# Micro-strip based detection systems: 

advances and new technological developments

## Yoshinobu Unno KEK

## Your Lecturer



## Yoshinobu UNNO

## Your Lecturer



## Yoshinobu UNNO <br> Professor of KEK

## Your Lecturer

> .. his office


MontBlanc

## Yoshinobu UNNO Professor of KEK ATLAS experiment at CERN



## Your Lecturer



## Yoshinobu UNNO

 Professor of KEK ATLAS experiment at CERN Design, construction, ... and upgrade, of the silicon tracker- together with many colleagues
- for the great discovery


## Japan - Wonderland



One of the advantage is the industry, specially electronics

## Japan - Wonderland



Big electronics giants like HITACHI, ...

## Japan - Wonderland



Big electronics giants like HITACHI, SONY, ...

## Japan - Wonderland



But, we have benefitted from a smaller company ...

## Japan - Wonderland


who has a long history of collaboration with our fields ...

## Japan - Wonderland



Now, we are benefitting from the company...

## Hamamatsu Photonics



A cylindrical SCT barrel structure, radius 299 mm , length 1492 mm , tiled with rectangular modules constructed using silicon sensors supplied by Hamamatsu Photonics


## Supply of Silicon Microstrip Sensors for the ATLAS SemiConductor Tracker

Hamamatsu Photonics has supplied 17,028 of the p-in-n single-sided silicon microstrip sensors that make up the detecting element of the ATLAS Semiconductor Tracker. The sensors are of six different shapes, each having 768 accoupled readout strips at a pitch close to $80 \mu \mathrm{~m}$.

The final design details and specifications were developed during several years of collaborative R\&D between Hamamatsu Photonics and ATLAS Institutes. The challenge was to produce sensors with high strip quality and efficiency that could withstand the high radiation levels to be experienced in ATLAS, operating at high bias voltages after type-inversion.

The sensors supplied were of uniformly excellent quality, well in excess of the requirements of the technical specification. They were delivered over a three-year period to the agreed schedule and cost. The ATLAS Collaboration greatly appreciates the help, the flexible attitude and the enormous contribution of Hamamatsu Photonics to the experiment.

## Contributions by Japanese teams in the ATLAS construction



1200 TGC chambers and 320 K ch. L1 Electronics of endcap muon trigger system KEK, Tokyo, Kobe, Nagoya...


400k ch. of TDC chips for MDT system, KEK


Superconducting Solenoid, KEK 6000 sensors and 980 modules of barrel SCT system, KEK, Tsukuba, Okayama, Hiroshima ...

- In addition, many Japanese industries provided high quality detector components: Hamamatsu Phonics, Kawasaki Heavy Industries, Toshiba, Kuraray, Arisawa, Fujikura, etc


## This lecture

- Micro-strip based detection systems
- advances and new technological development
- It is not a monopoly of ATLAS nor HPK nor Japan. It is an example of our fields.
- Other experiments: CMS, LHCb, ...
- Other industries: Microns, CiS, ...
- Content
- Brief overview of the current ATLAS silicon microstrip tracker (SCT)
- Issues and achievement of the LHC tracker
- New technological development for the high-luminosity LHC tracker
- Understanding the underlying physics - TCAD simulation

ID $1 / 4$ volume

## ATLAS Inner Detector



- ID=Silicon (Pixel + Strip) + TRT
- Radius ~ 1 m, L=5.4 m
- Position ( $\phi$ ) resolutions
- Pixel: ~15 $\mu \mathrm{m}$ ( $50 \mu \mathrm{~m}$ pitch)
- Strip (axial-stereo pair): ~17 $\mu \mathrm{m}(80 \mu \mathrm{~m}$ pitch)
- TRT: ~ $22 \mu \mathrm{~m}$ (130 $\mu \mathrm{m}$ drift reso., 36 sampling)
- Why Silicon?
$p / p \mu \quad s /\left(0.3 B L^{2}\right)$
Installation into ATEAS2013, 2013/7/12, Y. Unno


