Measurements of Gauge Bosons Self-Interactions at CMS

Vuko Brigljević Ruđer Bošković Institute, Zagreb (Croatia)

On behalf of the CMS Collaboration

LHC Seminar, CERN, 30 April 2013

Gauge Symmetries & Interactions

Invariance under local gauge transformation of matter fields

$$\psi(x) \to \psi'(x) = e^{-i\alpha(x)}\psi(x)$$

Gauge field interacting with matter fields

Invariance under non-abelian

local gauge transformation, e.g. SU(n):

$$\psi(x)_i \to \psi'(x)_i = (e^{-i\theta^a(x)\tau^a})_{ij}\psi(x)_j$$

e.g.: QCD SU(3) → gluon self interactions:

Interaction between gauge fields themselves

Gauge Self-Couplings in the EWK sector

▶ SU(2)xU(1) symmetry leads to several gauge bosons selfinteractions in the electroweak sector of the SM, following from the Gauge coupling interaction term in the EWK lagrangian:

$$\mathcal{L}_{GC} = \frac{1}{2} g_2 (\partial_\mu W^i_\nu - \partial_\nu W^i_\mu) \varepsilon_{ijk} W^{j\mu} W^{k\nu} - \frac{1}{4} g_2^2 \varepsilon_{ijk} \varepsilon_{imn} W^j_\mu W^k_\nu W^{m\mu} W^{n\nu}$$

Triple Gauge Couplings (observed)

NO NEUTRAL GAUGE COUPLINGS IN THE SM!

Gauge Self-Couplings @ LHC: Dibosons

- Diboson production sensitive to TGC in s-channel
- Neutral TGCs not allowed in SM
 - Wγ,WW and WZ production get contribution from TGCs
 - O Zγ and ZZ: no TGC contribution in the SM
- Diboson processes allow to probe one of the least well measured sectors of the SM
 - O Also background for many searches

THE science news of the year 2012: a diboson resonance!

Gauge Self-Couplings @ LHC: VBF Production

- Single or multiple boson production in VBF directly sensitive to TGCs and QGCs
- Potentially the first way to see QGCs
 - O QGCs not observed yet
- Very relevant for studying boson-boson scattering
 - O Of key importance in the future study of the newly found boson

Measurements of diboson production with CMS

Cross section measurements

Cut & Count in most cases

Dominant contributions always data-driven

- Determined from MC wrt to target measurement phase space (inclusive or reduced)
- Correction factor applied to account for data/MC efficiency differences

CMS Diboson Measurements

	Int. lum	inosity	Cross section measurement phase space		
	@ 7TeV	@ 8TeV			
$ZZ\rightarrow2 2 '$ (I = e/μ ;I' = $e/\mu/\tau$)	5.0 fb ⁻¹	5.3 fb ⁻¹	60 <m(z<sub>1,2)<120 GeV pp→ZZ+</m(z<sub>		
Wγ→Iνγ	5.0 fb ⁻¹	-	$E_{T}^{\gamma} > 15/60/90 \text{ GeV } \& \Delta R(I, \gamma) > 0.7$	pp→Wγ→lvγ+X	
Ζγ→ΙΙγ	5.0 fb ⁻¹	-	E _τ ^γ >15/60/90GeV & ΔR(I,γ)>0.7 & M ^{II} >50GeV	pp→Zγ→llγ+X	
Ζγ→ννγ	5.0 fb ⁻¹	-	Ε _τ ^γ >145 GeV & η ^γ <1.4	pp→Ζγ→ννγ+Χ	
W⁺W ⁻ →IvIv	4.9 fb ⁻¹	3.5 fb ⁻¹	full pp→W⁺\		
W⁺W⁻+WZ→lvjj	5.0 fb ⁻¹	-	full	pp→WW+WZ+X	
WZ→IvII	1.0 fb ⁻¹	-	full	pp→WZ+X	
			full	(*)n a sta (*)	
Exclusive γγ→W⁺W⁻	5.0 fb ⁻¹	-	P _T (μ,e)>20GeV & η(μ,e) <2.4 & P _T (μe)>100GeV	pp→p ^(*) W⁺W⁻p ^(*) →p ^(*) eμp ^(*)	

Also presenting: EWK Z+2jets measurement

$WY \rightarrow IVY \& ZY \rightarrow IIY (I=e,\mu)$

Measured cross sections:

$$\sigma$$
 (pp \rightarrow WY +X \rightarrow IVY + X)
 σ (pp \rightarrow ZY+X \rightarrow IIY + X)
in reduced phase space:
 $E_{T}^{Y} > 15/40/60$ GeV;
 $\Delta R(I,Y) > 0.7)$
M(II)>50 GeV for ZY

