Design of the new BI.DHZ.DVT50 and BI.DHZ.DVT70^1 $\ensuremath{\mathsf{BI}}$

Liesbeth Vanherpe

LIU-PSB Working Group Meeting, 16 May 2013

¹Design report in work: EDMS 1277962

Motivation

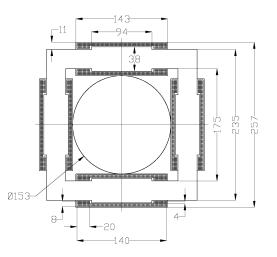
[Courtesy Jean-Michel Lacroix]

New beam dynamics requirements

- new position of BI.DHZ.DVT.70: 2 m upstream
- ▶ Linac2 → Linac4
- 10 mm offset at injection point

Design requirements

	Integrated flux density	Aperture width \times height	Good field region radius
BI.DHZ.DVT50 BI.DHZ.DVT70	130 Gm 160 Gm	$\frac{150 \text{ mm} \times 150 \text{ mm}}{70 \text{ mm} \times 70 \text{ mm}}$	<mark>50 mm</mark> 25 mm
Merged	160 Gm	150 mm $ imes$ 150 mm	50 mm


C. Carli, 31 October 2011

Norma Database, http://norma-db.web.cern.ch

Magnet design

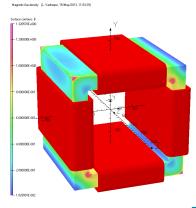
Magnet layout

Dimensions

- $\blacktriangleright\,$ overall length $\sim 255~\rm{mm}$
- \blacktriangleright overall weight $\sim 60~{\rm kg}$

Coil

air-cooled

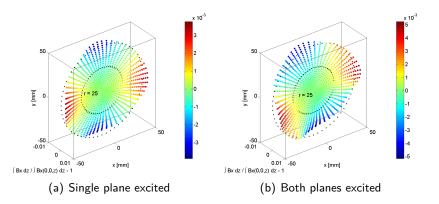

Magnet design

Electrical parameters for nominal operation (0.0182 Tm)

Parameter	Value	Unit	Remark
Nominal current I _{max}	35	А	
Rise time	4	ms	
Flat top time	2	ms	
Fall time	5	ms	
Total duty cycle	900	ms	
Nominal rms current $\mathrm{I_{rms}}$	2.6	А	
Resistance @ 20°	1.5	Ω	Per plane
Inductance	40.2	mΗ	Per plane
Required voltage during rise	405	V	On magnet
Required voltage during fall	228	V	On magnet
Power dissipation	10.4	W	Per plane

Compatible with MidiDiscap power supply (S. Pittet)

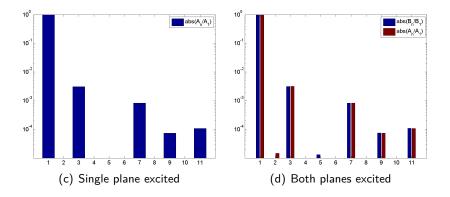
Magnetic field calculations



Parameter	Value	Unit
Integrated flux density	0.0182	Tm
per plane (margin)		
Magnetic length	388.8	mm
Good field region radius	50	mm
Field homogeneity	$\pm5 imes10^{-3}$	
inside GFR		

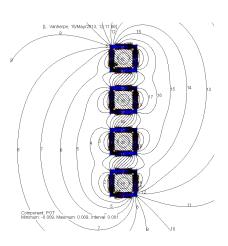
CERN

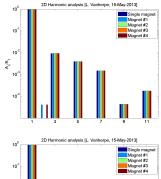
Magnetic field calculations

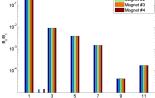

Field homogeneity

Magnetic field calculations

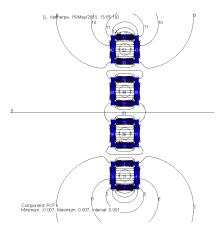
Harmonic analysis

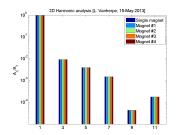

Opera-2d model [L. Vanherpe, 15/May/2013, 12:11:06]

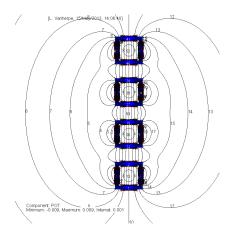


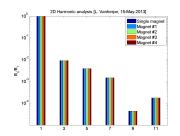

- Two-dimensional simulation results
- Assumption: distance between beam lines of 360 mm

Both planes excited






Vertical plane excited



Horizontal plane excited

Summary

- Magnetic design finished
 - Design report in work: EDMS 1277962
- Preliminary integration study performed (J.-M. Lacroix)

Action list

- Design report release
- Complete mechanical design \leftrightarrow integration study
- ECR (A. Newborough)
- Technical specification
- Call for Tender and Procurement
- Delivery \sim end of 2014

