The Dark Universe: Dark Matter and Dark Energy

Rocky I: The Universe Observed N

Rocky !! Inflation

Rocky III. Dark Matter

Rocky IV: Dark Energy

Monday

Tuesday

Wednesday

Thursday

CERN Academic Training Lectures January 2008

Rocky Kolb The University of Chicago

The growth of cosmic seeds

Primordial Perturbations

correlations on scales ≫ 380,000 light years

CBR: a snapshot of the universe 380,000 AB

More than 380,000 light years in less than 380,000 years?

- $v \le c$ for velocity <u>through</u> space
- no limit on expansion velocity <u>of</u> space
- "acausal" requires "accelerated" expansion

An Early Particle Cosmologist

In mid-1930s, influenced by Eddington & Lemaître,

Schrödinger turned to cosmological issues

1938-1939: Graz → Vatican → Gent, Belgium → Dublin

Proper Vibrations of the Expanding Universe

Erwin Schrödinger Physica 6, 899 (1939)

Introduction:

- "... proper vibrations [positive and negative frequency modes] cannot be rigorously separated in the expanding universe.
- ... this is a phenomenon of outstanding importance [density perturbations from inflation, WIMPZILLAS]. With particles it would mean production or annihilation of matter, merely by expansion,... Alarmed by these prospects, I have examined the matter in more detail."

Conclusion:

"... There will be a mutual adulteration of positive and negative frequency terms in the course of time, giving rise to ... the 'alarming phenomenon'..."

Proper Vibrations of the Expanding Universe

Erwin Schrödinger Physica 6, 899 (1939)

Alarming?

Virtual Particles in the

Quantum Vacuum

Disturbing the Vacuum

Particle creation in an external electric field

Particle creation if energy gained in acceleration over a Compton wavelength exceeds the particle's rest-mass

Disturbing the Vacuum

Strong gravitational field — particle production

Disturbing the Vacuum

Particle creation in the expanding universe

Particle creation if energy gained in expansion over a Compton wavelength exceeds the particle's rest-mass

Discovery: Schrödinger (1939) The Proper vibrations of the expanding universe "the alarming phenomenon"

It's a bug!

First application: density perturbations, gravitational waves from inflation

1983—present: It's a feature!

A pattern of vacuum quantum fluctuations

 $\hbar \to 0$

Cosmic Symphony (Harmonice Mundi)

phase	tempo	duration	relic
string dominated $H \simeq ???$	pizzicato	10 ⁻⁴³ sec.??	????
vacuum dominated (inflation) $H \simeq a^0$	presto	10 ⁻³⁵ sec.?	seeds of structure gravitational waves CMB fluctuations

Cosmic Symphony (Harmonice Mundi)

phase	tempo	duration	relic
string dominated $H \simeq ???$	pizzicato	10 ⁻⁴³ sec.??	????
vacuum dominated (inflation) $H \simeq a^0$	presto	10 ⁻³⁵ sec.?	seeds of structure gravitational waves CMB fluctuations
radiation dominated $H \simeq a^{-2}$	allegro	earlier than 10,000 years	abundance of the light elements
matter dominated $H \simeq a^{-3/2}$	andante	later than 10,000 years	distant galaxies high- z universe
vacuum dominated (inflation) $H \simeq a^0$	largo	day before yesterday	acceleration of the universe

Inflation, as a whole, can be divided into three parts

1. Beginning

eternal inflation, wave function of the universe, did the universe have a beginning ????

2. Middle

density perturbations, gravitational waves, (particle production in the expanding universe)

3. End

defrosting, heating, preheating, reheating, baryogenesis, phase transitions, dark matter, (particle production in the expanding universe)

Complete list of known fundamental scalar fields (from Particle Data Book):

Potential energy: energy of ∞-wavelength mode

Particle content: condensate of ∞-wavelength particles

Particle creation: finite-wavelength modes $\longrightarrow \phi$ not smooth

 $\delta \phi \longrightarrow \delta \sigma \longrightarrow \delta T$

Who is the inflaton?

Quantum Generation of Perturbations:

• Perturbations are a model-dependent function of H and how H changes during inflation: $V(\phi) \leftrightarrow H(\phi)$.

	density perturbations	gravitational waves
amplitude @ $k = k_*$	$P_{\mathfrak{R}}(k_*)$	$P_{\mathfrak{J}}(k_*)$
spectral index	$n \equiv \frac{d \ln P_{\Re}(k_*)}{d \ln k}$	$n_T \equiv \frac{d \ln P_{\Im}(k_*)}{d \ln k}$
running of index	$\frac{dn}{d \ln k}$	$\frac{dn_T}{d\ln k}$

Inflation Generalities

- The inflaton scalar potential must be "flat"
- Scalar perturbations depend on $V(\phi)$ and $V'(\phi)$
- Tensor perturbations (gravitational waves) depend only on $V(\phi)$
- Many, many models of inflation

Models of Inflation

old, new, pre-owned, chaotic, quixotic, ergodic, ekpyrotic, autoerotic, faith-based, free-based, D-term, F-term, summer-term, brane, braneless, brainless, supersymmetric, supercilious, natural, supernatural, au natural, hybrid, low-bred, white-bread, one-field, two-field, left-field, eternal, internal, infernal, self-reproducing, self-promoting, dilaton, dilettante,

Model Classification*

Type I: single-field, slow-roll models (or models that can be expressed as such)

Type II: anything else (branes, pre-big-bang, etc.)

^{*}Used for superstrings, supernovae, superconductors, ...

The nature of inflation is a complex natural phenomenon.