WY→IVY: lepton+photon+**MET**

- ▶ Isolated lepton with P_t>35 GeV
- ▶ Isolated Photon with E_T>15 GeV
- ▶ Large transverse mass M_T^W>70 GeV
- ▶ Veto events with 2nd lepton

Zγ→IIγ: 2 leptons+photon

- ▶ 2 Isolated leptons with P_t>20 GeV
- ▶ Isolated Photon with E_T>15 GeV
- Dilepton mass > 50 GeV

Vy: backgrounds

VY Backgrounds

- V+jets (fake photons), DOMINANT¹
- **DY**, Multibosons
- \blacktriangleright Z γ (for W γ), γ +jets, ...

Data-driven estimate

MC estimate

Fake photon contribution estimated from template fit to η shower width

CMS-PAS-EWK-11-009

Uncertainty on template yield dominant

source of systematic

CMS	Preliminary,	$L = 5 \text{ fb}^{-1} \qquad \sqrt{s}$	s = 7 TeV
2007			-
O 1000		ECAL barrel	+
Number of events / 0.00075	, 1	$5 \text{ GeV} < E_{\text{T}}^{\gamma} < 20 \text{ GeV}$	ieV
<u>ב</u>	<u> </u>	→ Data	
Š	- 1	Fitted	
Ó	- -	Background	1
500			-
<u></u>	∳ ♦		-
Q	N		
E	/ \\		
3	***		1
_	a	· Comment	=
0 +		0.00	
	0.01	0.02	0.03
			$\sigma_{_{\mathbf{i}\eta\mathbf{i}\eta}}$

	Source of Systematic					
Photon	Mean	Syst. from	Syst. from	Syst. from sampling	Syst. from ₽ _T	
E_{T} , GeV	yield	signal shape	background shape	of the distribution	correlation	
		Barre	l + Endcap: $ev\gamma$ / $\mu v\gamma$	γ		
15-20	1452.3 / 2762.9	9.3 / 20.5	83.2 / 59.4	19.2 / 35.6	129.1 / 251.7	
20-25	648.4 / 1108.3	5.2 / 19.5	37.0 / 33.8	11.2 / 18.8	54.4 / 94.2	
25-30	365.3 / 521.6	3.7 / 9.4	21.0 / 20.7	9.4 / 14.2	32.7 / 43.0	
30-35	214.9 / 326.3	10.5 / 3.3	12.3 / 16.9	7.5 / 11.1	19.0 / 29.3	
35-40	156.6 / 194.8	3.4 / 2.8	10.1 / 11.4	6.2 / 7.9	13.7 / 16.1	
40-60	221.4 / 272.3	3.5 / 0.7	18.8 / 23.4	5.1 / 6.3	19.2 / 24.0	
60-90	77.2 / 100.5	1.4 / 0.9	10.2 / 13.3	3.0 / 3.8	6.6 / 8.5	
90-120	25.7 / 21.4	2.0 / 2.3	5.3 / 4.1	0.9 / 0.9	2.4 / 1.8	
120-500	14.8 / 38.1	4.3 / 2.1	7.6 / 25.9	1.1 / 0.7	1.0 / 3.9	
Total	3176.5 / 5345.9	16.9 / 30.3	97.6 / 83.3	26.7 / 45.4	277.8 / 472.1	
10tal 3176.5 / 3345.9		296.2 / 482.5				
				· ·		

Wy results

	σ(Wγ→Iνγ, ΔR(I,γ)>0.7) [pb]	NLO (MCFM) [pb]
E _T ^Y > 15 GeV	37.0±0.8(stat)±4.0(syst)±0.8(lumi)	31.81±1.80(syst)
E _T ^γ >60 GeV	0.76±0.05(stat)±0.08(syst)±0.02(lumi	0.58±0.08(syst)
Ε _T > 90 GeV	0.200±0.025(stat)±0.038(syst)±0.004(lumi)	0.173±0.026(syst)

- Systematics limited
 - O largest contribution from fake photons from jets
- MC signal modeled with MadGraph v5 scaled to NLO prediction from MCFM

CMS-PAS-EWK-11-009

Wy results

- slight excess in data compared to MCFM prediction (>1 sigma)
 - O Similar excess seen by ATLAS