# ATLAS Inner Detector 



- Barrel modules
- Double-side, stereo readout ( 40 mrad )
- Sensors: $2 \times\left(6.4 \times 6.4 \mathrm{~cm}^{2}\right) /$ side $\times 2$ side (top and bottom)
- 4 in. FZ crystal wafer, <111> and some <100>
- $80 \mu \mathrm{~m}$ pitch, $\sim 12.6 \mathrm{~cm}$ strip lenth, 768 strips
- Hybrids: 6 ABCD chips (128 ch)/side
- $\mathrm{Cu} /$ Polyimide flex circuit + Carbon-carbon substrate
Red letters: Contributions of Japan
- Japan: ~980/2112+spares in barrel modules


## Silicon Detector (LHC)




Mounted on the barrel cylinder
 Then, installed into ATLAS

## Silicon Detector (LHC)



- LHC silicon microstrip detectors are the largest silicon trackers ever built.
- A scale: cost of the sensor ~1 million Euro/m²
- Silicon microstrip detector is the "must" for large area coverage.


## Particle fluence



- Yearly fluence of particles
- in the unit of 1-MeV neutrons equivalent per $\mathrm{cm}^{2}$
- Luminosity: $10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, integrated: $100 \mathrm{fb}^{-1} / \mathrm{yr}$
- End of life fluence at SCT ( $\mathrm{r}=30 \mathrm{~cm}$ )
$-2 \times 10^{14} 1-\mathrm{MeV}$ neq/cm ${ }^{2}$ (including $50 \%$ uncertainty in pp cross section)


## Non Ionizing Energy Loss (NIEL)



## Radiation Damage Studies

- Radiation damage of silicon
-the $1^{\text {st }}$, in our field... 30 yrs ago
- T. Kondo et al, Radiation Damage Test of Silicon Microstrip Detectors
- Proc. of the 1984 Summer Study on the Design and Utilization of SSC, June 23-July 13, 1984, Snowmass, Colorado, pp. 612-614
- The messages were
-The prevailing opinion was that silicon vertex detectors were not possible at $10^{33}$ luminosity, but...
- It was shown that silicon is rad-hard, little pulse-height change, cooling needed.


## Radiation Damage Studies

- Since then, radiation damage studies are continued in Japan, Europe, US., and elsewhere
- Two papers were already published in 1988, (25 yrs ago)
- T. Ohsugi, ... T. Kondo, ... K. Yamamoto .., "Radiation Damage in Silicon Microstrip DetectorsT", Nucl. Instr. Meth. A265(1988)105
- M. Nakamura,...T. Kondo, "Radiation Damage Test of Silicon Multistrip Detectors", Nucl. Instr. Meth. A270(1988)42, using the irradiated sensor by 800 GeV protons


## Increase of leakage current



Also, temperature dependence of bulk leakage current

$$
\begin{gathered}
J_{g}(T) \propto T^{2} \exp \left(-\frac{E_{e f}}{2 k_{B} T}\right) \\
E_{e f}=1.20 \mathrm{eV}
\end{gathered}
$$

Fig. 5. Temperature dependence of the leakage current. The solid lines are the best fits using the formula given in the text.

- Radiation Damage in Silicon Microstrip Detectors
- T. Ohsugi, ... T. Kondo, ... K. Yamamoto .., Nucl. Instr. Meth. A265(1988)105


## Type inversion of the silicon



Fig. 25. Estimated effective impurity density as a function of proton fluence.

Abstract:
....... The effective impurity density decreases with fluence up to ${ }^{\sim} 4 \times 10^{13} / \mathrm{cm}^{2}$, but for greater fluences, it increases. This may indicate the type conversion of the bulk silicon .........

