grid

The interface was tested with the following grid parameters

$$nXbins = 50$$

 $xLow = 10^{-8}, \quad xUp = 1$
 $xorder = 6$
 $nQ2bins = 1$
 $q2Low = 8315.17, \quad q2Up = 8315.19$

We get an agreement with the result of SANC Monte Carlo when using MRST2004 ${
m qed}$ pdfs.

Summary

- The stand-alone APPLGRID interface to SANC Monte Carlo generator for gamma-induced process was created. It has been tested with MRST2004qed pdfs.
- Next step: to implement it into HERAFitter package.