Wy Radiation Amplitude Zero

- Interference of 3 amplitudes leads to vanishing amplitude at some defined angle in the qq'→Wγ CoM system
- At the LHC expect dip at 0 in $Q_{lepton}^* \Delta \eta(I, \gamma)$ distribution
- aTGCs would reduce the effect, as well as NLO contributions
- ► CMS data:
 - O Dip clearly visible
 - O In agreement with SM

Additional selection: Jet Veto: no jet with $E_T>30$ GeV, $|\eta|<3$

CMS-PAS-EWK-11-009

Zy→IIy Results

	σ(Ζγ→ΙΙγ, ΔR(Ι,γ)>0.7) [pb]	NLO (MCFM) [pb]
E _T ^Y > 15 GeV	5.33 ± 0.08(stat) ± 0.25(syst) ± 0.12(lumi)	5.4 ± 0.2(syst)
Ε _T >60 GeV	$0.140 \pm 0.011(stat) \pm 0.013(syst) \pm 0.003(lumi)$	0.124 ± 0.009 (syst)
Ε _T >90 GeV	$0.046 \pm 0.007(stat) \pm 0.009(syst) \pm 0.001(lumi)$	0.040 ± 0.004 (syst)

- Systematics limited
- MC signal modeled with MadGraph v5 scaled to MCFM NLO prediction

CMS-PAS-EWK-11-009

Zy→IIy Results

Good agreement with MCFM NLO prediction

$Z\gamma \rightarrow vv\gamma$

Measured cross sections:

$$\sigma$$
 (pp \rightarrow Z γ +X \rightarrow $\nu\nu\gamma$ + X)

in reduced phase space:

 $E_{T}^{\gamma} > 145 \text{ GeV}, |\eta^{\gamma}| < 1.4$

Large gain in BR wrt charged lepton channel!

Signature: isolated photon + large MET

- ▶ Isolated photon with E_T>140 GeV
 - O Photon timing consistent with beam
- ▶ MET>130 GeV
- let veto
- Cosmic muon veto

Forbidden in SM

large backgrounds: Instrumental: jets, γ+jets, W→eν No collision: beam halo, cosmic muons

Zy→ννγ Results

Source	Estimate
Misidentified jets	11.2 ± 2.8
Beam-gas processes	11.1 ± 5.6
Misidentified electrons	3.5 ± 1.5
$\mathrm{W}\gamma$	3.3 ± 1.0
$\gamma\gamma$	0.6 ± 0.3
$\gamma+{ m jet}$	0.5 ± 0.2
Total	30.2 ± 6.5
$Z\gamma \to \nu\nu\gamma \text{ (NLO)}$	45.3 ± 6.9
data	73

- Statistical uncertainty still significant
- Dominant systematics:
 - O beam halo uncertainty
 - O Track and Jet Veto
- Measurement in agreement with NLO prediction

$$\sigma \text{ (pp} \to Z\gamma + X \to vv\gamma + X, \\ E_{T}^{\gamma} > 145 \text{ GeV, } |\eta^{\gamma}| < 1.4) @ \text{ TeV:} \\ 21.3 \pm 4.2 \text{ (stat.)} \pm 4.3 \text{ (syst.)} \pm 0.5 \text{ (lumi.) fb} \\ \text{NLO prediction (Baur): } 21.9 \pm 1.1 \text{ fb} \\$$

CMS-PAS-SMP-12-020

$VVV \rightarrow |V|V$

Signature:
2 isolated OS leptons
+

large MET

Cross section measured at 7 & 8 TeV

- 2 isolated opposite charge leptons with Pt>20 GeV
- Projected MET" > (37 (20) + Nvtx/2) GeV for ee/μμ (eμ)
- Veto events in Z mass window for same flavour final state
- Veto events with high ET jets (ET(jet)>30 GeV)
- Veto events with top-tagged jets
- Veto events with third lepton

large backgrounds:

- ttbar, tW
- W+jets
- multijet
- Wγ*
- DY
- Dibosons

estimated from data

from MC

WW→IVIV Results @ 7 TeV

Sample	Yield \pm stat. \pm syst.
$/$ /gg \rightarrow W ⁺ W ⁻	$46.0 \pm 0.6 \pm 14.2$
$q\bar{q} \to W^+W^-$	$750.9 \pm 4.1 \pm 53.1$
tt +tW	$128.5 \pm 12.8 \pm 19.6$
W+jets	$59.5 \pm 3.9 \pm 21.4$
WZ+ZZ	$29.4 \pm 0.4 \pm 2.0$
Z/γ^*	$11.0 \pm 5.1 \pm 2.6$
$W+\gamma$	$18.8 \pm 2.8 \pm 4.7$
$\mathrm{Z}/\gamma^* ightarrow au au$	$0.0 \pm 1.0 \pm 0.1$
Total Background	$247.1 \pm 14.6 \pm 29.5$