- M. Nakamura,...T. Kondo, "Radiation Damage Test of Silicon Multistrip Detectors", Nucl. Instr. Meth. A270(1988)42, using the irradiated sensor by 800 GeV protons


## Evolution of depletion voltage

- A thorough study of the radiation damages has been made by RD50 collaboration. But, also done elsewhere...
- E.g. Michael Moll, Ph.D Thesis, 1999.
$24 \mathrm{GeV} / \mathrm{c}$ proton irradiation
(n-type silicon)


70 MeV proton irradiation (p-type silicon)
K. Hara et al.,

IEEE Trans. Nucl. Scie. 56 (2009) 468


6 in. FZ is as same as DOFZ or MCZ

# Signal degradation in LHC Silicon Sensors 



## Choice of LHC Experiments

| Experiment | Type | Wafer |
| :---: | :---: | :---: |
| ALICE pixel | p-in-n | standard FZ |
| ATLAS pixel | n-in-n | oxygenated |
| ATLAS strips | p-in-n | standard $\mathrm{FZ}<111>$ (some <100>) |
| CMS pixel | n-in-n | standard FZ |
| CMS strips | p-in-n | standard FZ <100> |
| LHCb VELO | n-in-n | standard FZ |

- Cost consideration and compromises
- p-in-n:
- single-side process (lower cost)
- requires full depletion, high voltage operation
- n-in-n
- double-side process (higher cost)
- works under partial depletion, less requirement for high voltage


## Silicon Detector (LHC ATLAS)



LHC: p-readout in n-bulk (p-in-n)

- Silicon sensor principle
- Deplete the bulk by holding the bias voltage at p -n junction
- LHC ATLAS: p-in-n strip sensor
- N-bulk: conventional
- Cheaper than other options
after type-inversion

- Need full depletion
- 500 V max operation/specification


## Radiation damage - Surface effect

$\mathrm{SiO}_{2}$ passivation Incident particles

S.M. Sze, Physics of Semiconductor


- The interfacial region is a single-crystal silicon followed by a monolayer of $\mathrm{SiO}_{x}$, incompletely oxidized silicon, then a strained region of $\mathrm{SiO}_{2}$ roughly 10-40 A deep.
- Interface traps ( $\mathrm{O}_{\mathrm{if}}$ ) and fixed oxide charges $\left(\mathrm{Q}_{\mathrm{f}}\right)$ exist, (as a consequence of thermal oxidation)
- Oxide trapped charges ( $\mathrm{O}_{\mathrm{ot}}$ ) can be created by radiation.
- $\mathrm{Q}_{\mathrm{f}}$ and $\mathrm{Q}_{\mathrm{ot}}$ are "positve" and attract electrons in the $\mathrm{Si}-\mathrm{SiO}_{2}$ interface.


## $1^{\text {st }}$ Visualization of Microdischarge



Fig. 1. Leakage current as a function of the bias voltage when the potential is across the integrated capacitor on the p-strip.


- High bias voltage $\rightarrow$ High electric field $\rightarrow$ avalanche breakdown
- Breakdown field ~ $30 \mathrm{~V} / \mu \mathrm{m}$ in silicon
- Visualization with an infra-red sensitive camera
- T. Ohsugi et al., Nucl. Instr. Meth. A432 (1994) 22


## Other examples of hot spots



Seg4 の DC PAD ストライフ 先端で発光（ $\times 5$ ）
Seg4 の DC PAD ストライプ 先端で発光 $(\times 100)$


Fig．9．Hot spots observed at $A C$ pad corners．The $A C$ pad is $60 \mu \mathrm{~m}$ wide and $200 \mu \mathrm{~m}$ long．


の AC PAD 角と Seg4 の DC PAD ストライプ 先端で発光（ $\times 0.8$ ）

Y．Unno et al．，Nucl．Instr．Meth．A Supplement 636 （2011）S24
Y．Takahasi et al．，http：／／dx．doi．org／10．1016／j．nima．2012．04．031

## Microdischarge after Irradiation

## $x$-anz-015-d


chan mpan man man
S. Mitsui et al., Nucl. Instr. Meth. A699 (2013) 36-40

- Hot electron images confirm that
- hot spots were observed first at the edge of the bias ring, and then at the inside of the edge metal.
- the highest electric field is at the bias ring ( $\mathrm{n}^{+}$implant), not at the edge ring ( $\mathrm{p}^{+}$implant).