Single-field, slow-roll inflation is a simple, elegant, compelling explanation.

"For every complex natural phenomenon there is a simple, elegant, compelling, but wrong explanation."

- Tommy Gold

Model Classification*

Type I: single-field, slow-roll models (or models that can be expressed as such)

Type Ia: large-field models

Type Ib: small-field models

Type Ic: hybrid models

Type II: anything else (branes, pre-big-bang, etc.)

^{*}Used for superstrings, supernovae, superconductors, ...

Dodelson, Kinney, Kolb 1997

$$r = (\text{tensor/scalar})_{l=2}$$

n = scalar spectral index

$$n \equiv 1$$
?

$$n' \equiv 0$$
?

$$r \equiv 0$$
?

Fixed point of ignorance

- Observational question: Combine CMB & LSS?
- Theoretical question: What if exact Harrison-Zel'dovich

- 1. Harrison—Zel'dovich ruled out at about 95%C.L.
- 2. Find $r \lesssim 1 \rightarrow V \lesssim 10^{15} \text{ GeV}$
- 3. Prefer red spectrum if no running, blue spectrum if running
- 4. Information of ϕ^2 and ϕ^4 models
- 5. Find *r* can be quite small

- 1. Harrison—Zel'dovich ruled out at about 95%C.L.
- 2. Find $r \lesssim 1 \rightarrow V \lesssim 10^{15} \text{ GeV}$
- 3. Prefer red spectrum if no running, blue spectrum if running
- 4. Information of ϕ^2 and ϕ^4 models
- 5. Find *r* can be quite small

- 1. Harrison—Zel'dovich ruled out at about 95%C.L.
- 2. Find $r \lesssim 1 \rightarrow V \lesssim 10^{15} \text{ GeV}$
- 3. Prefer red spectrum if no running, blue spectrum if running

4. Information of ϕ^2 and ϕ^4 models

5. Find *r* can be quite small

- 1. Harrison—Zel'dovich ruled out at about 95%C.L.
- 2. Find $r \lesssim 1 \rightarrow V \lesssim 10^{15} \text{ GeV}$
- 3. Prefer red spectrum if no running, blue spectrum if running
- 4. Information of ϕ^2 and ϕ^4 models
- 5. Find *r* can be quite small

Polarization Pattern

Stebbins, Kosowsky, Kamionkowski

Seljak & Zaldarriaga

E modes

B modes (gravitational waves)

$LIGO/VIRGO \rightarrow LISA \rightarrow BBO$

Inflation and SUSY

- The inflaton scalar potential must be flat—stable to radiative corrections
- SUSY to the rescue?
- Not so fast ... (see Lyth & Riotto, Phys. Rep. 1999)
- Many models give $V(\phi) \sim A + \ln \phi$ "hybrid" models
- But no general prediction for
 - scalar spectral index n, but expect n-1 small, say $O(\varepsilon \sim 0.05)$
 - running of n [say $n' \sim (n-1)^2$]
 - amplitude of gravitational wave background [say $r \sim (n-1)^2$]
- Need observational guidance

Inflation and Strings/Branes

- Inflation and strings were made for each other (Burgess)
- Most stringy/braney models can be expressed in terms of an effective field theory—phenomenological approach useful
- Heavy states seem to decouple $(H_I \ll M_{\rm STRING})$
- Some models lead to relic (super)strings, some (DBI) to non-Gaussian signals.
- Naturaless
- No general distinctive signature

Comparison to observation:

- 1. a (<u>nearly</u> exact) <u>power-law</u>
- 2. spectrum of gaussian
- 3. <u>super-Hubble-radius</u>
 - 4. scalar perturbations (seeds of structure) &
- 5. <u>tensor</u> perturbations (gravitational waves)
 - 6. related by a *consistency relation*
 - 7. in their growing mode
 - 8. in a <u>spatially flat</u> universe.

Some Simple Questions:

- 1. Was inflation "normal" (i.e., 3-D FRW)?
- 2. Can dynamics of inflation be described in terms of a single scalar field?
- 3. What was the expansion rate during inflation?
- 4. What was the general shape of the inflaton potential?
- 5. What was the more or less exact shape of the inflaton potential?
- 6. Did the perturbations arise from fluctuations in the inflaton?
- 7. Can inflation tell us anything about physics at very high energy scales (unification, string, Planck)?
- 8. Any indication of isocurvature fluctuations?
- 9. Any indications of non-Gaussian perturbations?

<u>Issues</u>

- 1. Transplanckian physics
 - probe of short-distance physics?
- 2. Defrosting
 - preheating, reheating,
- 3. Particle production
 - WIMPZILLAS, gravitons,
- 4. Why only one field?
 - isocurvature perturbations
- 5. Extra dimensions, brane, bulk, etc.?
 - new dynamics

Suggested reading:

Lectures on Cosmic Inflation and its Potential Stringy Realizations.

C.P. Burgess

Class.Quant.Grav.24:S795, 2007. arXiv:0708.2865 [hep-th]

Particle physics models of inflation and the cosmological density perturbation.

David H. Lyth, Antonio Riotto Phys.Rept.314:1-146,1999. hep-ph/9807278

Cosmological Inflation and Large-Scale Structure, Liddle & Lyth

The Dark Universe: Dark Matter and Dark Energy

Rocky I: The Universe Observed N

Rocky !! Inflation

Rocky III. Dark Matter

Rocky IV: Dark Energy

Monday

Tuesday

Wednesday

Thursday

CERN Academic Training Lectures January 2008

Rocky Kolb The University of Chicago