 $1044.0 \pm 15.2 \pm 62.4$ 1134

Largest systematics:

Signal + Background

Data

- O Jet Veto efficiency
- O Background estimation (top background, fake rates)
- Measured cross section above SM expectation

CMS-PAS-SMP-12-005

$$\sigma$$
 (pp \rightarrow W⁺W⁻ + X) @ 7 TeV:

 $52.4 \pm 2.0 \text{ (stat.)} \pm 4.5 \text{ (syst.)} \pm 1.2 \text{ (lumi.)} \text{ pb}$

SM NLO prediction (MCFM): 47.0±2.0 fb

WW→IVIV Results @ 8 TeV

$2\ell'2\nu$
684 ± 50
132 ± 23
60 ± 22
27 ± 3
43 ± 12
14 ± 5
275 ± 35
959 ± 60
1111

$$\sigma$$
 (pp \rightarrow W+W- + X) @ 8 TeV:

 $69.9 \pm 2.8 \text{ (stat.)} \pm 5.6 \text{ (syst.)} \pm 3.1 \text{ (lumi.) pb}$

SM NLO prediction (MCFM): 57.3^{+2.4}-1.6 fb

Measured cross section again above SM expectation

WV→Ivjj

Signature: isolated lepton

+ MET

+ 2 jets

Backgrounds: W+jets, dibosons, tt, t, DY+jets, multijets

- Jet resolution does not allow to separate W and Z: get admixture of the two
- 6*larger BR than in leptonic channel: gives access to higher boson P_t
- → S/B worse than in leptonic channel:
 - O tighter cuts
 - O Main challenge: background modeling for signal extraction and control of systematics

<u>Selection</u>

- Only one isolated high Pt lepton: P_t^{μ} (e)>25 (30) GeV
- Exactly 2 high Pt jets (PT>35 GeV)
- MET>25 (30) GeV for $\mu(e)$
- \blacktriangleright MTW>30(50) GeV for $\mu(e)$
- Veto events containing b-tagged jet
- Additional cuts on dijet system: $\Delta \eta_{jj}$, $P_T(jj)$

WV→Ivjj Results

Signal and background yields obtained from UML fit to M_{ii} distribution

Process	Muon channel	Electron channel
Diboson (WW+WZ)	1899 ± 373	783 ± 306
W+jets	67384 ± 586	31644 ± 850
tŧ	1662 ± 117	946 ± 67
Single top	650 ± 33	308 ± 17
Drell–Yan+jets	3609 ± 155	1408 ± 64
Multijet (QCD)	296 ± 317	4195 ± 867
Fit χ^2/dof (probability)	9.73/12 (0.64)	5.30/12 (0.95)
Total from fit	75420	39371
Data	75419	39365
Acceptance \times efficiency ($A\varepsilon$)	5.153×10^{-3}	2.633×10^{-3}
Expected WW+WZ yield from simulation	1697 ± 57	867 ± 29

$$\sigma$$
 (pp \rightarrow W⁺W⁻ +WZ) @ 7 TeV:

68.9±8.7(stat.)±9.7(syst.)±1.5(lumi.) pb

SM NLO prediction (MCFM): 65.6±2.2 pb

Significance of observation: 4.3 σ

EPJC 73 (2013) 2283

$ZZ \rightarrow 2I2I'$ (I=e, μ ; I'=e, μ , τ)

Measured cross section:

 σ (pp $\to ZZ + X$; 60 GeV < M_{Z1}, M_{Z2} < 120 GeV)

- → Very low backgrounds
- Selection tuned to maximize efficiency, especially at low lepton P_t

<u>Selection</u>

- 4 isolated leptons: P_t|> 20/10/7/5 GeV
- 2 same flavour opposite charge lepton pairs
- 60 GeV < M_{Z1,2} < 120 GeV</p>

Signature: 4 isolated leptons

Backgrounds: Zbb, tt, Z+jets, WZ+jets

(estimated from data)

23

to H→ZZ analysis

ZZ→4l Results @ 7 TeV

- Cross section obtained from simultaneous fit to event yields in all studied decay channels
- Result still statistics limited
- ▶ In agreement with SM prediction