CYRIC proton irradiated
$1 \times 10^{14} n_{e d} / \mathrm{cm}^{2}$
10 uA at 2000 V
$-15^{\circ} \mathrm{C}$

## Design of the sensor to high bias voltage



## ATLAS SCT in operation



- Radiation damage monitoring
- Leakage currents are well consistent with the expectation
- 99.3\% modules are working
- 30/4088 modules were disabled due to LV, HV, Cooling problems, ...


# LHC Upgrade (HL-LHC) 

Higgs search


Phys. Lett. B 716 (2012) 1-29 Fig.7c


Higgs coupling

ATLAS SUSY Searches* - 95\% CL Lower Limits

|  | Model | e, $\mu, \tau, \gamma$ | Jets | $\mathbf{E}_{T}^{\text {miss }}$ | $\int \mathcal{d t}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | msugraicmssm | $1 \mathrm{e}, \mu$ | ${ }^{3.6} \mathrm{j}$ ets | Yes | 20.3 |  |
|  | MSUGRACMSSM | 0 | $7-10$ jets | Yes | 20.3 |  |
|  | $\bar{q} \bar{q}, \bar{a} \rightarrow q \bar{q}_{1}^{0}$ | 0 | ${ }^{2} .6$ jets | Yes | 20.3 | $\stackrel{\square}{9}$ |
|  |  | 0 | ${ }^{2.6}$ jets | Yes | 20.3 | ¢ |
|  |  | ${ }_{2}^{1 e, \mu, \mu}$ | $\underset{\substack{3-6 \mathrm{j} \text { els } \\ 3 \text { jets }}}{ }$ | Yes | 20.3 | ${ }^{8}$ |
|  |  | ${ }_{2 \text { e, }}^{2 e, \mu}$ | ${ }_{2}$-4 jels | Yes | ${ }_{4.7}$ | 8 |
|  | GMSB (z̃ NLSP) | $1-2 \tau$ | 0.2 jets | Yes | 20.7 | E |
|  | GGM (bino NLSP) | $2 \gamma$ | 0 | Yes | 4.8 | g |
|  | GGM (wino NLSP) | $e_{e, \mu+\gamma}$ | 0 | Yes | 4.8 | $\overline{8}$ |
|  | GGM (higgsino-bino NLSP) | $\gamma$ | $1{ }^{16}$ | Yes | 4.8 | g |
|  | GGM (higgsino NLSP) | $2 e, \mu(Z)$ | 0.3 jets | Yes | 5.8 | $\overline{8}$ |
|  | Gravitino LSP | 0 | mono-jet | Yes | 10.5 | F |
|  |  | 0 | $3{ }^{3} \mathrm{~b}$ | Yes | 20.1 | 8 |
|  |  | 0 | ${ }^{7} .10$ jets | Yes | 20.3 | ${ }^{\text {g }}$ |
|  |  | ${ }_{0}^{0.1} \begin{aligned} & 0 . \mu, \mu \\ & 0.1\end{aligned}$ | 3 b 3 b | Yes | 20.1 20.1 | $\frac{8}{8}$ |
|  | $\hat{z}^{\underline{s} \rightarrow b t t_{1}}$ | 0-1e. $\mu$ | 36 |  |  | ${ }^{\text {g }}$ |
|  | $\vec{b}_{1} \hat{b}_{1}, \bar{b}_{1}, \bar{b}_{1} \rightarrow \hat{E}_{2}^{0}$ | $2 e .($ SS $)$ | 2 l | Yes | 20.1 | $b_{1}$ |
|  | $b_{1} b_{1}, b_{1} \rightarrow \bar{t}_{1}^{1}$ | $2 e, \mu(\mathrm{SS})$ | 0.36 | Yes | 20.7 | $6_{1}$ |
|  | $\bar{Z}_{1} \hat{z}_{1}$ | ${ }^{1-2}$ e, $\mu$ | ${ }^{1.2} \cdot 2$ | Yes | 4.7 | ${ }_{\text {it }}$ |
|  |  | $2 e, \mu$ $2 e, \mu$ | ${ }_{0}^{0.2 \text { jets }}$ | Yes Yes | ${ }_{20.3}^{20.3}$ | ${ }_{\text {t }}$ |
|  | $\bar{t}_{1} \bar{t}_{1}$ (medium), $\bar{t}_{1} \rightarrow b \bar{z}_{1}^{7}$ | 0 | $2 b$ | Yes | 20.1 | $\bar{t}_{1}$ |
|  | $\bar{t}_{1} \bar{t}_{1}\left(\right.$ heavy ) $\bar{t}_{1} \rightarrow \tilde{X}_{1}^{0}$ | 1e, $\mu$ | ${ }^{16}$ | Yes | 20.7 | $i_{1}$ |
|  |  | , | 2 b | Yes | 20.5 | $\mathrm{I}_{1}$ |
|  | ${ }_{\text {tit }} \mathrm{t}_{1} \bar{t}_{1}$ (natural GMSB) | $2 e, \mu(z)$ | $1{ }^{16}$ | Yes | 20.7 | $\mathrm{t}_{1}$ |
|  | $t_{2} t_{2}, t_{2} \rightarrow t_{1}+z$ | $3 \mathrm{e}, \mu(Z)$ | $1{ }^{\text {b }}$ | Yes | 20.7 | $\mathrm{i}_{2}$ |
|  | $\tilde{i}_{L} \cdot \underline{R} \bar{\chi}_{L}, \underline{t} \rightarrow \tilde{X}_{1}^{0}$ | 2e, $\mu$ | 0 | Yes | 20.3 | i |



