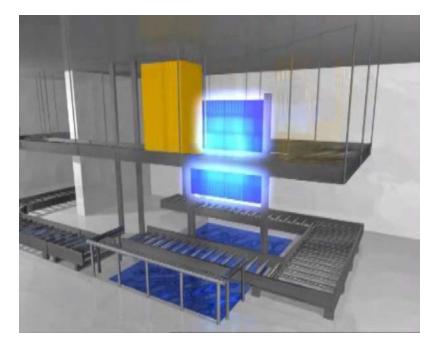

BUSINESS UNIT NEO


Business Unit "Nuclear Effects in Electronics and Optics (NEO)" Fraunhofer Institute for Technical Trend Analysis (INT)

- Maximum activity:
 - 2×10¹⁷ Bq (5 MCi)
- Maximum dose rate:
 - ~70 kGy(H₂0)/h (7 MRad/h) for small DUTs
- MGy irradiations possible during few weeks or even days
- Dosimetry:
 - Calculated and measured
- Uncertainty of dosimetry:
 - ~5.5 to 6.5 %

- Temperature range:
 - Room temperature
 - Tbd liquid nitrogen
- Large test volume (~1.9 m³)

- 2 level of transport
- Individuel irradiation dose on each palett
- Several circulations possible to accumulate dose
- Up to 24 paletts at the same time
- Possibility of irradiation of special containers or boxes

- Actual dose rate:
 - ~6 kGy(H₂0)/circulation (600 kRad/circulation)
 - \sim ~9 kGy(H₂0)/h (900 kRad/h)
 - \rightarrow 10 MGy(H₂0) could be reached after 46 days of non-stop irradiation
 - Mounting time ~4 hours per operation (load, unload)


External Co-60 source: BGS

Temperature measured directly on DUT

External Co-60 source: BGS

Radiation induced change of color of DUT

Before irradiation

After 0.1 MGy(H₂0) irradiation

External Co-60 source: BGS

Piezo Measurements