Final state channels	4e	4μ	$2e2\mu$	4ℓ
Irreducible background (pp $\to Z\gamma^* \to 4\ell$)	0.07	0.25	0.14	0.46 ± 0.05
Other (reducible) backgrounds	0.01	0.01	0.05	0.07 ± 0.1
Expected signal (pp \rightarrow Z \rightarrow 4 ℓ)	3.8	13.6	12.0	29.4 ± 2.6
Total expected (simulation)	3.9	13.9	12.2	30.0 ± 2.6
Observed events	2	14	12	28
Yield from fit to the observed mass distribution		13.6 ± 3.8	11.5 ± 3.1	27.3 ± 5.4

CMS-PAS-SMP-12-007

$$\sigma$$
 (pp \rightarrow ZZ + X;

60 GeV $< M_{Z1,Z2} < 120$ GeV) @ 7 TeV:

 $6.24^{+0.86}$ _{-0.8}(stat.)^{+0.41}_{-0.32}(syst.)±0.14(lumi.) pb

SM NLO prediction (MCFM): 6.3±0.4 pb

ZZ→4l Results @ 8 TeV

- Same strategy as for 7 TeV
- Measurement agrees with SM

Channel	4e	4μ	2e2 μ	$2\ell 2\tau$
ZZ Background	$11.6 \pm 1.4 \\ 0.4 \pm 0.2$	20.3 ± 2.2 0.4 ± 0.3	32.4 ± 3.5 0.5 ± 0.4	6.5 ± 0.8 5.6 ± 1.4
${\sf Signal+background}$	12.0 ± 1.4	20.7 ± 2.2	32.9 ± 3.5	12.1 ± 1.6
Data	14	19	38	13

CMS-PAS-SMP-12-024

$$\sigma$$
 (pp \rightarrow ZZ + X;

60 GeV $< M_{Z1,Z2} < 120$ GeV) @ 8 TeV:

 $8.4\pm1.0(stat.)\pm0.7(syst.)\pm0.4(lumi.)$ pb

SM NLO prediction (MCFM): 7.7±0.4 pb

CMS EWK Cross Sections Summary

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP

- SM seems overall to be in excellent shape at the TeV scale, good or bad news?
- Some tensions in WW and Wγ: fluctuations or smoking gun?

Searches for anomalous couplings

Anomalous couplings

Is New Physics hiding in this vertex?

- Parameterization of most general new VVV interactions → anomal ous triple gauge couplings
- Reduce number of aTGCs by requiring some symmetries

$$\begin{split} L_{WWV}/g_{WWV} &= i g_1^V (W_{\mu\nu}^\dagger W^\mu V^\nu - W_\mu^\dagger V_\nu W^{\mu\nu}) + i \kappa_V W_\mu^\dagger W_\nu V^{\mu\nu} \\ &+ i \frac{\lambda_V}{m_W^2} W_{\lambda\mu}^\dagger W_\nu^\mu V^{\nu\lambda} - g_4^V W_\mu^\dagger W_\nu (\partial^\mu V^\nu + \partial^\nu V^\mu) \\ &+ g_5^V \epsilon^{\mu\nu\lambda\rho} (W_\mu^\dagger \partial_\lambda W_\nu - \partial_\lambda W_\mu^\dagger W_\nu) V_\rho \\ &+ i \widetilde{\kappa}_V W_\mu^\dagger W_\nu \widetilde{V}^{\mu\nu} + i \frac{\widetilde{\lambda}_V}{m_W^2} W_{\lambda\mu}^\dagger W_\nu^\mu \widetilde{V}^{\nu\lambda} \end{split}$$

aTGC parameterizations

Charged couplings: WWV (V=Z,y)

$$L/g_{WWV} = ig_1^V (W_{\mu\nu}^* W^{\mu} V^{\nu} - W_{\mu\nu} W^{*\mu} V^{\nu}) + i\kappa^V W_{\mu}^* W_{\nu} V^{\mu\nu} + \frac{\lambda^V}{M_W^2} W_{\rho\mu}^* W_{\nu}^{\mu} V^{\nu\rho}$$

- 5 parameters: $\Delta g_1^Z (=g_1^Z I), \Delta \kappa_Z (=\kappa_Z I), \Delta \kappa_Y (=\kappa_Y I, \lambda_Z, \lambda_Y)$