ATLAS Preliminary $\int \mathcal{L} d t=(4.4-22.9) \mathrm{fb}^{-1} \quad \sqrt{s}=7,8 \mathrm{TeV}$ Reference ATLAA-CONF-2013.062




 ATLAS-CONF:-2012-152
ATLAS-CONF-2012-147 ATLAASCONF-2012-1.4
ATLAA-CONF-2013.061
ASASCONF-2013.06 ATLAS.CONF-2013.354
ATLASCOFF-210.361
ATLAS.CONF-2013.061 ATLAS-CONF-2013.061
 ATLAS CONF:-2013.048
ATLASCOONF 21013048



 ATLAS.CONF-2013.0.03
ATLAS.CONF-2013.035


 1212.1272
$\begin{gathered}\text { ATLA.COFF-21.140 } \\ \text { ATLAS.CONF-2013.036 }\end{gathered}$




- Higgs - Great discovery of the century
- Need high statistics
- Study of properties
- Search for "something" in TeV mass region


## Schedule for HL-LHC

2009 Start of LHCRun 1: 7 and 8 TeV centre of mass energy, luminosityramping up to few $10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, few $\mathrm{fb}^{-1}$ deliveredLHC shut-down to prepare machine fordesign energy and nominal luminosity

Run 2: Ramp up luminosity to nominal $\left(10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right), ~ \sim 50$ to $100 \mathrm{fb}^{-1}$
2018 Injector and LHC Phase-I upgrades to go to ultimate luminosity
Run 3: Ramp up luminosity to 2.2 x nominal, reaching ~100 fb-1/ year accumulate few hundred $\mathrm{fb}^{-1}$

Run 4: Collect data until $>3000 \mathrm{fb}^{-1}$

Inner Detector Upgrade (HL-LHC)



- 2022 - Full tracker replacement
- Area: ~200 m²
- Silicon strips: ${ }^{\sim} 1 \times 10^{15} \mathrm{neq} / \mathrm{cm}^{2}$
- Silicon sensors
- Max. 1000 V operation
- Full depletion might not be possible...


## Cost-effective n-in-p planar sensor

n-in-n

(LHC pixel sensors of ATLAS, CMS)

- for heavy radiation environments
Double-side mask process
- Bulk radiation damage
- one way to be " $p$ " type
- $\mathrm{n}^{+}$readout
- p-n junction to allow getting signals from "partially" depleted sensor
- Special in $\mathrm{n}+$ readout
- conductive layer in the surface
- ~M $\Omega$ /square
- due to the electrons

Diffusion process

ATLAS choice for strip sensors for HL-LHC attracted to the oxide trap/fixed charges

- no junction effect at the $\mathrm{n}^{+}$implant
- the electron layer must be
- interrupted (p-stop), or
- cancelled (p-spray)