Additional constraints may be imposed: used in CMS measurements

LEP scenario	$\Delta \kappa_Z = \Delta g_1^Z - \Delta \kappa_\gamma \cdot tan^2 \theta_w \text{ and } \lambda_Z = \lambda_\gamma = \lambda$	3 free parameters
HISZ scenario	$\Delta \kappa_z = \Delta g_{1^z} (\cos^2 \theta_w - \sin^2 \theta_w),$ $\Delta \kappa_y = 2\Delta g_{1^z} \cos^2 \theta_w \text{ and } \lambda_z = \lambda_y$	2 free parameters
Equal coupling scenario	$\Delta g_1^Z = \Delta g_1^{\gamma} = 0$ $\Delta \kappa_Z = \Delta \kappa_{\gamma} \text{ and } \lambda_Z = \lambda_{\gamma} = \lambda$	2 free parameters

Neutral couplings: ZZV (V= Z,γ)

$$L = -\frac{e}{M_Z^2} [f_4^V(\partial_\mu V^{\mu\beta}) Z_\alpha(\partial^\alpha Z_\beta) + f_5^V(\partial^\sigma V_{\sigma\mu}) \tilde{Z}^{\mu\beta} Z_\beta]$$

4 parameters: f_4^Z , f_4^Y , f_5^Z , f_5^Y

aTGCs & Diboson production

- Diboson production sensitive to TGC in s-channel
 - O Neutral TGCs not allowed in SM
- ▶ aTGCs would modify both total rate and kinematics
 - O Charged and Neutral couplings probed by different channels

Coupling	Parameters	Channel	
WWγ	λγ, Δκγ	₩₩,₩ Y	
WWZ	λZ , $\Delta \kappa z$, Δg_1^Z	WW,WZ	
ZZγ	h ₃ ^Z , h ₄ ^Z	Zγ	
Zyy	h ₃ Y, h ₄ Y	Zγ	
ZZZ	f_4^Z , f_5^Z	ZZ	
ZyZ	f ₄ Y, f ₅ Y	ZZ	

Production	$\Delta \kappa_{\mathbf{Z}}, \Delta \kappa_{\gamma}$ term	∆g ₁ ^z term	λ_{z} , λ_{γ} term
ww	grow as ŝ	grow as \$\hat{\sigma}^{\sqrt{2}}	grow as ŝ
WZ	grow as \$½	grow as ŝ	grow as ŝ
Wγ	grow as \$1/2		grow as ŝ

aTGC Searches in CMS

- → All analyses use differential shape
- No form factors used (effective theory approach)
- →All analyses based on 7 TeV data

	Int. Iuminosity @ 7 TeV	Vertex	Measured parameters	Variable for limit setting
$ZZ\rightarrow2I2I'$ (I = e/μ ;I' = $e/\mu/\tau$)	5.0 fb ⁻¹	ZZZ, ZZγ	$f_{4}^{Z}, f_{5}^{Z}, f_{4}^{\gamma}, f_{5}^{\gamma}$	M(2l2l)
Wγ→Iνγ	5.0 fb ⁻¹	WWγ	$λ^{\gamma}$, $Δκ^{\gamma}$	Ε _T ^γ
Ζγ→ΙΙγ	5.0 fb ⁻¹	ΖΖγ, Ζγγ	h_{3}^{z} , h_{4}^{z} , h_{3}^{γ} , h_{4}^{γ}	Ε _T ^γ
Ζγ→ννγ	5.0 fb ⁻¹	ΖΖγ, Ζγγ	$h_{_{3}}^{z}$, $h_{_{4}}^{z}$, $h_{_{3}}^{\gamma}$, $h_{_{4}}^{\gamma}$	Ε _T ^γ
W⁺W⁻→IvIv	4.9 fb ⁻¹	WWγ, WWZ	λ^{z} , $\Delta \kappa^{\gamma}$, Δg_{1}^{z}	P _T (I)
W⁺W⁻+WZ→lvjj	5.0 fb ⁻¹	WWγ, WWZ	λ^{z} , $\Delta \kappa^{\gamma}$	P _T (jj)
Exclusive γγ→W⁺W⁻	5.0 fb ⁻¹	WWγγ	a_0^W/Λ^2 , a_c^W/Λ^2	P _τ (eμ)

New!