## n-in-p sensors for HL-LHC

- Sensors with the p-stop isolation
- Operable to 1000 V bias voltage.
- Equivalently, suppressing "microdischarge" breakdown up to ~1000 V
- How?
- Those 0, 1, 2, backed by 3
- In addition, protection against beam splash: punch-through-protection (PTP) structure
(1) Optimization of $p$-stop structure
(0) Hardening the strip edges
(2) Optimization of edge width
(3) Understanding the physics
$\leftarrow$ Technology CAD (TCAD) simulation


## Study of required edge width



- Results are from N-type wafer
- Thickness (as is, thinned)
- 320 (W5), $200(W 7,13) \mu \mathrm{m}$
- Edge implantation
- $\mathrm{N}+$ or $\mathrm{P}+$




## Underlying physics of the edge width




Lateral depletion along the surface

- Square root of V_bias is linearly dependent on the edge distance
- Reflecting the depletion along the surface
- Distance can be $\leq 500 \mu \mathrm{~m}$ for the bias voltage up to 1 kV
- ... Different story if the side wall is implanted e.g., - active edge


## Required width after Irradiation

S. Mitsui et al, NIMA 699 (2013) 36-40


Fig. 5. Fluence dependence of field width hold up to 1000 V.

- Required width is $\sim 450 \mu \mathrm{~m}$ to hold 1000 V .
- At around $1 \times 10^{13}$, the required edge space is more than $450 \mu \mathrm{~m}$, but also the depletion voltage is decreased less than that of non-irrad. and anyway it is much less than 1000 V .
- At higher fluences, the required width is less than that of the non-irrad.


## P-stops between N-implants



- Problems - Hot spots
- IR image overlaid on visual image
- Microdischarge = Onset of leakage current
- How to optimize the structures to reduce the electric fields?


## Hot spot



## P-stop Structures Optimization

- TCAD simulations





Y. Unno et al., Nucl. Instr. Meth. A636 (2011) S118-S124
... and comparison with test structures


## Optimization of the p-stops



Stereo strip section

- P-stop
- away from the nimplant
- symmetric location
- N-implant
- pitch not too narrow nor not too wide
- Once known, simple.


## Technology CAD (TCAD)

- TCAD started to build the links between the
- semiconductor physics and electrical behavior
- to support circuit design
- Modern TCAD consists of
- Process simulation, and
- Device simulation
- Originated from the work of
- Prof. Robert W. Dutton and his group at Stanford Univ.
- Widely used in semiconductor industry
- to reduce the development cost and time
- to understand the physics behind
- that is even impossible to measure
- TCAD: Computer Aided Design for Semiconductor Technology
- The core is the "Finite Element Analysis".
- The numerical analysis method with modern computer.


Process simulation


## Brief History

1977: Prof. Dutton, Stanford
Process/Device simulator SUPREM-I (1D)/PISCES
1979: Technology Modeling Associates (TMA/Synopsys)
TSUPREM4 (2D)/MEDICI
1989: Silvaco International
ATHENA (2D)/ATLAS
1989: Integrated Systems Engineering AG (ISE)/Synopsys)
DIOS (2D)/DESSIS
1992: TMA
TAURUS (3D TSUPREM4/DEDICI)
1993: Prof. Law, Florida
Process sim: FLOOPS (3D)
2002: ISE
FLOOPS (3D)
2005: Synopsys
Sentaurus (3D TAURUS)
TMA $\Rightarrow$ AVANT!/1998 $\Rightarrow$ Synopsys/2001
ISE $\Rightarrow$ Synopsys/2004

In Japan,
1996: 3D HyENEXSS (Selete/TCAD Int.)
Selete: Consortium of 10 semiconductor co.
2011: 3D HyENEXSS (Selete)
Project ends


Prof. Robert W. Dutton (from Stanford TCAD Home page)

## Process Simulator Device Simulator


ion-implantation process (M.C.-model)

- Process steps
- Oxidation
- Deposition
- Etching
- Ion implantation
- Annealing
- Mostly for process experts
- Unless you know the process parameters, you have no way to simulate.