Statistical treatment: CL_S or profile likelihood

Searches for charged aTGCs: differential distributions

Photon E_T

WW→IVIV Leading lepton P_T

Charged aTGC searches: Results

95% C.L.	$\Delta \kappa^{\gamma}$	λ	$\Delta g_{_{1}}^{\ z}$
Wγ→Iνγ	[-0.38, 0.29]	[-0.05, 0.037]	-
W⁺W⁻→IvIv	[-0.21, 0.22]	[-0.048, 0.048]	[-0.095, 0.095]
W⁺W⁻+WZ→lvjj	[-0.111, 0.142]	[-0.038, 0.030]	-

Results agree with SM: no sign of aTGCs

Charged TGCs: comparison with other results

LHC measurements approaching LEP sensitivities

Neutral aTGC searches: Differential distributions

$Z\gamma$ Photon E_T

VVY final state has 6 times larger BR and no FSR: much more sensitive to aTGC

ZZ 4 lepton mass

Neutral aTGCs searches: Results

x10	h ^z ₃	h ^z ₄	h ₃	h ^γ ₄
Ζγ→ΙΙγ	[-8.6, 8.4]	[-0.080, 0.079]	[-10, 10]	[-0.088, 0.088]
Ζγ→ννγ	[-3.1, 3.1]	[-0.014, 0.014]	[-3.2, 3.2]	[-0.016, 0.016]
Ζγ→ννγ,ΙΙγ	[-2.7, 2.7]	[-0.013, 0.013]	[-2.9, 2.9]	[-0.014, 0.015]

All measurements consistent with SM: no sign of neutral aTGCs

Neutral TGCs: comparison with other results

LHC measurements already exceeded LEP sensitivities

Gauge Self-Interactions in VBF processes

Exclusive yy→W+W- Production

Process yy→W+W-

- Never observed before
- Sensitive to anomalous QGC

"Exclusive"

"Quasi-Exclusive"

"Untagged analysis":

Signal: exclusive + quasi-exclusive

$$pp \rightarrow p^{(*)}W^+W^-p^{(*)}$$

Signature:
2 isolated
leptons (e+µ)
and no other
visible track from
their vertex

$pp \rightarrow p^{(*)}W^+W^-p^{(*)} \rightarrow p^{(*)}|v|^{\prime}vp^{(*)}$ Selection

Measurement strategy

- Use only eu channel
 - Much larger background for ee/µµ
- Purely track-based analysis
 - reduced PU sensitivity
- 2 discriminating variables used:
 - # tracks associated to eµ vertex
 - P_T(eµ)
- Estimate backgrounds from sidebands of these variables
- Use yy→µµ to estimate quasi-exclusive fraction

Define 2 regions depending on measurement aim:

	nr tracks	Pt(eµ)
"SM region"	<	>30 GeV
"aQGC region"	<	>100 GeV

Backgrounds: W+jets, yy→TT, DY TT,

$pp \rightarrow p^{(*)}W^+W^-p^{(*)} \rightarrow p^{(*)}|v|^{\prime}vp^{(*)}$ Cross Section

▶ 2 events observed in SM signal region

CMS-PAS-FSQ-12-010

Expected: 2.2±0.5 (signal) + 0.84±13 (background)

- ▶ Upper limit extrapolated to full phase space, assuming SM: <8.4 fb @ 95% C.L.
- ▶ Expressed as cross section (~ I sigma):

$$\sigma(pp\to p^{(*)}W^+W^-p^{(*)}\to p^{(*)}\mu^\pm e^\mp p^{(*)})=2.1^{+3.1}_{-1.9}~{\rm fb},$$

Theory: $\sigma(pp \to p^{(*)}W^+W^-p^{(*)} \to p^{(*)}\mu^{\pm}e^{\mp}p^{(*)}) = 3.8 \pm 0.9 \text{ fb.}$

$pp \rightarrow p^{(*)}W^+W^-p^{(*)} \rightarrow p^{(*)}ev\mu vp^{(*)}$: search for aQGC

No events observed in aQGC search region

CMS-PAS-FSQ-12-010

Limit on partial x-section*BF:

$$\sigma(pp \to p^{(*)}W^+W^-p^{(*)} \to p^{(*)}\mu^{\pm}e^{\mp}p^{(*)}) < 1.9 \text{ fb.}$$

Can be interpreted as limit on aQGC with "LEP-like" (Belanger & Boudjema) aQGC: with form factor Λ =500 GeV without form factor

$$-0.00017 < a_0^W/\Lambda^2 < 0.00017 \text{ GeV}^{-2} \ (a_C^W/\Lambda^2 = 0, \Lambda = 500 \text{ GeV}),$$

$$-0.0006 < a_C^W/\Lambda^2 < 0.0006 \text{ GeV}^{-2} \ (a_0^W/\Lambda^2 = 0, \Lambda = 500 \text{ GeV}),$$

$$-2.80 \times 10^{-6} < a_0^W/\Lambda^2 < 2.80 \times 10^{-6} \text{ GeV}^{-2} \ (a_C^W/\Lambda^2 = 0, \text{ no form factor}),$$

 $-1.02 \times 10^{-5} < a_C^W/\Lambda^2 < 1.02 \times 10^{-5} \text{ GeV}^{-2} \ (a_0^W/\Lambda^2 = 0, \text{ no form factor}),$

Sensitivity by far exceeds LEP!