- Solving equations
- Poisson eq. ( $\psi, n, p$ )
- Current continuity eq. $J n, J p(\psi, \mathrm{n}$, p)
- Heat conduction eq. ("Drift Diffusion model) (TL)
- ...
- Four equations and four variables
- potential $\psi$, electron-density $n$, hole-density $p$, and latticetemperature TL


## Caveat

- Jungle of semiconductor physics models and parameters
- Device simulator e.g.,
- Transport models
- Mobility models
- Generation-recombination models (SRH, Auger, II, trap, surface...)
- SRH: Shockley-Read-Hall model
- II: Impact lonization model
- Finite Element method
- 3D vs. 2D
- 3D: Usually "very" time consuming
- 2D: Most of the cases, good enough
- Meshing: resolution vs. time
- Convergence of calculations
- Try and error for finding best procedures (method, physics model)
- The real caveat is
- "What you get is what you put."
- Although semiconductor industry is trying to simulate perfectly, we may still miss models, e.g., radiation damages


## TCAD Simulations

- Semiconductor Technology Computer-Aided Design (TCAD) tool
- ENEXSS 5.5, developed by SELETE in Japan
- Device simulation part: HyDeLEOS
- N-in-p strip sensor
- $75 \mu \mathrm{~m}$ pitch, p-stop $4 \times 10^{12} \mathrm{~cm}^{-2}$
- $150 \mu \mathrm{~m}$ thickness
- p-type bulk, $N_{\text {eff }} 4.7 \times 10^{12} \mathrm{~cm}^{-3}, V_{\text {FDV }}=80 \mathrm{~V}$ at $150 \mu \mathrm{~m}$
- Radiation damage approximation:
- Increase of acceptor-like state $\rightarrow$ Effective doping concentration
- Increase of leakage current $\rightarrow$ SRH model
- Increase of interface charge $\rightarrow$ Fixed oxide charge


## Bulk leakage current

After irradiation, the current increases as a function of fluence $\Delta I / V \sim \alpha \times \phi\left(\mathrm{n}_{\mathrm{eq}} / \mathrm{cm}^{2}\right)$ $\alpha \sim 4 \times 10^{-17}(\mathrm{~A} / \mathrm{cm})$ : damage constant E.g., Volume $=75 \mu \mathrm{~m} \times 1 \mu \mathrm{~m} \times 150 \mu \mathrm{~m}=1.13 \mathrm{x}$ $10^{-8} \mathrm{~cm}^{3}$
$\phi=1 \times 10^{15} n_{e q} / \mathrm{cm}^{2}$
$\Delta I \sim 45 \mathrm{nA}$


Fig. 6 Simplified band diagram of a semiconductor.

- Community has a view that
- the leakage current increases with an introduction of levels near the middle of the forbidden band,
- with the energy of band gap being half (of the full gap), the leakage current flows order of magnitude larger...
- Unfortunately, we have no freedom to change/add a program to the ENEXSS, but
- we can simulate the leakage current by modifying the model parameters to an unrealistic world...


## Shockley-Reed-Hall (SRH) Model

- Leakage current: SRH model
- Generation-recombination of carriers (electrons and holes) by thermal effect
$-A_{n^{\prime}} A_{p}$ : model parameters
- Decrease them as though increasing temperature

$$
\begin{gathered}
U_{S R H}=\frac{n_{i}^{2}-p n}{\tau_{p}\left(n+n_{i}\right)+\tau_{n}\left(p+n_{i}\right)} \\
\tau_{n, p}=A_{n, p}\left(\tau_{\min }^{n, p}+\frac{\tau_{\max }^{n, p}-\tau_{\min }^{n, p}}{1+\left(N / N_{t}^{n, p}\right)^{B_{n, p}}}\right)
\end{gathered}
$$

$n_{i}$ : intrinsic carrier density, $n, p$ : electron, hole carrier density

## Radiation Damage Approximation



Backplane at 200 V


- Black: non-irrad.

$$
-N_{e f f}=4.7 \times 10^{12} \mathrm{~cm}^{-3}, A_{n}, A_{p}=1.0
$$

- Green: Irrad.
- Increase of full depletion voltage, $N_{\text {eff }}=1.5 \times 10^{13} \mathrm{~cm}^{-3}$
- Increase of leakage current, $A_{n}, A_{p}=1 \times 10^{-8}$


## Interstrip Resistance, $R_{\text {int }}$



- Decrease of interstrip resistance after irradiation
- is quantitatively explained by the increase of leakage current.
- Other factors, the effective doping concentration nor the oxide interface charge, do not change the interstrip resistance.
- In retrospect, it is natural that the current is the other manifestation of the resistance.


## Electric potential of p-stop - Introduction of $\mathrm{Si}_{\mathrm{SiO}}^{2}$ interface charge -


$-3.82 e+01$
$-8.12 e+01$
$-1.24 \mathrm{e}+02$
$-1.67 \mathrm{e}+02$
$-2.10 \mathrm{e}+02$

- Non-irrad:
- $N_{\text {eff }}=4.7 \times 10^{12} \mathrm{~cm}^{-3}$,
- $\operatorname{SRH} A_{n}, A_{p}=1.0$,
- Fixed Oxide Charge $=1 \times 10^{10} \mathrm{~cm}^{-2}$
- Irrad:
- $N_{\text {eff }}=1.5 \times 10^{13} \mathrm{~cm}^{-3}$,
$-\mathrm{SRH} A_{n}, A_{p}=1 \times 10^{-8}$,
- Fixed Oxide Charge $=1 \times 10^{12} \mathrm{~cm}^{-2}$


## Electric Potential between Strips




- Electric potential of p-stop
- decreases as the interface charge increases positively,
- increases as the interface charge increases negatively.
- Measurement confirms that the interface charge is positive.


## Breakdown at High Voltages




- Under the "Irradiated" condition
- Breakdown occurs at high voltage at the $\mathrm{n}^{+}$edge, although the p -stop edge was the higher electric field initially.
- The rate to increase of the electric field at the p -stop edge is saturating at higher voltage.
- The p-n junction eventually overtakes the highest electric field by the time of breakdown.
- Why?


## Insight into the physics



- Electron inversion layer is diminishing
- as the bias voltage is being increased.
- This also explains that in p-bulk the bias voltage helps to isolate the $\mathrm{n}^{+}$implants.
- Understanding the underlying physics is only possible with TCAD simulation, eventually ...


## Summary

- Brief overview of the current ATLAS silicon microstrip tracker (SCT)
- ATLAS SCT strip detector is working well (so far).
- Issues and achievement of the LHC tracker
- Radiation level, $2 \times 10^{14} 1-\mathrm{MeV}_{\mathrm{eq}} / \mathrm{cm}^{2}$
- Radiation damage effects were identified
- High voltage operation was designed up to 500 V
- Strip edge hardening against high electric field was applied
- New technological achievement for the high-luminosity LHC tracker
- Radiation level, $\sim 1 \times 10^{15} 1-\mathrm{MeV} \mathrm{n}_{\mathrm{eq}} / \mathrm{cm}^{2}$
- High voltage operation up to 1000 V
- Minimum dead area in the edge is evaluated
- TCAD simulation
- Simulating radiation damage effects with approximation
- Very effective in understanding the underlying physics
- This is all about of the conventional planar silicon microstrip sensor...
- You still have a lot of challenges ahead in different world/requirements.


## Appendix

## Signal from $\mathrm{n}^{+}$or $\mathrm{p}^{+}$strips






Signal ~half of the carriers.

- High field around the strips
- Weighting field, mobility
n-bulk:
Low field toward $\mathrm{n}^{+}$strip


## Punch-Through Protection (PTP) Structure



## PTP Simulations

Elecric field, NB* $\mathrm{HT}^{\star} \mathrm{HC}-50 \mathrm{~V}$

- TCAD


TCAD simulation of
"Full gate" PTP, irradiated Electric field at onset
when the backplane bias voltage at -200 V
$V_{\text {test }}$ (left implant) at -50 V

## PTP Simulations