EWK Production of Z+2jets

Vector boson fusion:WW→Z

- Central Z decay with energetic forward-backward jets
- Large η separation between jets
- Large invariant dijet mass
- Pure EWK process: no color exchange between tagging jets:
 - O → low hadronic activity in central part of the detector

Signature:
2 isolated
leptons
+ 2 tagging jets

EWK Z+2jets: Measurement strategy

Measurement goals

- Establish pure EWK Z+jets production
- Set benchmark for other VBF processes (Higgs!)
- Study central activity in rapidity gap

"EWK Z+2jets signal"

Several pure EWK processes lead to Zjj final state

Very large backgrounds: dominated by DY+jets

Specific optimized Selection

(I)
$$P_t^{\text{jetl}(2)} > 65$$
 (40) GeV

(2)
$$|y^*| = |y_Z - 0.5(y_{j1} + y_{j2})| < 1.2$$

(3)
$$M(j_1,j_2) > 600 \text{ GeV}$$

EWK Z+2jets: signal extraction

- ▶ EWK Signal extracted in 2 ways:
 - O Fit to M_{ij} distribution
 - O MVA Analysis: fit to BDT output trained to give high output value for signal-like events
- Present BDT result as it provides smaller uncertainty:

$$\sigma^{\rm EW}_{\ell\ell,\ell\,=\,\rm e\,\,or\,\,\mu}=154\pm24\,(\rm stat.)\pm46\,(\rm exp.\,\, syst.)\pm27\,(\rm th.\,\, syst.)\pm3\,(\rm lum.)\,\,fb.$$

in agreement with NLO (VBFNLO) prediction: 166 fb

Measurement limited by large systematic uncertainties: signal and background modeling, Jet energy scale and resolution, MC statistics

Conclusions and Outlook

- CMS has measured all diboson processes @ 7 TeV and done first measurements at 8 TeV
 - O All measurements consistent with SM expectations
 - O Some tensions present however in some channels: WW, Wγ; Fluctuations or disagreement?
- Anomalous coupling limits set in many channels:
 - O Measured couplings agree with SM so far
 - O Charged couplings approaching LEP sensitivity
 - Neutral coupling sensitivity already exceeded LEP
- Much more to come
 - O More final states being worked on
 - O Full results on 8 TeV data; Larger luminosity opens the possibility of more detailed studies, e.g. differential cross sections
 - O Working on increasing sensitivity through combinations between channels and with ATLAS
- ▶ The study of Quartic Gauge Couplings has started!

Gateway to collection of all CMS Results: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

Backup

CMS Diboson Results

WW→ IVIV	PLB	36 pb ⁻¹ @ 7 TeV
Wy→Ivy & Zy→IIy	PLB	36 pb ⁻¹ @ 7 TeV
WZ→IVII	CMS-PAS-EWK-11-010	I.I fb ⁻¹ @ 7 TeV
ZZ→4I	JHEP 1301 (2013) 063	5.0 fb ⁻¹ @ 7 TeV
WW→ IVIV	CMS-PAS-SMP-12-005	5.0 fb-I @ 7 TeV
WW+WZ→Ivjj	EPJC 73 (2013) 2283	5.0 fb-I @ 7 TeV
Wy→Ivy & Zy→IIy	CMS-PAS-EWK-11-009	5.0 fb-I @ 7 TeV
Ζγ→ννγ	CMS-PAS-SMP-12-020	5.0 fb-I @ 7 TeV
WW→ IVIV & ZZ→4I	arXiv:1301.4698	3.5 fb-I (WW) & 5.3 fb-I @ 8 TeV
γγ→W+W-	CMS-PAS-FSQ-12-010	5.0 fb-I @ 7 TeV
Z with 2 forward jets	CMS-PAS-FSQ-12-019	5.0 fb-I @ 7 TeV

Exclusive YY→W+W- Production

